Effectiveness of Adjacent and Bivariate Maps in Communicating Global Sensitivity Analysis for Geodiversity Assessment
Abstract
:1. Introduction
- RQ1: How effective are single-factor, adjacent maps vs. composite, bivariate maps in communicating the input factor sensitivity in a geodiversity assessment?
- RQ2: How do differences between adjacent and bivariate maps influence the confidence level in interpreting the results of a variance-based global sensitivity analysis (GSA)?
2. Data and Methods
2.1. Geodiversity Assessment
2.2. Spatial Multi-Criteria Analysis Model
- 1.
- Geomorphology: This represents the forms of the Earth’s surface that are present in the park (1—floodplain; 2—hillock moraine; 3—intramontane basin; 4—meadow terraces; 5—planation surface in basin bottom; 6—planation surface on flat-topped hill; 7—planation surface on slope; 8—residual hill—resistance monadnock; 9—rock wall or rock slope; 10—slope; 11—V-shaped valley; 12—valley bottom with moraine cover).
- 2.
- Hydrography: This is represented by the topographic wetness index, TWI, ranging from −3.0 to 6.8.
- 3.
- Lithology: This represents rock types in the park (1—amphibolite; 2—aplite; 3—basaltoids; 4—basanite; 5—cataclasite; 6—mylonite; 7—tectonic breccia; 8—coarse-grained granite; 9—fine-grained granite; 10—hornfels; 11—layered gneiss; 12—liptynite; 13—mica schist; 14—microgranite; 15—porphyritic granite; 16—vein quartz).
- 4.
- Solar Radiation: This is the spatial distribution of climatic conditions in the park represented by the total solar radiation ranging from 172 to 3805 kWh m−2.
- 5.
- Relief Energy: This is the spatial distribution of relative heights in the park ranging from 0 to 94 m. The calculation of relative heights is based on a local neighborhood of 3 × 3 cells with 10 m/cell ground resolution.
- 6.
- Soils: This refers to the soil types in the park (1—brown soils; 2—leached brown soil; 3—proper river mud; 4—brown forest soils; 5—peat and muck soils; 6—initial soils; 7—anthropogenic soils).
- 7.
- Land Cover/Land Use: This refers to the land cover and land use types present in the park (1—discontinuous development; 2—non-irrigated arable land; 3—pastures; 4—mixed cultivation; 5—agricultural land with areas of natural vegetation; 6—deciduous forest; 7—coniferous forest; 8—mixed forest; 9—natural grasslands; 10—heathlands; 11—transitional forests and shrubs; 12—bare rocks; 13—sparsely vegetated areas; 14—peat bogs).
2.3. Assessment Data
- High-resolution terrain data: A 1 m LiDAR-derived Digital Elevation Model (DEM) from Geoportal [55] provided detailed information about the land surface.
- Thematic map layers: These layers included lithology, geomorphology, hydrology, soil features, and CORINE Land Cover data [56] at the scale of 1:100,000.
- National park GIS data: Most thematic layers were obtained from the KNP GIS lab, typically at the scale of 1:10,000.
- Additional data sources included the following:
2.4. Spatially Explicit Variance-Based Global Sensitivity Analysis
- 1.
- Represent weights and factors:
- Weights (W1…N) are represented as probability distributions.
- Factors (C1…N) are represented as sets of k equally probable maps.
- 2.
- Calculate spatial outputs:
- The procedure calculates a geodiversity index value GDi for each mapping unit i multiple times with different weight and factor values.
- Each calculation uses weight values derived from their probability distributions and factor values from their respective sets.
- This results in a distribution of GDi values.
- 3.
- Create uncertainty map:
- Statistics like the mean and standard deviation are calculated for the GDi distribution.
- These statistics are combined to create two adjacent maps: one with the mean GDi values and the other with the standard deviation values for each i.
- Additionally, a rendering of both statistics is compiled in the form of a bivariate map.
- 4.
- Decompose variance:
- Variance is decomposed for each mapping unit (i.e., catchment).
- This identifies the contribution of each factor to the total GDi variance in that catchment.
- Two sensitivity indices are computed per each mapping unit i:
- the first-order effects index (Sj=1…N), which represents the independent contribution of the factor j, and the total effects index (STj=1…N), which represents the combined contribution of the factor j, including interactions with other factors.
- 5.
