Driving Factors and Scale Effects of Residents’ Willingness to Pay for Environmental Protection under the Impact of COVID-19
Abstract
:1. Introduction
2. Regional Overview and Dataset
2.1. Regional Overview
2.2. Questionnaire Design
2.3. Data Collection
3. Model Specification and Methods
3.1. Theoretical Model Setting
- I.
- U-shaped relationship between income and WTPEP if β1 < 0, β2 > 0;
- II.
- A negative monotonic relationship between income and WTPEP if β1 < 0, β2 = 0;
- III.
- Inversed-U shaped relationship between income and WTPEP if β1 > 0, β2 < 0;
- IV.
- A positive monotonic relationship between income and WTPEP if β1 > 0, β2 = 0.
3.2. Global Spatial Regression Modeling
3.2.1. Spatial Lag Model (SLM)
3.2.2. Spatial Error Model (SEM)
3.3. Local Spatial Regression Modeling
3.3.1. Geographically Weighted Regression (GWR)
3.3.2. Multiscale Geographically Weighted Regression (MGWR)
3.4. Model Fitting
4. Results
4.1. Changes in WTPEP before and during COVID-19
4.2. Model Choice
4.3. Spatial Heterogeneity of EKCs’ Shapes and Inflection Points
4.3.1. Spatial Heterogeneity Analysis of EKCs’ Shapes
4.3.2. Spatial Heterogeneity Analysis of EKCs’ Inflection Points
4.4. Spatial Heterogeneity and Scale Effect Analysis of WTPEP’s Drivers
4.4.1. Spatial Heterogeneity of WTPEP’s Drivers
4.4.2. Scale Effect Analysis of WTPEP’s Drivers
5. Discussion
5.1. Features Comparison of WTPEP before and during COVID-19
5.2. Spatial Heterogeneity Analysis of EKCs
5.3. Key Drivers and Scale Effects of WTPEP
5.4. Policy Implications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ameli, M.; Esfandabadi, Z.S.; Sadeghi, S.; Ranjbari, M.; Zanetti, M.C. COVID-19 and Sustainable Development Goals (SDGs): Scenario analysis through fuzzy cognitive map modeling. Gondwana Res. 2022, 114, 138–155. [Google Scholar] [CrossRef] [PubMed]
- Hampshire, A.; Hellyer, P.J.; Soreq, E.; Mehta, M.A.; Ioannidis, K.; Trender, W.; Grant, J.E.; Chamberlain, S.R. Associations between dimensions of behaviour, personality traits, and mental-health during the COVID-19 pandemic in the United Kingdom. Nat. Commun. 2021, 12, 4111. [Google Scholar] [CrossRef] [PubMed]
- Nundy, S.; Ghosh, A.; Mesloub, A.; Albaqawy, G.A.; Alnaim, M.M. Impact of COVID-19 pandemic on socio-economic, energy-environment and transport sector globally and sustainable development goal (SDG). J. Clean. Prod. 2021, 312, 127705. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.P.; Phang, S.C.; Williams, J.B.; Hutchinson, D.J.; Kolstoe, S.E.; de Bie, J.; Williams, I.D.; Stringfellow, A.M. Increased personal protective equipment litter as a result of COVID-19 measures. Nat. Sustain. 2022, 5, 272–279. [Google Scholar] [CrossRef]
- Ross-Driscoll, K.; Esper, G.; Kinlaw, K.; Lee, Y.T.H.; Morris, A.A.; Murphy, D.J.; Pentz, R.D.; Robichaux, C.; Vong, G.; Wack, K.; et al. Evaluating Approaches to Improve Equity in Critical Care Resource Allocation in the COVID-19 Pandemic. Am. J. Resp. Crit. Care 2021, 204, 1481–1484. [Google Scholar] [CrossRef]
- Soga, M.; Gaston, K.J. Towards a unified understanding of human-nature interactions. Nat. Sustain. 2022, 5, 374–383. [Google Scholar] [CrossRef]
