Performance Analysis of Random Forest Algorithm in Automatic Building Segmentation with Limited Data
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
- RF model II: trained with 8 geometric features (no RGB values) and 5 object classes (object classes of trucks, powerlines, and poles are not provided in the primary data);
- RF model III: trained with 11 geometric features (with RGB values) and 5 object classes (object classes of trucks, powerlines, and poles are not provided in the primary data);
- RF model IV: trained with 11 geometric features (with RGB values) and 5 object classes (converted building walls (façades) and fences into new classes).
3.1. Data
3.1.1. Primary Data
3.1.2. Secondary Data
3.2. Data Pre-Processing: Geometric Features Extraction
3.3. Algorithms
3.3.1. Random Forest (RF) Algorithm
3.3.2. PointNet++ Algorithm
3.4. Analysis
4. Result
4.1. First Experiment
4.2. Second Experiment
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ying, Y.; Koeva, M.; Kuffer, M.; Zevenbergen, J. Toward 3D Property Valuation—A Review of Urban 3D Modelling Methods for Digital Twin Creation. ISPRS Int. J. Geo-Inf. 2023, 12, 2. [Google Scholar] [CrossRef]
- Hendriatiningsih, S.; Hernandi, A.; Saptari, A.Y.; Widyastuti, R.; Saragih, D. Building Information Modeling (BIM) Utilization for 3D Fiscal Cadastre. Indones. J. Geogr. 2019, 51, 285–294. [Google Scholar] [CrossRef]
- Biljecki, F.; Ohori, K.A.; Ledoux, H.; Peters, R.; Stoter, J. Population estimation using a 3D City Model: A multi-scale country-wide study in the Netherlands. PLoS ONE 2016, 11, e0156808. [Google Scholar] [CrossRef]
- Ross, L.; Buyuksalih, G.; Buhur, S.; Ross, L.; Büyüksalih, G.; Baz, I. 3D City Modelling for Planning Activities, Case Study: Haydarpasa Train Station, Haydarpasa Port and Surrounding Backside Zones, Istanbul. In Proceedings of the ISPRS Hannover Workshop, Hannover, Germany, 2–5 June 2009; Available online: https://www.researchgate.net/publication/237442235 (accessed on 1 November 2023).
- Suhari, K.T.; Saptari, A.Y.; Abidin, H.Z.; Gunawan, P.H.; Meilano, I.; Hernandi, A.; Widyastuti, R. Exploring BIM-based queries for retrieving cultural heritage semantic data. Res. Sq. 2023. preprint. [Google Scholar] [CrossRef]
- Trisyanti, S.W.; Suwardhi, D.; Purnama, I.; Wikantika, K. A Preliminary Study of 3D Vernacular Documentation for Conservation and Evaluation: A Case Study in Keraton Kasepuhan Cirebon. Buildings 2023, 13, 546. [Google Scholar] [CrossRef]
- Virtriana, R.; Harto, A.B.; Atmaja, F.W.; Meilano, I.; Fauzan, K.N.; Anggraini, T.S.; Ihsan, K.T.N.; Mustika, F.C.; Suminar, W. Machine learning remote sensing using the random forest classifier to detect the building damage caused by the Anak Krakatau Volcano tsunami. Geomat. Nat. Hazards Risk 2023, 14, 28–51. [Google Scholar] [CrossRef]
- Akmalia, R.; Setan, H.; Majid, Z.; Suwardhi, D.; Chong, A. TLS for generating multi-LOD of 3D building model. IOP Conf. Ser. Earth Environ. Sci. 2014, 18, 012064. [Google Scholar] [CrossRef]
- Truong-Hong, L.; Laefer, D.F. Quantitative evaluation strategies for urban 3D model generation from remote sensing data. Comput. Graph. 2015, 49, 82–91. [Google Scholar] [CrossRef]
- Kedzierski, M.; Fryskowska, A. Terrestrial and aerial laser scanning data integration using wavelet analysis for the purpose of 3D building modeling. Sensors 2014, 14, 12070–12092. [Google Scholar] [CrossRef] [PubMed]
- Grilli, E.; Daniele, A.; Bassier, M.; Remondino, F.; Serafini, L. Knowledge Enhanced Neural Networks for Point Cloud Semantic Segmentation. Remote Sens. 2023, 15, 2590. [Google Scholar] [CrossRef]
- Yu, D.; Ji, S.; Liu, J.; Wei, S. Automatic 3D building reconstruction from multi-view aerial images with deep learning. ISPRS J. Photogramm. Remote Sens. 2021, 171, 155–170. [Google Scholar] [CrossRef]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. June 2017. Available online: http://arxiv.org/abs/1706.02413 (accessed on 17 May 2022).