- Generate sensitivity maps:
- Two maps are generated for each factor j: one map depicting the spatial distribution of Sj, and the other with the distribution of STj.
- This results in 2N sensitivity maps (one for each index), showing the combined influence of each factor on the output GDi variance.
- Additionally, a combination of the two spatial distributions (Sj=1…N, STj=1…N) is rendered on a bivariate map.
2.5. Questionnaire
3. Results
3.1. Quality of Map Interpretation
3.2. Confidence in Map Interpretation
3.3. Map Communication Effectiveness
3.4. The Effect of Prior Exposure to the Geodiversity Concept on Interpreting GSA Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global Sensitivity Analysis: The Primer; Wiley: West Sussex, UK, 2008. [Google Scholar]
- Campolongo, F.; Saltelli, A.; Tarantola, S. Sensitivity Anaysis as an Ingredient of Modeling. Stat. Sci. 2000, 15, 377–395. [Google Scholar] [CrossRef]
- Razavi, S.; Jakeman, A.; Saltelli, A.; Prieur, C.; Iooss, B.; Borgonovo, E.; Plischke, E.; Piano, S.L.; Iwanaga, T.; Becker, W.; et al. The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support. Environ. Model. Softw. 2021, 137, 104954. [Google Scholar] [CrossRef]
- Lilburne, L.; Tarantola, S. Sensitivity analysis of spatial models. Int. J. Geogr. Inf. Sci. 2009, 23, 151–168. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, J.; Khan, S. The spatial framework for weight sensitivity analysis in AHP-based multi-criteria decision making. Environ. Model. Softw. 2013, 48, 129–140. [Google Scholar] [CrossRef]
- Ligmann-Zielinska, A. Spatially-explicit sensitivity analysis of an agent-based model of land use change. Int. J. Geogr. Inf. Sci. 2013, 27, 1764–1781. [Google Scholar] [CrossRef]
- Xu, E.; Zhang, H. Spatially-explicit sensitivity analysis for land suitability evaluation. Appl. Geogr. 2013, 45, 1–9. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Jankowski, P.; Blaschke, T. A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis. Comput. Geosci. 2014, 64, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Delgado, M.; Tarantola, S. GLOBAL sensitivity analysis, GIS and multi-criteria evaluation for a sustainable planning of a hazardous waste disposal site in Spain. Int. J. Geogr. Inf. Sci. 2006, 20, 449–466. [Google Scholar] [CrossRef]
- Marrel, A.; Iooss, B.; Jullien, M.; Laurent, B.; Volkova, E. Global sensitivity analysis for models with spatially dependent outputs. Environmetrics 2011, 22, 383–397. [Google Scholar] [CrossRef]
- Moreau, P.; Viaud, V.; Parnaudeau, V.; Salmon-Monviola, J.; Durand, P. An approach for global sensitivity analysis of a complex environmental model to spatial inputs and parameters: A case study of an agro-hydrological model. Environ. Model. Softw. 2013, 47, 74–87. [Google Scholar] [CrossRef]
- Herman, J.D.; Kollat, J.B.; Reed, P.M.; Wagener, T. From maps to movies: High-resolution time-varying sensitivity analysis for spatially distributed watershed models. Hydrol. Earth Syst. Sci. 2013, 17, 5109–5125. [Google Scholar] [CrossRef]
- Saint-Geours, N.; Bailly, J.-S.; Grelot, F.; Lavergne, C. Multi-scale spatial sensitivity analysis of a model for economic appraisal of flood risk management policies. Environ. Model. Softw. 2014, 60, 153–166. [Google Scholar] [CrossRef]
- Koo, H.; Chen, M.; Jakeman, A.J.; Zhang, F. A global sensitivity analysis approach for identifying critical sources of uncertainty in non-identifiable, spatially distributed environmental models: A holistic analysis applied to SWAT for input datasets and model parameters. Environ. Model. Softw. 2020, 127, 104676. [Google Scholar] [CrossRef]