- Nawaz, S.; Gul, F. Cash transfer program and willingness to pay for environmental services among the ultra-poor in Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 30249–30264. [Google Scholar] [CrossRef]
- Brown, T.C.; Gregory, R. Why the WTA-WTP disparity matters. Ecol. Econ. 1999, 28, 323–335. [Google Scholar] [CrossRef]
- Feng, D.Y.; Liang, L.; Wu, W.L.; Li, C.L.; Wang, L.Y.; Li, L.; Zhao, G.S. Factors influencing willingness to accept in the paddy land-to-dry land program based on contingent value method. J. Clean. Prod. 2018, 183, 392–402. [Google Scholar] [CrossRef]
- Li, J.; Ren, L.; Sun, M. Is there a spatial heterogeneous effect of willingness to pay for ecological consumption? An environmental cognitive perspective. J. Clean. Prod. 2020, 245, 118259. [Google Scholar] [CrossRef]
- Hojnik, J.; Ruzzier, M.; Fabri, S.; Klopcic, A.L. What you give is what you get: Willingness to pay for green energy. Renew. Energ. 2021, 174, 733–746. [Google Scholar] [CrossRef]
- Malik, S.; Arshad, M.Z.; Amjad, Z.; Bokhari, A. An empirical estimation of determining factors influencing public willingness to pay for better air quality. J. Clean. Prod. 2022, 372, 133574. [Google Scholar] [CrossRef]
- Ivcevic, A.; Statzu, V.; Satta, A.; Bertoldo, R. The future protection from the climate change-related hazards and the willingness to pay for home insurance in the coastal wetlands of West Sardinia, Italy. Int. J. Disaster Risk Reduct. 2021, 52, 101956. [Google Scholar] [CrossRef]
- Cicatiello, L.; Ercolano, S.; Gaeta, G.L.; Pinto, M. Willingness to pay for environmental protection and the importance of pollutant industries in the regional economy. Evidence from Italy. Ecol. Econ. 2020, 177, 106774. [Google Scholar] [CrossRef]
- Jayachandran, S. How Economic Development Influences the Environment. Annu. Rev. Econ. 2022, 14, 229–252. [Google Scholar] [CrossRef]
- Shao, S.; Tian, Z.; Fan, M. Do the rich have stronger willingness to pay for environmental protection? New evidence from a survey in China. World Dev. 2018, 105, 83–94. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic-Growth and the Environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Panayotou, T. Empirical Tests and Policy Analysis of Environmental Degradation at Different Stages of Economic Development; International Labour Organization: Geneva, Switzerland, 1993. [Google Scholar]
- Grossman, G.; Krueger, A. Environmental Impacts of a North American Free Trade Agreement; National Bureau of Economic Research, Inc.: Cambridge, MA, USA, 1991. [Google Scholar]
- Tenaw, D.; Beyene, A.D. Environmental sustainability and economic development in sub-Saharan Africa: A modified EKC hypothesis. Renew. Sust. Energy Rev. 2021, 143, 110897. [Google Scholar] [CrossRef]
- Dunlap, R.E.; Yolk, R. The globalization of environmental concern and the limits of the postmaterialist values explanation: Evidence from four multinational surveys. Sociol. Quart. 2008, 49, 529–563. [Google Scholar] [CrossRef]
- Jin, J.J.; Wan, X.Y.; Lin, Y.S.; Kuang, F.Y.; Ning, J. Public willingness to pay for the research and development of solar energy in Beijing, China. Energy Policy 2019, 134, 110962. [Google Scholar] [CrossRef]
