Investigating Geomorphic Change Using a Structure from Motion Elevation Model Created from Historical Aerial Imagery: A Case Study in Northern Lake Michigan, USA
Abstract
:1. Introduction
1.1. Geology of Northern Michigan, USA
1.2. Geomorphic Processes on South Manitou Island
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Horizontal and Vertical Reference Data
2.2.2. Historical Digital Terrain Model (DTM)
2.3. Landform Scale Analysis
2.3.1. Shoreline
2.3.2. Bluff Top
2.3.3. Landslides
2.3.4. Sand Dunes
2.4. Landscape Scale Analysis
Reclassification of Landform-Scale Results to Landscape-Scale | |||||
---|---|---|---|---|---|
Geomorphological Factor | Method of Aggregation to Gridcell | 0–N/A | 1–Low | 2–Medium | 3–High |
Shoreline change | Mean distance between nearest-point pairs | Shoreline not present | 2.4–4.6 m | 4.7–19.5 m | 19.6–39.8 m |
Bluff change | Mean distance between nearest-point pairs | Bluff not present | 0.3–4.9 m | 5.0–17.9 m | 18.0–66.3 m |
Landslide activity | Mean of landslide volumes | Landslides not present | −15.1–−8.5 m3 | −8.4–−2.9 m3 | −2.8–6.8 m3 |
Sand dune movement | Percent change in area of crest or ridge landforms between 1955 and 2016 | Bare sand or sand dunes not present | −6.4–−1.2% | −1.1–1.8% | 1.9–4.4% |
3. Results
3.1. Chronology of Erosion and Deposition, 1955–2022
3.2. DoD Quantification of Change
3.3. Landform Scale Results
3.3.1. Shoreline Change
3.3.2. Bluff Change
3.3.3. Landslide Activity
3.3.4. Sand Dune Movement
3.4. Landscape Scale Results
4. Discussion
4.1. DoD Quantification of Landslides
4.2. DoD Quantification of Other Geomorphic Factors
4.3. Multi-Scale Understanding of Terrain Change through Gridcell Approach
4.4. Critique of DoD Analysis Using Historical SfM DEMs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arbogast, A.F.; Hansen, E.C.; Van Oort, M.D. Reconstructing the Geomorphic Evolution of Large Coastal Dunes along the Southeastern Shore of Lake Michigan. Geomorphology 2002, 46, 241–255. [Google Scholar] [CrossRef]
- Kincare, K.A.; Larson, G.J. Glacial Geology of the Sleeping Bear Dunes National Lakeshore: Guidebook for the Michigan State University College of Natural Science Alumni Fieldtrip; Michigan Geological Survey: East Lansing, MI, USA, 2008; p. 40. [Google Scholar]
- Larson, G.; Schaetzl, R. Origin and Evolution of the Great Lakes. J. Great Lakes Res. 2001, 27, 518–546. [Google Scholar] [CrossRef]
- Hansel, A.K.; Mickelson, D.M.; Schneider, A.F.; Larsen, C.E. Late Wisconsinan and Holocene History of the Lake Michigan Basin. In Quaternary evolution of the Great Lakes; Karrow, P.F., Calkin, P.E., Eds.; Geological Association of Canada Special Paper 30; Geological Association of Canada: St. John’s, Canada, 1985. [Google Scholar]
- van Dijk, D.V. Contemporary Geomorphic Processes and Change on Lake Michigan Coastal Dunes: An Example from Hoffmaster State Park, Michigan. Mich. Acad. 2004, 35, 23. [Google Scholar]
- Kilibarda, Z.; Kilibarda, V. Seasonal Geomorphic Processes and Rates of Sand Movement at Mount Baldy Dune in Indiana, USA. Aeolian Res. 2016, 23, 103–114. [Google Scholar] [CrossRef]
- Kilibarda, Z.; Shillinglaw, C. A 70year History of Coastal Dune Migration and Beach Erosion along the Southern Shore of Lake Michigan. Aeolian Res. 2015, 17, 263–273. [Google Scholar] [CrossRef]