- Kang, J.-Y.; Aldstadt, J.; Vandewalle, R.; Yin, D.; Wang, S. A CyberGIS Approach to Spatiotemporally Explicit Uncertainty and Global Sensitivity Analysis for Agent-Based Modeling of Vector-Borne Disease Transmission. Ann. Assoc. Am. Geogr. 2020, 110, 1855–1873. [Google Scholar] [CrossRef] [PubMed]
- Ligmann-Zielinska, A.; Jankowski, P. Spatially-explicit integrated uncertainty and sensitivity analysis of criteria weights in multicriteria land suitability evaluation. Environ. Model. Softw. 2014, 57, 235–247. [Google Scholar] [CrossRef]
- Roux, S.; Buis, S.; Lafolie, F.; Lamboni, M. Cluster-based GSA: Global sensitivity analysis of models with temporal or spatial outputs using clustering. Environ. Model. Softw. 2021, 140, 105046. [Google Scholar] [CrossRef]
- Şalap-Ayça, S.; Jankowski, P.; Clarke, K.C.; Kyriakidis, P.C.; Nara, A. A meta-modeling approach for spatio-temporal uncertainty and sensitivity analysis: An application for a cellular automata-based Urban growth and land-use change model. Int. J. Geogr. Inf. Sci. 2018, 32, 637–662. [Google Scholar] [CrossRef]
- Sobol’, I.M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 2001, 55, 271–280. [Google Scholar] [CrossRef]
- Homma, T.; Saltelli, A. Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 1996, 52, 1–17. [Google Scholar] [CrossRef]
- Ligmann-Zielinska, A. ‘Can You Fix It?’ Using Variance-Based Sensitivity Analysis to Reduce the Input Space of an Agent-Based Model of Land Use Change. In GeoComputational Analysis and Modeling of Regional Systems; Advances in Geographic Information Science; Springer International Publishing: Cham, Switzerland, 2017; pp. 77–99. [Google Scholar] [CrossRef]
- Cleveland, W.S. Visualizing Data; Hobart Press: Abingdon, UK, 1993. [Google Scholar]
- Spense, R. Information Visualization, 3rd ed.; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Inselberg, A. The plane with parallel coordinates. Vis. Comput. 1985, 1, 69–91. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Abily, M.; Bertrand, N.; Delestre, O.; Gourbesville, P.; Duluc, C.-M. Spatial Global Sensitivity Analysis of High Resolution classified topographic data use in 2D urban flood modelling. Environ. Model. Softw. 2016, 77, 183–195. [Google Scholar] [CrossRef]
- Salap-Ayça, S.; Jankowski, P.; Clarke, K.C.; Nara, A. Is less more? Experimenting with visual stacking of coincident maps for spatial global sensitivity analysis in urban land-use change modeling. Environ. Model. Softw. 2021, 145, 105181. [Google Scholar] [CrossRef]
- Şalap-Ayça, S. Self-organizing maps as a dimension reduction approach for spatial global sensitivity analysis visualization. Trans. GIS 2022, 26, 1718–1734. [Google Scholar] [CrossRef]
- Butler, M.P.; Reed, P.M.; Fisher-Vanden, K.; Keller, K.; Wagener, T. Identifying parametric controls and dependencies in integrated assessment models using global sensitivity analysis. Environ. Model. Softw. 2014, 59, 10–29. [Google Scholar] [CrossRef]
- Kelleher, C.; Wagener, T.; McGlynn, B.; Ward, A.S.; Gooseff, M.N.; Payn, R.A. Identifiability of transient storage model parameters along a mountain stream. Water Resour. Res. 2013, 49, 5290–5306. [Google Scholar] [CrossRef]
- Pianosi, F.; Beven, K.; Freer, J.; Hall, J.W.; Rougier, J.; Stephenson, D.B.; Wagener, T. Sensitivity analysis of environmental models: A systematic review with practical workflow. Environ. Model. Softw. 2016, 79, 214–232. [Google Scholar] [CrossRef]
- van Werkhoven, K.; Wagener, T.; Reed, P.; Tang, Y. Characterization of watershed model behavior across a hydroclimatic gradient. Water Resour. Res. 2008, 44, 1–16. [Google Scholar] [CrossRef]
- MacEachren, A.M. Visualizing Uncertain Information. Cartogr. Perspect. 1992, 13, 10–19. [Google Scholar] [CrossRef]