- Anwar, M.A.; Zhang, Q.Y.; Asmi, F.; Hussain, N.; Plantinga, A.; Zafar, M.W.; Sinha, A. Global perspectives on environmental kuznets curve: A bibliometric review. Gondwana Res. 2022, 103, 135–145. [Google Scholar] [CrossRef]
- Baierl, T.M.; Kaiser, F.G.; Bogner, F.X. The supportive role of environmental attitude for learning about environmental issues. J. Environ. Psychol. 2022, 81, 101799. [Google Scholar] [CrossRef]
- Denant-Boemont, L.; Faulin, J.; Hammiche, S.; Serrano-Hernandez, A. Managing transportation externalities in the Pyrenees region: Measuring the willingness-to-pay for road freight noise reduction using an experimental auction mechanism. J. Clean. Prod. 2018, 202, 631–641. [Google Scholar] [CrossRef]
- Qian, C.; Yu, K.K.; Gao, J. Understanding Environmental Attitude and Willingness to Pay with an Objective Measure of Attitude Strength. Environ. Behav. 2021, 53, 119–150. [Google Scholar] [CrossRef]
- Zhang, B.B.; Wu, B.B.; Liu, J. PM2.5 pollution-related health effects and willingness to pay for improved air quality: Evidence from China’s prefecture-level cities. J. Clean. Prod. 2020, 273, 122876. [Google Scholar] [CrossRef]
- Paletto, A.; Notaro, S. Secondary wood manufactures’ willingness-to-pay for certified wood products in Italy. For. Policy Econ. 2018, 92, 65–72. [Google Scholar] [CrossRef]
- Cheng, P.; Dong, Y.; Wang, Z.; Tang, H.; Jiang, P.; Liu, Y. What are the impacts of livelihood capital and distance effect on farmers’ willingness to pay for coastal zone ecological protection? Empirical analysis from the Beibu Gulf of China. Ecol. Indic. 2022, 140, 109053. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, B.; Sun, C. Can payment vehicle influence public willingness to pay for environmental pollution control? Evidence from the CVM survey and PSM method of China. J. Clean. Prod. 2022, 365, 132648. [Google Scholar] [CrossRef]
- Xiao, Y.; Lu, Y.; Guo, Y.; Yuan, Y. Estimating the willingness to pay for green space services in Shanghai: Implications for social equity in urban China. Urban For. Urban Green. 2017, 26, 95–103. [Google Scholar] [CrossRef]
- Santos, A.; Fernandes, M.R.; Aguiar, F.C.; Branco, M.R.; Ferreira, M.T. Effects of riverine landscape changes on pollination services: A case study on the River Minho, Portugal. Ecol. Indic. 2018, 89, 656–666. [Google Scholar] [CrossRef]
- Zeng, S.A.; Yi, C.D. The effect of joint prevention and control plan on atmospheric pollution governance and residents’ willingness to pay. Environ. Dev. Sustain. 2022. [Google Scholar] [CrossRef]
- Hansmann, R.; Koellner, T.; Scholz, R.W. Influence of consumers’ socioecological and economic orientations on preferences for wood products with sustainability labels. For. Policy Econ. 2006, 8, 239–250. [Google Scholar] [CrossRef]
- Tsai, I.C. Impact of proximity to thermal power plants on housing prices: Capitalizing the hidden costs of air pollution. J. Clean. Prod. 2022, 367, 132982. [Google Scholar] [CrossRef]
- Toledo-Gallegos, V.M.; Long, J.; Campbell, D.; Borger, T.; Hanley, N. Spatial clustering of willingness to pay for ecosystem services. J. Agric. Econ. 2021, 72, 673–697. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Strezov, V. A review on Environmental Kuznets Curve hypothesis using bibliometric and meta-analysis. Sci. Total Environ. 2019, 649, 128–145. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Rahim, A.S.; Kim, Y.; Yue, L. Investigating Spatial Heterogeneity of the Environmental Kuznets Curve for Haze Pollution in China. Atmosphere 2022, 13, 806. [Google Scholar] [CrossRef]