- Wilcox, D.A.; Thompson, T.A.; Booth, R.K.; Nicholas, J.R. Lake-Level Variability and Water Availability in the Great Lakes; Circular: Reston, VA, USA, 2007; 25p. [Google Scholar]
- Marsh, W.M. Nourishment of Perched Sand Dunes and the Issue of Erosion Control in the Great Lakes. Environ. Geol. Water Sci 1990, 16, 155–164. [Google Scholar] [CrossRef]
- Davidson-Arnott, R.G.D.; Bauer, B.O. Controls on the Geomorphic Response of Beach-Dune Systems to Water Level Rise. J. Great Lakes Res. 2021, 47, 1594–1612. [Google Scholar] [CrossRef]
- van Dijk, D. Foredune Dynamics at a Lake Michigan Site during Rising and High Lake Levels. J. Great Lakes Res. 2021, 47, 1581–1593. [Google Scholar] [CrossRef]
- Lancaster, N. Dune Morphology and Dynamics. In Geomorphology of Desert Environments; Parsons, A.J., Abrahams, A.D., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2009; pp. 557–595. ISBN 978-1-4020-5718-2. [Google Scholar]
- Mattheus, C.R.; Braun, K.N.; Theuerkauf, E.J. Great Lakes Urban Pocket-Beach Dynamics: A GIS-Based Analysis of Infrastructure-Design Influences on Geomorphic Development. J. Great Lakes Res. 2022, 48, 68–83. [Google Scholar] [CrossRef]
- Theuerkauf, E.J.; Braun, K.N.; Nelson, D.M.; Kaplan, M.; Vivirito, S.; Williams, J.D. Coastal Geomorphic Response to Seasonal Water-Level Rise in the Laurentian Great Lakes: An Example from Illinois Beach State Park, USA. J. Great Lakes Res. 2019, 45, 1055–1068. [Google Scholar] [CrossRef]
- Yurk, B.; Hansen, E. Effects of Wind Patterns and Changing Wind Velocities on Aeolian Drift Potential along the Lake Michigan Shore. J. Great Lakes Res. 2021, 47, 1504–1517. [Google Scholar] [CrossRef]
- Zhang, P.; Sherman, D.J.; Li, B. Aeolian Creep Transport: A Review. Aeolian Res. 2021, 51, 100711. [Google Scholar] [CrossRef]
- Barnhardt, W.A.; Jaffe, B.E.; Kayen, R.E.; Cochrane, G.R. Influence of Near-Surface Stratigraphy on Coastal Landslides at Sleeping Bear Dunes National Lakeshore, Lake Michigan, USA. J. Coast. Res. 2004, 202, 510–522. [Google Scholar] [CrossRef]
- Zoet, L.K.; Rawling, J.E. Analysis of a Sudden Bluff Failure along the Southwest Lake Michigan Shoreline. J. Great Lakes Res. 2017, 43, 999–1004. [Google Scholar] [CrossRef]
- Mortsch, L.D. Assessing the Impact of Climate Change on the Great Lakes Shoreline Wetlands. Clim. Change 1998, 40, 391–416. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Y.; Hein-Griggs, D.; Janes, T.; Tucker, S.; Ciborowski, J.J.H. Climate Change Projections of Temperature and Precipitation for the Great Lakes Basin Using the PRECIS Regional Climate Model. J. Great Lakes Res. 2020, 46, 255–266. [Google Scholar] [CrossRef]
- Abdel-Fattah, S.; Krantzberg, G. A Review: Building the Resilience of Great Lakes Beneficial Uses to Climate Change. Sustain. Water Qual. Ecol. 2014, 3–4, 3–13. [Google Scholar] [CrossRef]
- Bartolai, A.M.; He, L.; Hurst, A.E.; Mortsch, L.; Paehlke, R.; Scavia, D. Climate Change as a Driver of Change in the Great Lakes St. Lawrence River Basin. J. Great Lakes Res. 2015, 41, 45–58. [Google Scholar] [CrossRef]
- Williams, R. DEMs of Difference. Geomorphol. Tech. 2012, 2. [Google Scholar]
- Etzelmüller, B. On the Quantification of Surface Changes Using Grid-based Digital Elevation Models (DEMs). Trans. GIS 2000, 4, 129–143. [Google Scholar] [CrossRef]