- Kinkeldey, C.; MacEachren, A.M.; Schiewe, J. How to Assess Visual Communication of Uncertainty? A Systematic Review of Geospatial Uncertainty Visualisation User Studies. Cartogr. J. 2014, 51, 372–386. [Google Scholar] [CrossRef]
- Robinson, A.H.; Morrison, J.L.; Muehrcke, P.C.; Kimerling, A.J.; Guptill, C.S. Elements of Cartography, 6th ed.; Wiley: New York, NY, USA, 1995. [Google Scholar]
- Saltelli, A.; Bammer, G.; Bruno, I.; Charters, E.; Di Fiore, M.; Didier, E.; Espeland, W.N.; Kay, J.; Piano, S.L.; Mayo, D.; et al. Five ways to ensure that models serve society: A manifesto. Nature 2020, 582, 482–484. [Google Scholar] [CrossRef]
- Jankowski, P.; Najwer, A.; Zwoliński, Z.; Niesterowicz, J. Geodiversity Assessment with Crowdsourced Data and Spatial Multicriteria Analysis. ISPRS Int. J. Geo-Inf. 2020, 9, 716. [Google Scholar] [CrossRef]
- Najwer, A.; Jankowski, P.; Niesterowicz, J.; Zwoliński, Z. Geodiversity assessment with global and local spatial multicriteria analysis. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102665. [Google Scholar] [CrossRef]
- Gray, M. Case studies associated with the 10 major geodiversity-related topics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2024, 382, 20230055. [Google Scholar] [CrossRef]
- Hjort, J.; Luoto, M. Geodiversity of high latitude landscapes in northern Finland. Geomorphology 2010, 112, 324–333. [Google Scholar] [CrossRef]
- Gray, M. Geodiversity: Valuing and Conserving Abiotic Nature; Wiley: Chichester, UK, 2004; ISBN 0470848952. [Google Scholar]
- Zwolinski, Z. Geodiversity. In Encyclopedia of Geomorphology; Goudie, A.S., Ed.; Routledge: London, UK, 2004; Volume 1, pp. 417–418. [Google Scholar]
- van Ree, D.; van Beukering, P.J.H.; Hofkes, M.W. Linking geodiversity and geosystem services to human well-being for the sustainable utilization of the subsurface and the urban environment. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2024, 382, 20230051. [Google Scholar] [CrossRef] [PubMed]
- Coratza, P.; Reynard, E.; Zwoliński, Z. Geodiversity and Geoheritage: Crossing Disciplines and Approaches. Geoheritage 2018, 10, 525–526. [Google Scholar] [CrossRef]
- Najwer, A.; Borysiak, J.; Gudowicz, J.; Mazurek, M.; Zwoliński, Z. Geodiversity and Biodiversity of the Postglacial Landscape (Dębnica River Catchment, Poland). Quaest. Geogr. 2016, 35, 5–28. [Google Scholar] [CrossRef]
- Pereira, D.I.; Pereira, P.; Brilha, J.; Santos, L. Geodiversity Assessment of Paraná State (Brazil): An Innovative Approach. Environ. Manag. 2013, 52, 541–552. [Google Scholar] [CrossRef]
- Zwoliński, Z.; Najwer, A.; Giardino, M. Methods for assessing geodiversity. In Geoheritage: Assessment, Protection, and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Tukiainen, H.; Maliniemi, T.; Brilha, J.; Alahuhta, J.; Hjort, J. A framework for quantifying geodiversity at the local scale: A case study from the Rokua UNESCO Global Geopark. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2024, 382, 20230059. [Google Scholar] [CrossRef]
- Pellitero, R.; Manosso, F.C.; Serrano, E. Mid- and large-scale geodiversity calculation in fuentes carrionas (nw spain) and serra do cadeado (paraná, brazil): Methodology and application for land management. Geogr. Ann. Ser. A Phys. Geogr. 2015, 97, 219–235. [Google Scholar] [CrossRef]
- Malczewski, J.; Rinner, C. Multiattribute Decision Analysis Methods. In Multicriteria Decision Analysis in Geographic Information Science, Advances in Geographic Information Science; Springer: Berlin/Heidelberg, Germany, 2015; pp. 81–121. Available online: https://link.springer.com/chapter/10.1007/978-3-540-74757-4_4 (accessed on 12 February 2024).
