Generating Large-Scale Origin–Destination Matrix via Progressive Growing Generative Adversarial Networks Model
Abstract
:1. Introduction
2. Literature Review
2.1. Generative Adversarial Networks
2.2. OD Matrix Generation
3. Methodology
3.1. Preliminary
3.1.1. Definitions
3.1.2. Problem Formulation
3.2. Methodology
3.2.1. Network Structure
3.2.2. Multi-Scale Generators and Discriminators
3.2.3. Geography-Based Upsampling and Downsampling Algorithm
4. Experimental Setup
4.1. Datasets
4.2. Validation
4.3. Baseline Models
4.3.1. Gravity Model
4.3.2. Radiation Model
4.4. Metrics
5. Result
CPC | NRMSE | ||||
---|---|---|---|---|---|
Gravity Model | 0.367 | 1.423 | 0.180 | 0.162 | 0.486 |
Radiation Model | 0.346 | 1.435 | 0.129 | 0.108 | 0.512 |
OD-PGGAN | 0.783 | 0.366 | 0.079 | 0.081 | 0.325 |
6. Conclusions and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- An, S.; Lee, B.; Shin, D. A survey of intelligent transportation systems. In Proceedings of the 2011 Third International Conference on Computational Intelligence, Communication Systems and Networks, Bali, Indonesia, 26–28 July 2011; pp. 332–337. [Google Scholar]
- Dimitrakopoulos, G.; Demestichas, P. Intelligent transportation systems. IEEE Veh. Technol. Mag. 2010, 5, 77–84. [Google Scholar] [CrossRef]
- Pavlyuk, D. Spatiotemporal Big Data Challenges for Traffic Flow Analysis. In Reliability and Statistics in Transportation and Communication: Selected Papers from the 17th International Conference on Reliability and Statistics in Transportation and Communication, RelStat’17, Riga, Latvia, 18–21 October 2017; Springer: Cham, Switzerland, 2018; pp. 232–240. [Google Scholar]
- de Montjoye, Y.; Hidalgo, C.A.; Verleysen, M.; Blondel, V.D. Unique in the Crowd: The privacy bounds of human mobility. Sci. Rep. 2013, 3, 1376. [Google Scholar] [CrossRef]
- Cottrill, C.D. MaaS surveillance: Privacy considerations in mobility as a service. Transp. Res. Part A Policy Pract. 2020, 131, 50–57. [Google Scholar] [CrossRef]
- Kapp, A.; Hansmeyer, J.; Mihaljević, C.H. Generative models for synthetic urban mobility data: A systematic literature review. ACM Comput. Surv. 2023, 56, 1–37. [Google Scholar] [CrossRef]
- Züfle, A.; Pfoser, D.; Wenk, C.; Crooks, A.; Kavak, H.; Anderson, T.; Kim, J.; Holt, N.; Diantonio, A. In Silico Human Mobility Data Science: Leveraging Massive Simulated Mobility Data (Vision Paper). ACM Trans. Spat. Algorithms Syst. 2024, 10, 1–27. [Google Scholar] [CrossRef]
- Rong, C.; Ding, J.; Liu, Y.; Li, Y. A large-scale benchmark dataset for commuting origin-destination matrix generation. arXiv 2024, arXiv:2407.15823. [Google Scholar]
- Endres, M.; Mannarapotta Venugopal, A.; Tran, T.S. Synthetic data generation: A comparative study. In Proceedings of the 26th International Database Engineered Applications Symposium (IDEAS’22), Budapest, Hungary, 22–24 August 2022; pp. 94–102. [Google Scholar]
- Jordon, J.; Szpruch, L.; Houssiau, F.; Bottarelli, M.; Cherubin, G.; Maple, C.; Cohen, S.N.; Weller, A. Synthetic Data—What, why and how? arXiv 2022, arXiv:2205.03257. [Google Scholar]
- Raghunathan, T.E. Synthetic data. Annu. Rev. Stat. Its Appl. 2021, 8, 129–140. [Google Scholar] [CrossRef]
- Rong, C.; Ding, J.; Li, Y. An interdisciplinary survey on origin-destination flows modeling: Theory and techniques. ACM Comput. Surv. 2024, 57, 4. [Google Scholar] [CrossRef]