- Contestabile, M.; Srivastava, L.; Hackmann, H. A sustainable post-COVID future. Nat. Sustain. 2021, 4, 464–465. [Google Scholar] [CrossRef]
- Azman, A.S.; Luquero, F.J. From China: Hope and lessons for COVID-19 control. Lancet Infect. Dis. 2020, 20, 756–757. [Google Scholar] [CrossRef]
- Mallapaty, S. Has COVID peaked? Maybe, but it’s too soon to be sure. Nature 2021, 591, 512–514. [Google Scholar] [CrossRef]
- Wang, Y.D.; Liang, J.P.; Yang, J.; Ma, X.X.; Li, X.Q.; Wu, J.; Yang, G.H.; Ren, G.X.; Feng, Y.Z. Analysis of the environmental behavior of farmers for non-point source pollution control and management: An integration of the theory of planned behavior and the protection motivation theory. J. Environ. Manag. 2019, 237, 15–23. [Google Scholar] [CrossRef]
- Li, F.D.; Zhang, K.J.; Ren, J.; Yin, C.B.; Zhang, Y.; Nie, J. Driving mechanism for farmers to adopt improved agricultural systems in China: The case of rice-green manure crops rotation system. Agric. Syst. 2021, 192, 103202. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, M.; Cao, S. How deep is China’s environmental Kuznets curve? An analysis based on ecological restoration under the Grain for Green program. Land Use Policy 2018, 70, 647–653. [Google Scholar] [CrossRef]
- Yang, X.M.; Cheng, L.L.; Yin, C.B.; Lebailly, P.; Azadi, H. Urban residents’ willingness to pay for corn straw burning ban in Henan, China: Application of payment card. J. Clean. Prod. 2018, 193, 471–478. [Google Scholar] [CrossRef]
- Ouyang, X.L.; Zhuang, W.X.; Sun, C.W. Haze, health, and income: An integrated model for willingness to pay for haze mitigation in Shanghai, China. Energy Econ. 2019, 84, 104535. [Google Scholar] [CrossRef]
- Li, Q.W.; Long, R.Y.; Chen, H. Differences and influencing factors for Chinese urban resident willingness to pay for green housings: Evidence from five first-tier cities in China. Appl. Energy 2018, 229, 299–313. [Google Scholar] [CrossRef]
- Arbia, G.; Matsuda, Y.; Wu, J.Y. Estimating spatial regression models with sample data-points: A Gibbs sampler solution. Spat. Stat. 2022, 47, 100568. [Google Scholar] [CrossRef]
- Anselin, L. Spatial externalities, spatial multipliers, and spatial econometrics. Int. Reglonal. Sci. Rev. 2003, 26, 153–166. [Google Scholar] [CrossRef]
- Baltagi, B.H.; Song, S.H.; Koh, W. Testing panel data regression models with spatial error correlation. J. Econom. 2003, 117, 123–150. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geoer. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- O’Sullivan, D. Geographically weighted regression: The analysis of spatially varying relationships. Geoer. Anal. 2003, 35, 272–275. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yang, W.B.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Am. Assoc. Geoer. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Oshan, T.M.; Li, Z.Q.; Kang, W.; Wolf, L.J.; Fotheringham, A.S. MGWR: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale. ISPRS Int. J. Geo-Inf. 2019, 8, 269. [Google Scholar] [CrossRef] [Green Version]