- Kim, T.; Cho, W.; Matono, A.; Kim, K.S. PinSout: Automatic 3D Indoor Space Construction from Point Clouds with Deep Learning. In Proceedings of the ACM International Symposium on Advances in Geographic Information Systems, Seattle, WA, USA, 3–6 November 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 211–214. [Google Scholar] [CrossRef]
- Phan, A.V.; Le Nguyen, M.; Nguyen, Y.L.H.; Bui, L.T. DGCNN: A convolutional neural network over large-scale labeled graphs. Neural Netw. 2018, 108, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Grilli, E.; Poux, F.; Remondino, F. Unsupervised object-based clustering in support of supervised point-based 3D point cloud classification. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.—ISPRS Arch. 2021, 43, 471–478. [Google Scholar] [CrossRef]
- Buyukdemircioglu, M.; Kocaman, S.; Isikdag, U. Semi-automatic 3D city model generation from large-format aerial images. Can. Hist. Rev. 2018, 7, 339. [Google Scholar] [CrossRef]
- Stoter, J.; Vallet, B.; Lithen, T.; Pla, M.; Wozniak, P.; Kellenberger, T.; Streilein, A.; Ilves, R.; Ledoux, H. State-of-the-art of 3D national mapping in 2016. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.—ISPRS Arch. 2016, 41, 653–660. [Google Scholar] [CrossRef]
- Hassan, M.I.; Ahmad-Nasruddin, M.H.; Yaakop, I.A.; Abdul-Rahman, A. An Integrated 3D Cadastre-Malaysia as an Example. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 121–126. [Google Scholar]
- Biljecki, F. Exploration of Open Data in Southeast Asia to Generate 3D Building Models. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 6, 37–44. [Google Scholar] [CrossRef]
- Bello, S.A.; Yu, S.; Wang, C.; Adam, J.M.; Li, J. Review: Deep learning on 3D point clouds. Remote Sens. 2020, 12, 1729. [Google Scholar] [CrossRef]
- Singer, N.M.; Asari, V.K. DALES Objects: A Large Scale Benchmark Dataset for Instance Segmentation in Aerial Lidar. IEEE Access 2021, 9, 97495–97504. [Google Scholar] [CrossRef]
- Jedwab, R.; Loungani, P.; Yezer, A. Comparing cities in developed and developing countries: Population, land area, building height and crowding. Reg. Sci. Urban Econ. 2021, 86, 103609. [Google Scholar] [CrossRef]
- Zeybek, M. Classification of UAV Point Clouds by Random Forest Machine Learning Algorithm. Turk. J. Eng. 2021, 5, 48–57. [Google Scholar] [CrossRef]
- Ramadan, T.; Islam, T.Z.; Phelps, C.; Pinnow, N.; Thiagarajan, J.J. Comparative Code Structure Analysis using Deep Learning for Performance Prediction. In Proceedings of the 2021 IEEE International Symposium on Performance Analysis of Systems and Software, ISPASS 2021, Stony Brook, NY, USA, 28–30 March 2021; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021; pp. 151–161. [Google Scholar] [CrossRef]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Hu, Q.; Yang, B.; Khalid, S.; Xiao, W.; Trigoni, N.; Markham, A. Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset, Benchmarks and Challenges. September 2020. Available online: http://arxiv.org/abs/2009.03137 (accessed on 2 February 2024).