- Rong, C.; Wang, H.; Li, Y. Origin-Destination Network Generation via Gravity-Guided GAN. arXiv 2023, arXiv:2306.03390. [Google Scholar]
- Saadi, I.; Mustafa, A.; Teller, J.; Cools, M. A bi-level Random Forest based approach for estimating OD matrices: Preliminary results from the Belgium National Household Travel Survey. Transp. Res. Procedia 2017, 25, 2566–2573. [Google Scholar] [CrossRef]
- Hu, S.; Madanat, S.M.; Krogmeier, J.V.; Peeta, S. Estimation of dynamic assignment matrices and OD demands using adaptive Kalman filtering. J. Intell. Transp. Syst. 2001, 6, 281–300. [Google Scholar] [CrossRef]
- Feng, J.; Li, Y.; Lin, Z.; Rong, C.; Sun, F.; Guo, D.; Jin, D. Context-aware spatial-temporal neural network for citywide crowd flow prediction via modeling long-range spatial dependency. ACM Trans. Knowl. Discov. Data (TKDD) 2021, 16, 49. [Google Scholar] [CrossRef]
- Zhang, Y.; Tu, P.; Zhao, Z.; Chen, X. Incorporating prior knowledge of collision risk into deep learning networks for ship trajectory prediction in the maritime Internet of Things industry. Eng. Appl. Artif. Intell. 2025, 146, 110311. [Google Scholar] [CrossRef]
- Hörl, S.; Becker, F.; Axhausen, K.W. Simulation of price, customer behaviour and system impact for a cost-covering automated taxi system in Zurich. Transp. Res. Part C Emerg. Technol. 2021, 123, 102974. [Google Scholar] [CrossRef]
- Zeng, J.; Zhang, G.; Rong, C.; Ding, J.; Yuan, J.; Li, Y. Causal learning empowered OD prediction for urban planning. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management (CIKM ‘22), Atlanta, GA, USA, 17–21 October 2022; pp. 2455–2464. [Google Scholar]
- Alqahtani, H.; Kavakli-Thorne, M.; Kumar, G. Applications of generative adversarial networks (gans): An updated review. Arch. Comput. Methods Eng. 2021, 28, 525–552. [Google Scholar] [CrossRef]
- Lin, H.; Liu, Y.; Li, S.; Qu, X. How generative adversarial networks promote the development of intelligent transportation systems: A survey. IEEE/CAA J. Autom. Sin. 2023, 10, 1781–1796. [Google Scholar] [CrossRef]
- Figueira, A.; Vaz, B. Survey on synthetic data generation, evaluation methods and GANs. Mathematics 2022, 10, 2733. [Google Scholar] [CrossRef]
- Mauro, G.; Luca, M.; Longa, A.; Lepri, B.; Pappalardo, L. Generating mobility networks with generative adversarial networks. EPJ Data Sci. 2022, 11, 58. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 27, 1–9. [Google Scholar]
- Nash, J. Two-person cooperative games. Econom. J. Econom. Soc. 1953, 21, 128–140. [Google Scholar] [CrossRef]
- Ratliff, L.J.; Burden, S.A.; Sastry, S.S. Characterization and computation of local Nash equilibria in continuous games. In Proceedings of the 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 2–4 October 2013; pp. 917–924. [Google Scholar]
- Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Odena, A. Semi-supervised learning with generative adversarial networks. arXiv 2016, arXiv:1606.01583. [Google Scholar]
- Arjovsky, M.; Chintala, S.; Bottou, L.E.O. Wasserstein generative adversarial networks. In Proceedings of the 34th International Conference on Machine Learning, PMLR 70, Sydney, Australia, 6–11 August 2017; pp. 214–223. [Google Scholar]