- Mansfield, E.R.; Helms, B.P. Detecting multicollinearity. Am. Stat. 1982, 36, 158–160. [Google Scholar] [CrossRef]
- Mollalo, A.; Vahedi, B.; Rivera, K.M. GIS-based spatial modeling of COVID-19 incidence rate in the continental United States. Sci. Total Environ. 2020, 728, 138884. [Google Scholar] [CrossRef] [PubMed]
- Mansour, S.; Al Kindi, A.; Al-Said, A.; Al-Said, A.; Atkinson, P. Sociodemographic determinants of COVID-19 incidence rates in Oman: Geospatial modelling using multiscale geographically weighted regression (MGWR). Sustain. Cities Soc. 2021, 65, 102627. [Google Scholar] [CrossRef]
- Reincke, S.M.; Yuan, M.; Kornau, H.C.; Corman, V.M.; van Hoof, S.; Sanchez-Sendin, E.; Ramberger, M.; Yu, W.L.; Hua, Y.Z.; Tien, H.; et al. SARS-CoV-2 Beta variant infection elicits potent lineage-specific and cross-reactive antibodies. Science 2022, 375, 782–787. [Google Scholar] [CrossRef]
- Wu, X.; Shi, L.; Lu, X.Y.; Li, X.T.; Ma, L. Government dissemination of epidemic information as a policy instrument during COVID-19 pandemic: Evidence from Chinese cities. Cities 2022, 125, 103658. [Google Scholar] [CrossRef]
- Farjam, M.; Nikolaychuk, O.; Bravo, G. Experimental evidence of an environmental attitude-behavior gap in high-cost situations. Ecol. Econ. 2019, 166, 106434. [Google Scholar] [CrossRef] [Green Version]
- Schultz, P.W.; Milfont, T.L.; Chance, R.C.; Tronu, G.; Luís, S.; Ando, K.; Rasool, F.; Roose, P.L.; Ogunbode, C.A.; Castro, J.; et al. Cross-Cultural Evidence for Spatial Bias in Beliefs About the Severity of Environmental Problems. Environ. Behav. 2012, 46, 267–302. [Google Scholar] [CrossRef]
- Nielsen, A.S.E.; Lundhede, T.H.; Jacobsen, J.B. Local consequences of national policies—A spatial analysis of preferences for forest access reduction. For. Policy Econ. 2016, 73, 68–77. [Google Scholar] [CrossRef]
- Hou, L.L.; Xia, F.; Chen, Q.H.; Huang, J.K.; He, Y.; Rose, N.; Rozelle, S. Grassland ecological compensation policy in China improves grassland quality and increases herders’ income. Nat. Commun. 2021, 12, 4683. [Google Scholar] [CrossRef]
- Dietrich, S.; Giuffrida, V.; Martorano, B.; Schmerzeck, G. COVID-19 policy responses, mobility, and food prices. Am. J. Agric. Econ. 2022, 104, 569–588. [Google Scholar] [CrossRef]
- Wang, L.; Xue, Y.B.; Chang, M.; Xie, C. Macroeconomic determinants of high-tech migration in China: The case of Yangtze River Delta Urban Agglomeration. Cities 2020, 107, 102888. [Google Scholar] [CrossRef]
- Wang, Z.X.; Wei, W. Regional economic resilience in China: Measurement and determinants. Reg. Stud. 2021, 55, 1228–1239. [Google Scholar] [CrossRef]
- Liu, G.; Zhiqing, Y.; Zhang, F.; Zhang, N. Environmental tax reform and environmental investment: A quasi-natural experiment based on China’s Environmental Protection Tax Law. Energy Econ. 2022, 109, 106000. [Google Scholar] [CrossRef]
- Li, G.; Masui, T. Assessing the impacts of China’s environmental tax using a dynamic computable general equilibrium model. J. Clean. Prod. 2019, 208, 316–324. [Google Scholar] [CrossRef]