- Hooke, J.M. Decades of Change: Contributions of Geomorphology to Fluvial and Coastal Engineering and Management. Geomorphology 1999, 31, 373–389. [Google Scholar] [CrossRef]
- R. Grove, J.; Croke, J.; Thompson, C. Quantifying Different Riverbank Erosion Processes during an Extreme Flood Event. Earth Surf. Process. Landf. 2013, 38, 1393–1406. [Google Scholar] [CrossRef]
- Brunier, G.; Fleury, J.; Anthony, E.J.; Pothin, V.; Vella, C.; Dussouillez, P.; Gardel, A.; Michaud, E. Structure-from-Motion Photogrammetry for High-Resolution Coastal and Fluvial Geomorphic Surveys. In Proceedings of the 16th Young Geomorphologists Days, Bad Kreuznach, Germany, 24–26 June 2022; Volume 22, pp. 147–161. [Google Scholar]
- Llena, M.; Vericat, D.; Smith, M.W.; Wheaton, J.M. Geomorphic Process Signatures Reshaping Sub-humid Mediterranean Badlands: 1. Methodological Development Based on High-resolution Topography. Earth Surf. Process. Landf. 2020, 45, 1335–1346. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Y.; Wen, H.; Ruan, H.; Zhou, Z.; Luo, K.; Zhong, F. High-Resolution Monitoring of Beach Topography and Its Change Using Unmanned Aerial Vehicle Imagery. Ocean Coast. Manag. 2018, 160, 103–116. [Google Scholar] [CrossRef]
- Montreuil, A.-L.; Chen, M.; Brand, E.; Verwaest, T.; Houthuys, R. Post-Storm Recovery Assessment of Urbanized versus Natural Sandy Macro-Tidal Beaches and Their Geomorphic Variability. Geomorphology 2020, 356, 107096. [Google Scholar] [CrossRef]
- Kokelj, S.V.; Kokoszka, J.; van der Sluijs, J.; Rudy, A.C.A.; Tunnicliffe, J.; Shakil, S.; Tank, S.E.; Zolkos, S. Thaw-Driven Mass Wasting Couples Slopes with Downstream Systems, and Effects Propagate through Arctic Drainage Networks. Cryosphere 2021, 15, 3059–3081. [Google Scholar] [CrossRef]
- Kotsi, E.; Vassilakis, E.; Diakakis, M.; Mavroulis, S.; Konsolaki, A.; Filis, C.; Lozios, S.; Lekkas, E. Using UAS-Aided Photogrammetry to Monitor and Quantify the Geomorphic Effects of Extreme Weather Events in Tectonically Active Mass Waste-Prone Areas: The Case of Medicane Ianos. Appl. Sci. 2023, 13, 812. [Google Scholar] [CrossRef]
- Kociuba, W.; Gajek, G.; Franczak, Ł. A Short-Time Repeat TLS Survey to Estimate Rates of Glacier Retreat and Patterns of Forefield Development (Case Study: Scottbreen, SW Svalbard). Resources 2020, 10, 2. [Google Scholar] [CrossRef]
- Korsgaard, N.J.; Schomacker, A.; Benediktsson, Í.Ö.; Larsen, N.K.; Ingólfsson, Ó.; Kjær, K.H. Spatial Distribution of Erosion and Deposition during a Glacier Surge: Brúarjökull, Iceland. Geomorphology 2015, 250, 258–270. [Google Scholar] [CrossRef]
- Tarolli, P.; Sofia, G. Human Topographic Signatures and Derived Geomorphic Processes across Landscapes. Geomorphology 2016, 255, 140–161. [Google Scholar] [CrossRef]
- Micheletti, N.; Chandler, J.H.; Lane, S.N. Structure from Motion (SfM) Photogrammetry. In Geomorphological Techniques; British Society for Geomorphology: London, UK, 2015; Chapter 2. [Google Scholar]
- Bakker, M.; Lane, S.N. Archival Photogrammetric Analysis of River-Floodplain Systems Using Structure from Motion (SfM) Methods. Earth Surf. Process. Landf. 2017, 42, 1274–1286. [Google Scholar] [CrossRef]