- Kada, M.; Kuramin, D. ALS Point Cloud Classification using PointNet++ and KPConv with Prior Knowledge. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.—ISPRS Arch. 2021, 46, 91–96. [Google Scholar] [CrossRef]
- Pan, S.; Guan, H.; Chen, Y.; Yu, Y.; Gonçalves, W.N.; Junior, J.M.; Li, J. Land-cover classification of multispectral LiDAR data using CNN with optimized hyper-parameters. ISPRS J. Photogramm. Remote Sens. 2020, 166, 241–254. [Google Scholar] [CrossRef]
- Kölle, M.; Laupheimer, D.; Schmohl, S.; Haala, N.; Rottensteiner, F.; Wegner, J.D.; Ledoux, H. The Hessigheim 3D (H3D) benchmark on semantic segmentation of high-resolution 3D point clouds and textured meshes from UAV LiDAR and Multi-View-Stereo. ISPRS Open J. Photogramme-Try Remote Sens. 2021, 1, 100001. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Watts, A.C.; Ambrosia, V.G.; Hinkley, E.A. Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote Sens. 2012, 4, 1671–1692. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Lee, K.W.; Park, J.K. Comparison of UAV image and UAV lidar for construction of 3D geospatial information. Sens. Mater. 2019, 31, 3327–3334. [Google Scholar] [CrossRef]
- Ongsulee, P. Artificial Intelligence, Machine Learning and Deep Learning. In Proceedings of the Fifteenth International Conference on ICT and Knowledge Engineering, Bangkok, Thailand, 22–24 November 2017; IEEE: New York, NY, USA, 2017. [Google Scholar]
- Bulut, V. Classifying Surface Points Based on Developability Using Machine Learning. Eur. J. Sci. Technol. 2022, 171–176. [Google Scholar] [CrossRef]
- Ali, J.; Khan, R.; Ahmad, N.; Maqsood, I. Random Forests and Decision Trees. 2012. Available online: www.IJCSI.org (accessed on 6 May 2024).
- Geosun Geosun. Available online: https://www.geosunlidar.com/sale-13560662-geosun-gairhawk-sesries-gs-100c-lidar-scanning-system-entry-level-3d-data-collection-livox-avia-sens.html (accessed on 15 February 2024).
- Chen, H.-P.; Chang, K.-T.; Liu, J.-K. Stripe Adjustment of Airborne Lidar Data Using Ground points. In Proceedings of the Asian Conference on Remote Sensing, Pattaya, Thailand, 26–30 November 2012; Curran Associates, Inc.: Nice, France, 2012. [Google Scholar]
- Carrilho, A.C.; Galo, M.; Santos, R.C.D. Statistical outlier detection method for airborne LiDAR data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2018, 42, 87–92. [Google Scholar] [CrossRef]
- Ying, X. An Overview of Overfitting and its Solutions. J. Phys. Conf. Ser. 2019, 1168, 022022. [Google Scholar] [CrossRef]
- Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning. Mathworks. Available online: https://www.mathworks.com/help/lidar/ug/aerial-lidar-segmentation-using-pointnet-network.html (accessed on 15 February 2024).