- O’Garra, T.; Mourato, S. Public preferences for hydrogen buses: Comparing interval data, OLS and quantile regression approaches. Environ. Resour. Econ. 2007, 36, 389–411. [Google Scholar] [CrossRef]
- Alemu, G.T.; Tsunekawa, A.; Haregeweyn, N.; Nigussie, Z.; Tsubo, M.; Elias, A.; Ayalew, Z.; Berihun, D.; Adgo, E.; Meshesha, D.T.; et al. Smallholder farmers’ willingness to pay for sustainable land management practices in the Upper Blue Nile basin, Ethiopia. Environ. Dev. Sustain. 2021, 23, 5640–5665. [Google Scholar] [CrossRef]
- Li, R.; Shi, Y.; Feng, C.C.; Guo, L. The spatial relationship between ecosystem service scarcity value and urbanization from the perspective of heterogeneity in typical arid and semiarid regions of China. Ecol. Indic. 2021, 132, 108299. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.Y.; Zhao, F.; Wang, C.; Zhang, F.; Teng, Y.M.; Chu, X.; Kumi, M.A. Spatio-temporal variations of ecosystem services and their drivers in the Pearl River Delta, China. J. Clean. Prod. 2022, 337, 130466. [Google Scholar] [CrossRef]
- Golbazi, M.; El Danaf, A.; Aktas, C.B. Willingness to pay for green buildings: A survey on students’ perception in higher education. Energy Build. 2020, 216, 109956. [Google Scholar] [CrossRef]
- Jing, W.Z.; Liu, J.; Ma, Q.Y.; Zhang, S.K.; Li, Y.Y.; Liu, M. Fertility intentions to have a second or third child under China’s three-child policy: A national cross-sectional study. Hum. Reprod. 2022, 37, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Yang, H.; Thompson, J.R.; Li, J.L.; Loiselle, S.; Duan, H.T. COVID-19 lockdown improved river water quality in China. Sci. Total Environ. 2022, 802, 149585. [Google Scholar] [CrossRef] [PubMed]
- Lange, F.; Dewitte, S. Measuring pro-environmental behavior: Review and recommendations. J. Environ. Psychol. 2019, 63, 92–100. [Google Scholar] [CrossRef]
- Farooq, S.; Ozturk, I.; Majeed, M.T.; Akram, R. Globalization and CO2 emissions in the presence of EKC: A global panel data analysis. Gondwana Res. 2022, 106, 367–378. [Google Scholar] [CrossRef]
- Li, R.H.; Kockelman, K.M.; Lee, J. Reducing Greenhouse Gas Emissions from Long-Distance Travel Business: How Far Can We Go? Transport. Res. Rec. 2022, 2676, 472–486. [Google Scholar] [CrossRef]
- Li, W.L.; Achal, V. Environmental and health impacts due to e-waste disposal in China—A review. Sci. Total Environ. 2020, 737, 139745. [Google Scholar] [CrossRef] [PubMed]
- Trentman, M.T.; Tank, J.L.; Davis, R.T.; Hanrahan, B.R.; Mahl, U.H.; Roley, S.S. Watershed-scale Land Use Change Increases Ecosystem Metabolism in an Agricultural Stream. Ecosystems 2022, 25, 441–456. [Google Scholar] [CrossRef]
Question | Result (Only One Response per Question Is Permitted) |
---|---|
WTPEP (yuan) | |
How much money would you be willing to pay for environmental protection before COVID-19? | Quantity (yuan) |
How much money would you be willing to pay for environmental protection during COVID-19? | Quantity (yuan) |
Location | (longitude, dimension) |
Net annual income (ten thousand yuan) | ≥0 |
Demographic characteristics | |
Age | >0 |
Gender | Man, Woman |
Educational level | primary school (6 years), middle school (9 years), high school (12 years), college or university (16 years), master or above (19 years) |