- Malczewski, J. Local Weighted Linear Combination. Trans. GIS 2011, 15, 439–455. [Google Scholar] [CrossRef]
- Likert, R. A technique for the measurement of attitudes. Arch. Psychol. 1932, 22, 5–55. [Google Scholar]
- Hjort, J.; Luoto, M. Can geodiversity be predicted from space? Geomorphology 2012, 153, 74–80. [Google Scholar] [CrossRef]
- Manosso, F.; Zwoliński, Z.; Najwer, A.; Basso, B.; Santos, D.; Pagliarini, M. Spatial pattern of geodiversity assessment in the Marrecas River drainage basin, Paraná, Brazil. Ecol. Indic. 2021, 126, 107703. [Google Scholar] [CrossRef]
- Geoportal. Numeryczny Model Terenu–PL-KRON86-NH. 2020. Available online: https://mapy.geoportal.gov.pl/imap/Imgp_2.html (accessed on 24 February 2024).
- CLC (CORINE Land Cover), Projekt Corine Land Cover 2018 w Polsce. Głowny Inspektorat Ochrony Srodowiska. 2018. Available online: http://clc.gios.gov.pl (accessed on 24 February 2024).
- PIG-PIB. [Panstwowy Instytut Geologiczny-Pánstwowy Instytut Badawczy], 1977–2011. Detailed Geological Map of Poland, Scale 1:50,000, Sheet No 830 Jakuszyce, 2009: Sheet No 831 Szklarska Poręba, 2009: Sheet No 832 Kowary, 2011: Sheet No 795 Jelenia Gora. Available online: https://www.researchgate.net/publication/331983477_Detailed_Geological_Map_of_Poland_in_scale_150000_Szczegolowa_Mapa_Geologiczna_Polski_150000_Ustrzyki_Gorne_sheet_arkusz (accessed on 24 February 2024).
- Migon, P.; Kasprza, K.M.; Jancewicz, K. Cyfrowa Mapa Geomorfologiczna; Jelenia Gora w skali 1:100,000; Głowny Geodeta Kraju: Warszawa, Poland, 2013. [Google Scholar]
- GRASS Development Team. Geographic Resources Analysis Support System (GRASS) Software; Open Source Geospatial Foundation: Chicago, IL, USA, 2020; Available online: http://grass.osgeo.org (accessed on 24 February 2024).
- Cohen, J.; Cohen, P.; West, S.G.; Aiken, L.S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 2003. [Google Scholar]
Question ID | What Does the Question Measure? | Question Wording | Answer Options |
---|---|---|---|
Q1 | Quality of interpretation | According to the presented maps, which geodiversity factor do you consider generally the most influential for the geodiversity of the study area? | Geomorphology (1), hydrography (2), solar radiation (3), relief energy (4), lithology (5), land cover/land use (6), soils (7) |
Q2 | Confidence in interpretation | On the scale of 1–5 (1—uncertain; 5—certain), how sure are you when creating simple approximations (25%, 50%, 75%, etc.) regarding the assessment of sensitivity of geodiversity to lithology in the KNP area? | 1–5 Likert scale 1—uncertain 5—certain |
Q3 | Confidence in interpretation | On the scale of 1–5 (1—uncertain; 5—certain), how sure are you when creating simple approximations (25%, 50%, 75%, etc.) regarding the assessment of sensitivity of geo-diversity to land cover/land use in the KNP area? | 1–5 Likert scale 1—uncertain 5—certain |
Q4—Adjacent | Usage of interaction maps | Did you use the total order sensitivity maps (STi) (Figure 5) in response to any of the two questions above? | Yes No |
Q4—Bivariate | Usage of bivariate Maps | Did you use information about both sensitivity indices (Si, STi) in the bivariate maps (Figure 7) in response to any of the two questions above? | Yes No |
Q5 | Confidence in visualization type | If you had to explain the sensitivity in geodiversity assessments to other people, how confident would you feel on a scale of 1–5 (1—uncertain, 5—certain) using this type of visualization as shown in Figure 4 and Figure 5 (adjacent group), Figure 7 (bivariate group)? | 1—uncertain 5—certain |