- Chirico, P.G.; Bergstresser, S.E.; DeWitt, J.D.; Alessi, M.A. Geomorphological Mapping and Anthropogenic Landform Change in an Urbanizing Watershed Using Structure-from-Motion Photogrammetry and Geospatial Modeling Techniques. J. Maps 2021, 17, 241–252. [Google Scholar] [CrossRef]
- Chirico, P.; DeWitt, J.; Bergstresser, S. Evaluating Elevation Change Thresholds between Structure-from-Motion DEMs Derived from Historical Aerial Photos and 3DEP LiDAR Data. Remote Sens. 2020, 12, 1625. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ Photogrammetry: A Low-Cost, Effective Tool for Geoscience Applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Mölg, N.; Bolch, T. Structure-from-Motion Using Historical Aerial Images to Analyse Changes in Glacier Surface Elevation. Remote Sens. 2017, 9, 1021. [Google Scholar] [CrossRef]
- Smith, M.W.; Carrivick, J.L.; Quincey, D.J. Structure from Motion Photogrammetry in Physical Geography. Prog. Phys. Geogr. Earth Environ. 2016, 40, 247–275. [Google Scholar] [CrossRef]
- Meinen, B.U.; Robinson, D.T. Mapping Erosion and Deposition in an Agricultural Landscape: Optimization of UAV Image Acquisition Schemes for SfM-MVS. Remote Sens. Environ. 2020, 239, 111666. [Google Scholar] [CrossRef]
- Lewińska, P.; Głowacki, O.; Moskalik, M.; Smith, W.A.P. Evaluation of Structure-from-Motion for Analysis of Small-Scale Glacier Dynamics. Measurement 2021, 168, 108327. [Google Scholar] [CrossRef]
- Farrand, W.R.; Bell, D.L. Quaternary Geology of Southern Michigan; Michigan Department of Natural Resources: Lansing, MI, USA, 1982. [Google Scholar]
- Horton, J.D.; San Juan, C.A.; Stoeser, D.B. The State Geologic Map Compilation (SGMC) Geodatabase of the Conterminous United States; USGS numbered series: Reston, VA, USA, 2017. [Google Scholar]
- Kincare, K.A. Surficial Geology of Northern Leelanau County; Michigan Geological Survey: East Lansing, MI, USA, 2003. [Google Scholar]
- Kincare, K.A. Verbal Communication about the Geology of Sleeping Bear Dunes and Northern Lake Michigan. 2021. [Google Scholar]
- Hough, J.L. The Prehistoric Great Lakes of North America. Am. Sci. 1963, 54, 84–109. [Google Scholar]
- Bloom, A.L. Geomorphology: A Systematic Analysis of Late CEnozoic Landforms, 3rd ed.; Waveland Press, Inc.: Long Grove, IL, USA, 2004; ISBN 1-57766-354-3. [Google Scholar]
- Dilley, R.S.; Rasid, H. Human Response to Coastal Erosion: Thunder Bay, Lake Superior. J. Coast. Res. 2022, 6, 11. [Google Scholar]
- Highman, T.A.; Shakoor, A. Role of Soil Joints in Causing Bluff Erosion along the Lake Erie Shoreline. Environ. Eng. Geosci. 1998, 4, 195–207. [Google Scholar] [CrossRef]
- LaMoe, J.P.; Winters, H.A. LaMoe_1989_Wave Energy Estimates Lake Michigan.Pdf. Prof. Geogr. 1989, 41, 349–359. [Google Scholar] [CrossRef]
- May, S.K.; Dolan, R.; Hayden, B.P. Erosion of U.S. Shorelines. Eos Trans. AGU 1983, 64, 521. [Google Scholar] [CrossRef]
- Rasid, H.; Dilley, R.S.; Baker, D.; Otterson, P. Coping with the Effects of High Water Levels on Property Hazards: North Shore of Lake Superior. J. Great Lakes Res. 1989, 15, 205–216. [Google Scholar] [CrossRef]
- Lawrence, P.L. Natural Hazards of Shoreline Bluff Erosion: A Case Study of Horizon View, Lake Huron. Geomorphology 1994, 10, 65–81. [Google Scholar] [CrossRef]
- Edil, T.B. Erosion of Coastal Slopes and Landslides. In Proceedings of the Geo-Congress 2013; American Society of Civil Engineers: San Diego, CA, USA, 2013; pp. 1320–1334. [Google Scholar]