Environmental condition | |
What do you think of the quality of the environment at your location? | very good (5), good (4), general (3), bad (2), very bad (1) |
What do you think of the degree of environmental degradation at your location? | extremely serious (5), very serious (4), serious (3), not serious (2), don’t know (1) |
Affect Health | |
How strongly does environmental degradation affect your health before COVID-19? | extremely serious (5), very serious (4), serious (3), not serious (2), don’t know (1) |
How strongly does environmental degradation affect your health during COVID-19? | extremely serious (5), very serious (4), serious (3), not serious (2), don’t know (1) |
Variable | Obs | Mean | St.Dev. | Min | Max | Official Data |
---|---|---|---|---|---|---|
Dependent variable | ||||||
WTPEP (before COVID-19) (yuan) | 1009 | 1224.294 | 1666.231 | 0 | 20,000 | 1843 |
WTPEP (during COVID-19) (yuan) | 1009 | 1967.389 | 2648.569 | 0 | 50,000 | 2120 |
Independent variable | ||||||
Age | 1009 | 31.304 | 11.896 | 12 | 86 | 38.8 |
Gender | 1009 | 0.409 | 0.492 | 0 | 1 | 0.512 |
income (yuan) | 1009 | 41,375.26 | 53,188.218 | 0 | 40 | 36,883 |
Edu | 1009 | 15.186 | 3.242 | 6 | 19 | 9.91 |
EQ | 1009 | 3.51 | 0.838 | 1 | 5 | |
ED | 1009 | 2.573 | 0.835 | 1 | 5 | |
health (before COVID-19) | 1009 | 2.535 | 1.01 | 1 | 5 | |
health (during COVID-19) | 1009 | 2.77 | 1.106 | 1 | 5 |
Variable | Coefficient | St. Error | Probability | VIF | ||||
---|---|---|---|---|---|---|---|---|
Before | During | Before | During | Before | During | Before | During | |
Intercept | −1061.15 | 966.23 | 433.72 | 760.76 | 0.015 | 0.204 | —— | —— |
income | 66.74 | 0.97 | 17.07 | 30.00 | 0.000 | 0.974 | 4.88 | 4.90 |
(income)2 | 5.64 | 11.01 | 0.76 | 1.34 | 0.000 | 0.000 | 4.69 | 4.73 |
Age | 6.34 | 8.23 | 4.27 | 7.47 | 0.138 | 0.271 | 1.53 | 1.52 |
Gender | 135.92 | 86.23 | 84.60 | 148.22 | 0.108 | 0.561 | 1.03 | 1.02 |
Edu | 49.66 | 63.03 | 15.34 | 26.88 | 0.001 | 0.019 | 1.46 | 1.46 |
EQ | 51.25 | −204.24 | 52.24 | −0.07 | 0.327 | 0.026 | 1.13 | 1.13 |
ED | 145.30 | −107.50 | 56.60 | −0.03 | 0.010 | 0.262 | 1.32 | 1.23 |
health | 75.52 | 86.98 | 45.02 | 0.04 | 0.094 | 0.209 | 1.23 | 1.12 |
Criterion | OLS | SLM | SEM | GWR | MGWR | |||||
---|---|---|---|---|---|---|---|---|---|---|
Before | During | Before | During | Before | During | Before | During | Before | During | |
Adj.R2 | 0.39 | 0.25 | 0.40 | 0.27 | 0.40 | 0.27 | 0.62 | 0.56 | 0.68 | 0.63 |
AICc | 17,348.7 | 18,482.1 | 17,337.2 | 18,480.0 | 17,344.6 | 18,474.9 | 2161.9 | 2180.2 | 1863.3 | 2045.5 |
Period | Moran’s I Statistic | Variance | Z-Value | p-Value |
---|---|---|---|---|
Before COVID-19 | 0.128 | 0.000 | 7.054 | 0.000 |
During COVID-19 | 0.043 | 0.000 | 2.565 | 0.005 |
Variable | Coefficient | St. Error | Z-Score | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Before | During | Before | During | Before | During | |||||||
SLM | SEM | SLM | SEM | SLM | SEM | SLM | SEM | SLM | SEM | SLM | SEM | |
Intercept | −1137.36 *** | −977.59 ** | 738.65 | 813.20 | 429.02 | 434.33 | 759.70 | 761.93 | −2.65 | −2.25 | 0.97 | 1.07 |
income | 56.04 *** | 63.18 *** | 1.09 | 13.40 | 16.62 | 16.74 | 29.20 | 29.44 | 3.37 | 3.77 | 0.04 | 0.46 |