- Blomley, R.; Weinmann, M.; Leitloff, J.; Jutzi, B. Shape distribution features for point cloud analysis—A geometric histogram approach on multiple scales. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II-3, 9–16. [Google Scholar] [CrossRef]
- del Val, J.A.L.; de Agreda, J.P.A.P. Principal components analysis. Aten. Primaria/Soc. Española Med. Fam. Comunitaria 1993, 12, 333–338. [Google Scholar] [CrossRef]
- Lim, G.; Doh, N. Automatic reconstruction of multi-level indoor spaces from point cloud and trajectory. Sensors 2021, 21, 3493. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Ahmed, W.; Li, N.; Fan, W.; Xiang, H.; Wang, M. Semantic geometric modelling of unstructured indoor point cloud. ISPRS Int. J. Geo-Inf. 2019, 8, 9. [Google Scholar] [CrossRef]
- Zeybek, M.; Şanlıoğlu, İ. Point cloud filtering on UAV based point cloud. Measurement 2019, 133, 99–111. [Google Scholar] [CrossRef]
- Frisch, D. point2trimesh()—Distance Between Point and Triangulated Surface. MATLAB Central File Exchange, 2023. Available online: https://www.mathworks.com/matlabcentral/fileexchange/52882-point2trimesh-distance-between-point-and-triangulated-surface (accessed on 17 May 2023).
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Probst, P.; Wright, M.N.; Boulesteix, A.L. Hyperparameters and tuning strategies for random forest. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, e1301. [Google Scholar] [CrossRef]
- Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.; et al. API design for machine learning software: Experiences from the scikit-learn project. In Proceedings of the ECML PKDD Workshop: Languages for Data Mining and Machine Learning, Prague, Czech Republic, 23–27 September 2013; pp. 108–122. [Google Scholar]
- Confusion Matrix—An overview—ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/engineering/confusion-matrix (accessed on 1 December 2022).
- Yan, X.; Zheng, C.; Li, Z.; Wang, S.; Cui, S. PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling. March 2020. Available online: http://arxiv.org/abs/2003.00492 (accessed on 1 December 2022).
- Guarda, A.F.R.; Rodrigues, N.M.M.; Pereira, F. Deep Learning-Based Point Cloud Coding: A Behavior and Performance Study. In Proceedings of the 8th European Workshop on Visual Information Processing (EUVIP), Roma, Italy, 28–31 October 2019; IEEE: New York, NY, USA, 2019; pp. 34–39. [Google Scholar]
Authors (Year) | Dataset | Dataset Source | Algorithms | Spatial Area Size (km2) | Same Region | Segmentation Quality |
---|---|---|---|---|---|---|
Zeybek (2021) [24] | Artvin Coruh University Seyitler Campus | Aerial Images | RF | 0.873 | YES | OA = 96% |
Kada and Kuramin (2021) [28] | inner-city area of Leipzig, Germany | LiDAR | PointNet++ | 10 | YES | OA = 93% |
Pan et al. (2020) [29] | Whitchurch-Stouffville, Ontario, Canada | LiDAR | Convolutional Neural Network (CNN) | 12.5 | YES | OA = 94.9% |
Hu et al. (2021) [27] | Birmingham | Aerial Images | KPConv | 1.2 | YES * | OA = 91.44% |
Grilli et al. (2023) [30] | Hessigheim 3D dataset | LiDAR | KENN (Knowledge Enhanced Neural Networks) | 0.19 | YES | OA = 73.26% |
Information | PointNet++ Model | RF Model |
---|---|---|
OA accuracy | 15.7% | 73.01% |
precision | 5.6% | 23.89% |
recall | 17.3% | 23.66% |
F1 | 8.12% | 23.09% |
Information | General Model/Class | (1) Ground | (2) Vegetation | (3) Cars | (4) Fences | (5) Building |
---|---|---|---|---|---|---|