- Sataer, G.; Sultan, M.; Emil, M.K.; Yellich, J.A.; Palaseanu-Lovejoy, M.; Becker, R.; Gebremichael, E.; Abdelmohsen, K. Remote Sensing Application for Landslide Detection, Monitoring along Eastern Lake Michigan (Miami Park, MI). Remote Sens. 2022, 14, 3474. [Google Scholar] [CrossRef]
- Jibson, R.W.; Odum, J.K.; Staude, J.-M. Rates and Processes of Bluff Recession Along the Lake Michigan Shoreline in Illinois. J. Great Lakes Res. 1994, 20, 135–152. [Google Scholar] [CrossRef]
- Pelletier, J.D.; DeLong, S.B.; Al-Suwaidi, A.H.; Cline, M.; Lewis, Y.; Psillas, J.L.; Yanites, B. Evolution of the Bonneville Shoreline Scarp in West-Central Utah: Comparison of Scarp-Analysis Methods and Implications for the Diffusion Model of Hillslope Evolution. Geomorphology 2006, 74, 257–270. [Google Scholar] [CrossRef]
- Jibson, R.W.; Staude, J.-M. Bluff Recession Rates along the Lake Michigan Shoreline in Illinois. Bull. Assoc. Eng. Geol. 1991, 29, 103–117. [Google Scholar]
- Mickelson, D.M.; Edil, T.B.; Guy, D.E. Erosion of Coastal Bluffs in the Great Lakes. In Formation, Evolution, and Stability of Coastal Cliffs—Status and Trends; Professional Paper; U.S. Geological Survey: Reston, VA, USA, 2004; pp. 107–123. [Google Scholar]
- Hazlett, B.T. The Terrestrial Vegetation and Flora of the Mainland Portion of Sleeping Bear Dunes National Lakeshore, Benzie and Leelanau Counties, Michigan; University of Michigan Biological Station: Pellston, MI, USA, 1986; 115p. [Google Scholar]
- Dorr, J.A.; Eschman, D.F. Geology of Michigan; University of Michigan Press: Ann Arbor, MI, USA, 1970. [Google Scholar]
- Arbogast, A.F.; Loope, W.L. Maximum-Limiting Ages of Lake Michigan Coastal Dunes: Their Correlation With Holocene Lake Level History. J. Great Lakes Res. 1999, 25, 372–382. [Google Scholar] [CrossRef]
- Olson, J.S. Rates of Succession and Soil Changes on Southern Lake Michigan Sand Dunes. Bot. Gaz. 1958, 119, 125–170. [Google Scholar] [CrossRef]
- Edil, T.B. Landslide Cases in the Great Lakes: Issues and Approaches. Transp. Res. Rec. 1992, 1343, 87–94. [Google Scholar]
- Marsh, W.M.; Marsh, B.D. Wind Erosion and Sand Dune Formation on High Lake Superior Bluffs. Geogr. Annular. Ser. A Phys. Geogr. 1987, 69, 379–391. [Google Scholar] [CrossRef]
- Jackson, N.L.; Nordstrom, K.F. Aeolian Sediment Transport and Landforms in Managed Coastal Systems: A Review. Aeolian Res. 2011, 3, 181–196. [Google Scholar] [CrossRef]
- Ghost Towns of South Manitou Island. Available online: https://www.nps.gov/slbe/learn/historyculture/southmanitoughost.htm (accessed on 7 December 2021).
- Ashland, F. Preliminary Reconnaissance Inventory Map Data of Landslides and Related Features, South Manitou Island, Sleeping Bear Dunes National Lakeshore, Michigan. U.S. Geol. Surv. Data Release 2022. [Google Scholar] [CrossRef]
- Vexcel Michigan Statewide Authoritative Imagery and Lidar Program. Available online: https://www.michigan.gov/dtmb/services/maps/misail (accessed on 14 April 2023).
- Sanborn. LiDAR Campaign Report; Michigan LiDAR 2015; State of Michigan: Lansing, MI, USA, 2016. [Google Scholar]
- USGS EROS Customer Services USGS EROS Archive—Aerial Photography—Aerial Photo Single Frames. Available online: https://doi.org/10.5066/F7610XKM (accessed on 18 March 2020).