Q6 | Map effectiveness in communicating GSA results | On the scale of 1–5 (1—not very helpful; 5—very helpful), evaluate how helpful were the maps presented in Figure 4 and Figure 5 (Figure 7 for bivariate) for identifying factors influencing the uncertainty associated with high average geodiversity values in Figure 3A,B (Figure 6 for bivariate). | 1–5 Likert scale (1—not very helpful; 5—very helpful) |
Q7 | Map effectiveness in communicating GSA results | On the scale of 1–5 (1—difficult; 5—easy), assess how easy it was to understand the differences between the sensitivity of main effects (Si) and the sensitivity of total effects (STi)? | 1–5 Likert scale (1—difficult; 5—easy) |
Q8 | Map effectiveness in communicating GSA results | On the scale of 1–5 (1—not very helpful; 5—very helpful), evaluate how much you agree with the following statement: the visualization of maps showing spatial variability of sensitivity indices Si and STi (Figure 4 and Figure 5 adjacent, Figure 7 bivariate) is helpful in understanding the spatial variability of geodiversity assessment (Figure 3A,B adjacent, Figure 6 bivariate). | 1–5 Likert scale (1—not very helpful; 5—very helpful) |
Q9 | Map effectiveness in communicating GSA results | On the scale of 1–5 (1—not at all; 5—fully), assess to what extent the visualization of sensitivity indices Si and STi (Figure 4 and Figure 5 adjacent, Figure 7 bivariate) helps in interpreting the average values of the geo-diversity index (Figure 3A adjacent, Figure 6 bivariate). | 1–5 Likert scale (1—not at all; 5—fully) |
Q10 | Map effectiveness in communicating GSA results | On the scale of 1–5 (1—not at all; 5—fully), assess to what extent the visualization of sensitivity indices Si and STi (Figure 3 and Figure 4 adjacent, Figure 6 bivariate) helps in interpreting the variability of uncertainty associated with the average value of the geodiversity index (Figure 3B adjacent, Figure 6 bivariate). | 1–5 Likert scale (1—not at all; 5—fully) |
Q11 | Familiarity with assessment domain | Before filling out this questionnaire, have you participated in any classes on geo-diversity, and are you familiar with this concept? | Yes/No |
Q12 | Map reading competence level | On the scale of 1–5 (1—low; 5—high), rate your skills in interpreting thematic maps. | 1–5 Likert scale (1—low; 5—high) |
Group | Total | ||||
---|---|---|---|---|---|
Adjacent | Bivariate | ||||
Q1 | Geomorphology | Count | 5 | 0 | 5 |
% within Q1 | 100.0 | 0.0 | 100.0 | ||
% within group | 16.1 | 0.0 | 8.1 | ||
% of total | 8.1 | 0.0 | 8.1 | ||
Hydrography | Count | 4 | 1 | 5 | |
% within Q1 | 80.0 | 20.0 | 100.0 | ||
% within group | 12.9 | 3.2 | 8.1 | ||
% of total | 6.5 | 1.6 | 8.1 | ||
Land Cover/Land Use | Count | 2 | 9 | 11 | |
% within Q1 | 18.2 | 81.8 | 100.0 | ||
% within group | 6.5 | 29.0 | 17.7 | ||
% of total | 3.2 | 14.5 | 17.7 | ||
Lithology | Count | 2 | 4 | 6 | |
% within Q1 | 33.3 | 66.7 | 100.0 | ||
% within group | 6.5 | 12.9 | 9.7 | ||
% of total | 3.2 | 6.5 | 9.7 | ||
Relief Energy | Count | 17 | 16 | 33 | |
& within Q1 | 51.5 | 48.5 | 100.0 | ||
% within group | 54.8 | 51.6 | 53.2 | ||
% of total | 27.4 | 25.8 | 53.2 | ||
Soil | Count | 0 | 1 | 1 | |
% within Q1 | 0.0 | 100.0 | 100.0 | ||
% within group | 0.0 | 3.2 | 1.6 | ||
% of total | 0.0 | 1.6 | 1.6 | ||
Solar Radiation | Count | 1 | 0 | 1 | |
% within Q1 | 100.0 | 0.0 | 100.0 | ||
% within group | 3.2 | 0.0 | 1.6 | ||
% of total | 1.6 | 0.0 | 1.6 | ||
Total | Count | 31 | 31 | 62 | |
% within Q1 | 50.0 | 50.0 | 100.0 | ||
% within group | 100.0 | 100.0 | 100.0 | ||
% of total | 50.0 | 50.0 | 100.0 |