Training Data | ||||||
time (s) | 1902.91897 | - | - | - | - | - |
training accuracy | 99.99% | - | - | - | - | - |
Testing Data | ||||||
testing accuracy | 87.70% | - | - | - | - | - |
precision | 62.49% | 89.54% | 69.17% | 0.00% | 0.00% | 91.27% |
recall | 62.20% | 94.98% | 61.60% | 0.00% | 0.00% | 92.23% |
F1 | 62.27% | 92.18% | 65.17% | 0.00% | 0.00% | 91.75% |
Validating Data | ||||||
validation accuracy | 86.70% | - | - | - | - | - |
precision | 48.75% | 89.60% | 62.88% | 0.00% | 0.00% | 91.25% |
recall | 48.89% | 93.45% | 60.15% | 0.00% | 0.00% | 90.87% |
F1 | 48.81% | 91.49% | 61.48% | 0.00% | 0.00% | 91.06% |
Information | General Model/Class | (1) Ground | (2) Vegetation | (3) Cars | (4) Fences | (5) Building |
---|---|---|---|---|---|---|
Training Data | ||||||
time (s) | 2129.04761 | - | - | - | - | - |
training accuracy | 99.99% | - | - | - | - | - |
Testing Data | ||||||
testing accuracy | 95.29% | - | - | - | - | - |
precision | 69.92% | 90.61% | 91.24% | 0.00% | 0.00% | 97.83% |
recall | 70.14% | 95.61% | 87.70% | 0.00% | 0.00% | 97.27% |
F1 | 70.01% | 93.04% | 89.43% | 0.00% | 0.00% | 97.55% |
Validating Data | ||||||
validation accuracy | 94.21% | - | - | - | - | - |
precision | 55.49% | 90.56% | 86.52% | 2.83% | 0.00% | 97.52% |
recall | 55.30% | 93.83% | 84.49% | 1.31% | 0.00% | 96.84% |
F1 | 55.33% | 92.17% | 85.50% | 1.79% | 0.00% | 97.17% |
Information | General Model/Class | (1) Ground | (2) Vegetation | (3) Cars | (4) Buildings | (5) Exterior Wall |
---|---|---|---|---|---|---|
Training Data | ||||||
time (s) | 2870.27848 | - | - | - | - | - |
training accuracy | 99.99% | - | - | - | - | - |
Testing Data | ||||||
testing accuracy | 94.85% | - | - | - | - | - |
precision | 74.34% | 90.35% | 90.74% | 0.00% | 97.62% | 93.01% |
recall | 94.85% | 95.70% | 87.44% | 0.00% | 96.99% | 90.74% |
F1 | 94.85% | 92.95% | 89.06% | 0.00% | 97.30% | 91.86% |
Validating Data | ||||||
validation accuracy | 93.73% | - | - | - | - | - |
precision | 73.53% | 90.18% | 86.12% | 2.05% | 97.12% | 92.15% |
recall | 72.74% | 94.01% | 84.36% | 0.88% | 96.41% | 88.05% |
F1 | 73.07% | 92.06% | 85.23% | 1.23% | 96.76% | 90.05% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Widyastuti, R.; Suwardhi, D.; Meilano, I.; Hernandi, A.; Putri, N.S.E.; Saptari, A.Y.; Sudarman. Performance Analysis of Random Forest Algorithm in Automatic Building Segmentation with Limited Data. ISPRS Int. J. Geo-Inf. 2024, 13, 235. https://doi.org/10.3390/ijgi13070235
Widyastuti R, Suwardhi D, Meilano I, Hernandi A, Putri NSE, Saptari AY, Sudarman. Performance Analysis of Random Forest Algorithm in Automatic Building Segmentation with Limited Data. ISPRS International Journal of Geo-Information. 2024; 13(7):235. https://doi.org/10.3390/ijgi13070235
Chicago/Turabian StyleWidyastuti, Ratri, Deni Suwardhi, Irwan Meilano, Andri Hernandi, Nabila S. E. Putri, Asep Yusup Saptari, and Sudarman. 2024. "Performance Analysis of Random Forest Algorithm in Automatic Building Segmentation with Limited Data" ISPRS International Journal of Geo-Information 13, no. 7: 235. https://doi.org/10.3390/ijgi13070235
APA StyleWidyastuti, R., Suwardhi, D., Meilano, I., Hernandi, A., Putri, N. S. E., Saptari, A. Y., & Sudarman. (2024). Performance Analysis of Random Forest Algorithm in Automatic Building Segmentation with Limited Data. ISPRS International Journal of Geo-Information, 13(7), 235. https://doi.org/10.3390/ijgi13070235