- Wang, H.; Wang, J.; Wang, J.; Zhao, M.; Zhang, W.; Zhang, F.; Xie, X.; Guo, M. GraphGAN: Graph Representation Learning with Generative Adversarial Nets. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 2508–2515. [Google Scholar]
- Wang, Z.; Zheng, H.; He, P.; Chen, W.; Zhou, M. Diffusion-gan: Training gans with diffusion. arXiv 2022, arXiv:2206.02262. [Google Scholar]
- Ahmad, Z.; Jaffri, Z.U.A.; Chen, M.; Bao, S. Understanding GANs: Fundamentals, variants, training challenges, applications, and open problems. Multimed. Tools Appl. 2024, 1–77. [Google Scholar] [CrossRef]
- Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive Growing of GANs for Improved Quality, Stability, and Variation. arXiv 2017, arXiv:1710.10196. [Google Scholar]
- Karras, T.; Laine, S.; Aila, T. A style-based generator architecture for generative adversarial networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 4401–4410. [Google Scholar]
- Brock, A.; Donahue, J.; Simonyan, K. Large Scale GAN Training for High Fidelity Natural Image Synthesis. arXiv 2018, arXiv:1809.11096. [Google Scholar]
- Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-attention generative adversarial networks. In Proceedings of the 36th International Conference on Machine Learning, PMLR 97, Long Beach, CA, USA, 9–15 June 2019; pp. 7354–7363. [Google Scholar]
- Zhang, B.; Gu, S.; Zhang, B.; Bao, J.; Chen, D.; Wen, F.; Wang, Y.; Guo, B. StyleSwin: Transformer-based GAN for High-resolution Image Generation. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 11294–11304. [Google Scholar]
- Kang, M.; Zhu, J.; Zhang, R.; Park, J.; Shechtman, E.; Paris, S.; Park, T. Scaling up gans for text-to-image synthesis. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 10124–10134. [Google Scholar]
- Showrov, A.A.; Aziz, M.T.; Nabil, H.R.; Jim, J.R.; Kabir, M.M.; Mridha, M.F.; Asai, N.; Shin, J. Generative adversarial networks (GANs) in medical imaging: Advancements, applications, and challenges. IEEE Access 2024, 12, 35728–35753. [Google Scholar]
- Oubara, A.; Wu, F.; Maleki, R.; Ma, B.; Amamra, A.; Yang, G. Enhancing adversarial learning-based change detection in imbalanced datasets using artificial image generation and attention mechanism. ISPRS Int. J. Geo-Inf. 2024, 13, 125. [Google Scholar] [CrossRef]
- Šidlauskas, A.; Kriščiūnas, A.; Čalnerytė, D. Continuous Satellite Image Generation from Standard Layer Maps Using Conditional Generative Adversarial Networks. ISPRS Int. J. Geo-Inf. 2024, 13, 448. [Google Scholar] [CrossRef]
- Chakraborty, T.; Ujjwal Reddy, K.S.; Naik, S.M.; Panja, M.; Manvitha, B. Ten years of generative adversarial nets (GANs): A survey of the state-of-the-art. Mach. Learn. Sci. Technol. 2024, 5, 11001. [Google Scholar] [CrossRef]
- Chu, C.; Zhang, H.; Wang, P.; Lu, F. Simulating human mobility with a trajectory generation framework based on diffusion model. Int. J. Geogr. Inf. Sci. 2024, 38, 847–878. [Google Scholar] [CrossRef]
- Zhang, X.; Li, N. An Activity Space-based Gravity Model for Intracity Human Mobility Flows. Sustain. Cities Soc. 2023, 101, 105073. [Google Scholar] [CrossRef]
- Alis, C.; Legara, E.F.; Monterola, C. Generalized radiation model for human migration. Sci. Rep. 2021, 11, 22707. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Shen, J.; Chu, J. Understanding Intercity Mobility Patterns in Rapidly Urbanizing China, 2015–2019: Evidence from Longitudinal Poisson Gravity Modeling. Ann. Am. Assoc. Geogr. 2023, 113, 307–330. [Google Scholar] [CrossRef]