Differences in Median Response Scores: Test Statistics | |||||||||
---|---|---|---|---|---|---|---|---|---|
Q2 | Q3 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Q12 | |
Mann–Whitney U | 430 | 466.5 | 476 | 435.5 | 405.5 | 404 | 381 | 460 | 459.5 |
Wilcoxon W | 926.0 | 962.5 | 972.0 | 931.5 | 901.5 | 900.0 | 877.0 | 956.0 | 955.5 |
Z | −0.761 | −0.209 | −0.066 | −0.659 | −1.099 | −1.136 | −1.478 | −0.302 | −0.329 |
Prior Exposure to Geodiversity | Total | |||
---|---|---|---|---|
No | Yes | |||
No Relief Energy (N_RF) | Count | 9 | 20 | 29 |
% within N_RF | 31.0 | 69.0 | 100.0 | |
% within Q11 | 47.4 | 46.6 | 46.8 | |
% of total | 14.5 | 32.32 | 46.8 | |
Relief Energy (RF) | Count | 10 | 23 | 33 |
% within RF | 30.3 | 69.7 | 100.0 | |
% within Q11 | 52.6 | 53.5 | 53.2 | |
% of total | 16.9 | 37.1 | 53.2 | |
Total | Count | 19 | 43 | 62 |
% within Q11 | 100.0 | 100.0 | 100.0 | |
% of total | 30.6 | 69.4 | 100.0 |
Test Summary | ||||
---|---|---|---|---|
Null Hypothesis | Test | Significance a,b | Decision | |
1 | The distribution of Q2 is the same across categories of Q11. | Independent-Samples Mann–Whitney U Test | 0.634 | Retain the null hypothesis. |
2 | The distribution of Q3 is the same across categories of Q11. | Independent-Samples Mann–Whitney U Test | 0.593 | Retain the null hypothesis. |
3 | The distribution of Q5 is the same across categories of Q11. | Independent-Samples Mann–Whitney U Test | 0.121 | Retain the null hypothesis. |
4 | The distribution of Q6 is the same across categories of Q11. | Independent-Samples Mann–Whitney U Test | 0.280 | Retain the null hypothesis. |
5 | The distribution of Q7 is the same across categories of Q11. | Independent-Samples Mann–Whitney U Test | 0.975 | Retain the null hypothesis. |
6 | The distribution of Q8 is the same across categories of Q11. | Independent-Samples Mann–Whitney U Test | 0.380 | Retain the null hypothesis. |
7 | The distribution of Q9 is the same across categories of Q11. | Independent-Samples Mann–Whitney U Test | 0.215 | Retain the null hypothesis. |
8 | The distribution of Q10 is the same across categories of Q11. | Independent-Samples Mann–Whitney U Test | 0.410 | Retain the null hypothesis. |
Q12 | Number of Responses | Mean Rank | |
---|---|---|---|
Relief Energy/Non-Relief Response | 2 | 2 | 15.00 |
3 | 21 | 31.24 | |
4 | 33 | 32.85 | |
5 | 6 | 30.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jankowski, P.; Şalap-Ayça, S.; Najwer, A.; Ligmann-Zielińska, A.; Zwoliński, Z. Effectiveness of Adjacent and Bivariate Maps in Communicating Global Sensitivity Analysis for Geodiversity Assessment. ISPRS Int. J. Geo-Inf. 2024, 13, 199. https://doi.org/10.3390/ijgi13060199
Jankowski P, Şalap-Ayça S, Najwer A, Ligmann-Zielińska A, Zwoliński Z. Effectiveness of Adjacent and Bivariate Maps in Communicating Global Sensitivity Analysis for Geodiversity Assessment. ISPRS International Journal of Geo-Information. 2024; 13(6):199. https://doi.org/10.3390/ijgi13060199
Chicago/Turabian StyleJankowski, Piotr, Seda Şalap-Ayça, Alicja Najwer, Arika Ligmann-Zielińska, and Zbigniew Zwoliński. 2024. "Effectiveness of Adjacent and Bivariate Maps in Communicating Global Sensitivity Analysis for Geodiversity Assessment" ISPRS International Journal of Geo-Information 13, no. 6: 199. https://doi.org/10.3390/ijgi13060199
APA StyleJankowski, P., Şalap-Ayça, S., Najwer, A., Ligmann-Zielińska, A., & Zwoliński, Z. (2024). Effectiveness of Adjacent and Bivariate Maps in Communicating Global Sensitivity Analysis for Geodiversity Assessment. ISPRS International Journal of Geo-Information, 13(6), 199. https://doi.org/10.3390/ijgi13060199