(income)2 | 5.84 *** | 5.64 *** | 10.96 *** | 10.60 *** | 0.74 | 0.75 | 1.31 | 1.31 | 7.87 | 7.55 | 8.35 | 8.07 |
age | 6.29 | 5.92 | 8.01 | 7.43 | 4.20 | 4.26 | 7.39 | 7.46 | 1.50 | 1.39 | 1.08 | 1.00 |
gender | 133.51 | 135.72 | 97.68 | 123.50 | 83.47 | 84.04 | 147.15 | 146.88 | 1.60 | 1.61 | 0.66 | 0.84 |
Edu | 46.83 *** | 47.41 *** | 61.70 ** | 62.27 ** | 15.13 | 15.35 | 26.68 | 26.92 | 3.10 | 3.09 | 2.31 | 2.31 |
EQ | 54.01 | 52.95 | −194.29 ** | −189.64 ** | 51.56 | 52.07 | 91.04 | 91.21 | 1.05 | 1.02 | −2.13 | −2.08 |
ED | 135.59 ** | 136.66 ** | −97.18 | −83.39 | 55.86 | 56.71 | 95.09 | 96.09 | 2.43 | 2.41 | −1.02 | −0.87 |
health | 72.33 | 76.91 ** | 89.25 | 98.88 | 44.44 | 44.98 | 68.62 | 68.87 | 1.63 | 1.71 | 1.30 | 1.43 |
Rho | 0.15 *** | 0.09 ** | 0.04 | 0.05 | 3.65 | 2.02 | ||||||
Lambda | 0.11 ** | 0.14 *** | 0.05 | 0.05 | 2.07 | 2.73 |
Variable | Mean | STD | Min | Median | Max | MGWR Bandwidth | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Before | During | Before | During | Before | During | Before | During | Before | During | Before | During | |
Intercept | −0.032 | 0.045 | 0.162 | 0.220 | −0.408 | −0.483 | −0.065 | 0.013 | 0.356 | 0.744 | 86 | 46 |
income | 0.361 | 0.298 | 0.366 | 0.402 | −0.370 | −0.402 | 0.300 | 0.190 | 1.343 | 1.942 | 43 | 43 |
(income)2 | 0.055 | 0.211 | 0.490 | 0.564 | −0.890 | −0.403 | 0.113 | 0.160 | 1.191 | 1.979 | 65 | 134 |
age | 0.008 | −0.063 | 0.003 | 0.074 | 0.005 | −0.279 | 0.007 | −0.055 | 0.020 | 0.194 | 1008 | 195 |
gender | 0.040 | 0.026 | 0.068 | 0.076 | −0.101 | −0.115 | 0.036 | 0.008 | 0.271 | 0.243 | 261 | 181 |
Edu | 0.061 | 0.036 | 0.039 | 0.003 | −0.025 | 0.025 | 0.079 | 0.037 | 0.111 | 0.039 | 586 | 1008 |
EQ | 0.023 | −0.001 | 0.005 | 0.002 | 0.010 | −0.008 | 0.024 | −0.001 | 0.031 | 0.002 | 965 | 1008 |
ED | 0.048 | 0.014 | 0.002 | 0.002 | 0.046 | 0.007 | 0.048 | 0.015 | 0.055 | 0.018 | 1008 | 1008 |
health | 0.040 | 0.064 | 0.003 | 0.003 | 0.034 | 0.054 | 0.040 | 0.064 | 0.049 | 0.068 | 997 | 1008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Yang, Y.; Chen, Y.; Yu, H.; Chen, Z.; Yang, Z. Driving Factors and Scale Effects of Residents’ Willingness to Pay for Environmental Protection under the Impact of COVID-19. ISPRS Int. J. Geo-Inf. 2023, 12, 163. https://doi.org/10.3390/ijgi12040163
Zhao H, Yang Y, Chen Y, Yu H, Chen Z, Yang Z. Driving Factors and Scale Effects of Residents’ Willingness to Pay for Environmental Protection under the Impact of COVID-19. ISPRS International Journal of Geo-Information. 2023; 12(4):163. https://doi.org/10.3390/ijgi12040163
Chicago/Turabian StyleZhao, Hongkun, Yaofeng Yang, Yajuan Chen, Huyang Yu, Zhuo Chen, and Zhenwei Yang. 2023. "Driving Factors and Scale Effects of Residents’ Willingness to Pay for Environmental Protection under the Impact of COVID-19" ISPRS International Journal of Geo-Information 12, no. 4: 163. https://doi.org/10.3390/ijgi12040163
APA StyleZhao, H., Yang, Y., Chen, Y., Yu, H., Chen, Z., & Yang, Z. (2023). Driving Factors and Scale Effects of Residents’ Willingness to Pay for Environmental Protection under the Impact of COVID-19. ISPRS International Journal of Geo-Information, 12(4), 163. https://doi.org/10.3390/ijgi12040163