- DeWitt, J.D. Geospatial Datasets Associated with Topographic Change Analysis in Sleeping Bear Dunes National Lakeshore; U.S. Geological Survey Data Release: Reston, VA, USA, 2022. [Google Scholar] [CrossRef]
- Anderson, S.W. Uncertainty in Quantitative Analyses of Topographic Change: Error Propagation and the Role of Thresholding. Earth Surf. Process. Landf. 2019, 44, 1015–1033. [Google Scholar] [CrossRef]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for Uncertainty in DEMs from Repeat Topographic Surveys: Improved Sediment Budgets. Earth Surf. Process. Landf. 2010, 35, 136–156. [Google Scholar] [CrossRef]
- Palaseanu-Lovejoy, M. IBluff: An Open-Source R Package for Geomorphic Analysis of Coastal Bluffs/Cliffs. SoftwareX 2023, 21, 101325. [Google Scholar] [CrossRef]
- Palaseanu-Lovejoy, M.; Danielson, J.; Thatcher, C.; Foxgrover, A.; Barnard, P.; Brock, J.; Young, A. Automatic Delineation of Seacliff Limits Using Lidar-Derived High-Resolution DEMs in Southern California. J. Coast. Res. 2016, 76, 162–173. [Google Scholar] [CrossRef]
- Palaseanu-Lovejoy, M. IBluff—Geomorphic Analysis of Coastal Bluffs/Cliffs; USGS Organization: Reston, VA, USA, 2021. [Google Scholar]
- Jasiewicz, J.; Stepinski, T.F. Geomorphons — a Pattern Recognition Approach to Classification and Mapping of Landforms. Geomorphology 2013, 182, 147–156. [Google Scholar] [CrossRef]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrick, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA); SAGA: Hamburg, Germany, 2015. [Google Scholar]
- Lane, S.N.; James, T.D.; Crowell, M.D. Application of Digital Photogrammetry to Complex Topography for Geomorphological Research. Photogramm. Rec. 2000, 16, 793–821. [Google Scholar] [CrossRef]
- Pulighe, G.; Fava, F. DEM Extraction from Archive Aerial Photos: Accuracy Assessment in Areas of Complex Topography. Eur. J. Remote Sens. 2013, 46, 363–378. [Google Scholar] [CrossRef]
- USDA NRCS Wind Rose Dataset. Available online: https://www.wcc.nrcs.usda.gov/climate/windrose.html (accessed on 8 June 2021).
- NOAA Great Lakes Data Dashboard: Water Levels Dataset, 1918-Present Coordinated. Available online: https://www.glerl.noaa.gov/data/wlevels/ (accessed on 8 February 2022).
- DeWitt, J.D.; Warner, T.A.; Conley, J.F. Comparison of DEMS Derived from USGS DLG, SRTM, a Statewide Photogrammetry Program, ASTER GDEM and LiDAR: Implications for Change Detection. GIScience Remote Sens. 2015, 52, 179–197. [Google Scholar] [CrossRef]
- Rayburg, S.; Thoms, M.; Neave, M. A Comparison of Digital Elevation Models Generated from Different Data Sources. Geomorphology 2009, 106, 261–270. [Google Scholar] [CrossRef]
- Abd Rahman, M.F.; Md Din, A.H.; Mahmud, M.R.; Pa’suya, M.F. A Review on Global and Localised Coverage Elevation Data Sources for Topographic Application. IOP Conf. Ser. Earth Environ. Sci. 2022, 1051, 012014. [Google Scholar] [CrossRef]
- Alganci, U.; Besol, B.; Sertel, E. Accuracy Assessment of Different Digital Surface Models. IJGI 2018, 7, 114. [Google Scholar] [CrossRef]
- Maune, D.F.; Nayegandhi, A. Digital Elevation Model Technologies and Applications: The DEM Users Manual, 3rd ed.; ASPRS: Bethesda, MD, USA, 2019; ISBN 1-57083-102-5. [Google Scholar]
- Begin, Z.B.; Schumm, S.A. Gradational Thresholds and Landform Singularity: Significance for Quaternary Studies. Quat. Res. 1984, 21, 267–274. [Google Scholar] [CrossRef]
- Xiong, L.; Li, S.; Tang, G.; Strobl, J. Geomorphometry and Terrain Analysis: Data, Methods, Platforms and Applications. Earth-Sci. Rev. 2022, 233, 104191. [Google Scholar] [CrossRef]
- Knuth, F.; Shean, D.; Bhushan, S.; Schwat, E.; Alexandrov, O.; McNeil, C.; Dehecq, A.; Florentine, C.; O’Neel, S. Historical Structure from Motion (HSfM): Automated Processing of Historical Aerial Photographs for Long-Term Topographic Change Analysis. Remote Sens. Environ. 2023, 285, 113379. [Google Scholar] [CrossRef]
- Grottoli, E.; Biausque, M.; Rogers, D.; Jackson, D.W.T.; Cooper, J.A.G. Structure-from-Motion-Derived Digital Surface Models from Historical Aerial Photographs: A New 3D Application for Coastal Dune Monitoring. Remote Sens. 2020, 13, 95. [Google Scholar] [CrossRef]
- Carvalho, R.C.; Kennedy, D.M.; Niyazi, Y.; Leach, C.; Konlechner, T.M.; Ierodiaconou, D. Structure-from-motion Photogrammetry Analysis of Historical Aerial Photography: Determining Beach Volumetric Change over Decadal Scales. Earth Surf. Process. Landf. 2020, 45, 2540–2555. [Google Scholar] [CrossRef]
- Villanueva, J.K.S.; Blanco, A.C. Optimization of Ground Control Point (GCP) Configuration for Unmanned Aerial Vehicle (UAV) Survey Using Structure from Motion (SFM). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-4/W12, 167–174. [Google Scholar] [CrossRef]
- Shmutter, B.; Bonfiglioli, L. Orientation Problem in Two-Medium Photogrammetry. Photogramm. Eng. 1967, 33, 1421–1428. [Google Scholar]
- Gonçalves, J.A.; Henriques, R. UAV Photogrammetry for Topographic Monitoring of Coastal Areas. ISPRS J. Photogramm. Remote Sens. 2015, 104, 101–111. [Google Scholar] [CrossRef]
- Su, J.; Bork, E. Influence of Vegetation, Slope, and Lidar Sampling Angle on DEM Accuracy. Photogramm. Eng. Remote Sens. 2006, 72, 1265–1274. [Google Scholar] [CrossRef]
Date | Type | Used For | Accessed from |
---|---|---|---|
1 April 1955 | Aerial Single Frame Photo | SfM-MVS | Earthexplorer.gov |
1 May 1994 | Aerial imagery | Landslide mapping | Google Earth Pro |
26 April 1998 | Aerial imagery | Landslide mapping | Google Earth Pro |
2 June 2003 | Aerial imagery | Landslide mapping | Google Earth Pro |
31 May 2005 | Aerial imagery | Landslide mapping | Google Earth Pro |
25 July 2010 | Aerial imagery | Landslide mapping | Google Earth Pro |
4 April 2012 | High-Resolution Orthoimagery | Landslide mapping | Google Earth Pro |
30 May 2015 | Aerial imagery | Landslide mapping | Google Earth Pro |
March-May 2017 | High-Resolution Orthoimagery | Horizontal Ground Control | Leelanau County GIS |
18 May 2018 | Aerial imagery | Landslide mapping | Google Earth Pro |
1 May 2020 | Aerial imagery | Landslide mapping | Google Earth Pro |
6 May 2022 | Aerial imagery | Landslide mapping | Google Earth Pro |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
DeWitt, J.D.; Ashland, F.X. Investigating Geomorphic Change Using a Structure from Motion Elevation Model Created from Historical Aerial Imagery: A Case Study in Northern Lake Michigan, USA. ISPRS Int. J. Geo-Inf. 2023, 12, 173. https://doi.org/10.3390/ijgi12040173
DeWitt JD, Ashland FX. Investigating Geomorphic Change Using a Structure from Motion Elevation Model Created from Historical Aerial Imagery: A Case Study in Northern Lake Michigan, USA. ISPRS International Journal of Geo-Information. 2023; 12(4):173. https://doi.org/10.3390/ijgi12040173
Chicago/Turabian StyleDeWitt, Jessica D., and Francis X. Ashland. 2023. "Investigating Geomorphic Change Using a Structure from Motion Elevation Model Created from Historical Aerial Imagery: A Case Study in Northern Lake Michigan, USA" ISPRS International Journal of Geo-Information 12, no. 4: 173. https://doi.org/10.3390/ijgi12040173
APA StyleDeWitt, J. D., & Ashland, F. X. (2023). Investigating Geomorphic Change Using a Structure from Motion Elevation Model Created from Historical Aerial Imagery: A Case Study in Northern Lake Michigan, USA. ISPRS International Journal of Geo-Information, 12(4), 173. https://doi.org/10.3390/ijgi12040173