- Kotsubo, M.; Nakaya, T. Kernel-based formulation of intervening opportunities for spatial interaction modelling. Sci. Rep. 2021, 11, 950. [Google Scholar] [CrossRef]
- Yao, X.; Gao, Y.; Zhu, D.; Manley, E.; Wang, J.; Liu, Y. Spatial origin-destination flow imputation using graph convolutional networks. IEEE Trans. Intell. Transp. Syst. 2020, 22, 7474–7484. [Google Scholar] [CrossRef]
- Rong, C.; Li, T.; Feng, J.; Li, Y. Inferring origin-destination flows from population distribution. IEEE Trans. Knowl. Data Eng. 2021, 35, 603–613. [Google Scholar] [CrossRef]
- Jiang, W.; Ma, Z.; Koutsopoulos, H.N. Deep learning for short-term origin–destination passenger flow prediction under partial observability in urban railway systems. Neural Comput. Appl. 2022, 34, 4813–4830. [Google Scholar] [CrossRef]
- Li, C.; Zheng, L.; Jia, N. Network-wide ride-sourcing passenger demand origin-destination matrix prediction with a generative adversarial network. Transp. A Transp. Sci. 2024, 20, 2109774. [Google Scholar] [CrossRef]
- Rong, C.; Ding, J.; Liu, Z.; Li, Y. Complexity-aware large scale origin-destination network generation via diffusion model. arXiv 2023, arXiv:2306.04873. [Google Scholar]
- Youssef, A. Image Downsampling and Upsampling Methods; National Institute of Standards and Technology: Gaithersburg, MD, USA, 1999. [Google Scholar]
- Zipf, G.K. The P1 P2/D Hypothesis: On the Intercity Movement of Persons. Am. Sociol. Rev. 1946, 11, 677–686. [Google Scholar] [CrossRef]
- Simini, F.; González, M.C.; Maritan, A.; Barabási, A. A universal model for mobility and migration patterns. Nature 2012, 484, 96–100. [Google Scholar] [CrossRef]
- Sorensen, T. A Method of Establishing Groups of Equal Amplitude in Plant Sociology Based on Similarity of Species Content and Its Application to Analyses of the Vegetation on Danish Commons; I kommission hos Ejnar Munksgaard: Copenhagen, Denmark, 1948. [Google Scholar]
- Yang, Y.; Herrera, C.; Eagle, N.; Gonzalez, M.C. Limits of predictability in commuting flows in the absence of data for calibration. Sci. Rep. 2014, 4, 5662. [Google Scholar] [CrossRef]
- Zhou, Z.; Ding, J.; Liu, Y.; Jin, D.; Li, Y. Towards generative modeling of urban flow through knowledge-enhanced denoising diffusion. In Proceedings of the 31st ACM International Conference on Advances in Geographic Information Systems, Hamburg, Germany, 13–16 November 2023; pp. 1–12. [Google Scholar]
- Bhandari, P.; Anastasopoulos, A.; Pfoser, D. Urban mobility assessment using LLMs. In Proceedings of the 32nd ACM International Conference on Advances in Geographic Information Systems, Atlanta, GA, USA, 29 October–1 November 2024; pp. 67–79. [Google Scholar]
CPC | NRMSE | ||||
---|---|---|---|---|---|
Test Sample | 0.784 | 0.367 | 0.079 | 0.082 | 0.327 |
Mixed Sample | 0.783 | 0.364 | 0.077 | 0.079 | 0.322 |
Synthetic Sample | 0.782 | 0.366 | 0.076 | 0.081 | 0.320 |
CPC | NRMSE | ||||
---|---|---|---|---|---|
Test Sample | 0.784 | 0.367 | 0.079 | 0.082 | 0.327 |
OD-PGGAN (synthetic sample) | 0.782 | 0.366 | 0.076 | 0.081 | 0.320 |
Gravity Model | 0.973 | 0.093 | 0.012 | 0.032 | 0.052 |
Radiation Model | 0.979 | 0.066 | 0.009 | 0.020 | 0.035 |
CPC | NRMSE | ||||
---|---|---|---|---|---|
100,000 | 0.772 | 0.368 | 0.083 | 0.086 | 0.342 |
200,000 | 0.775 | 0.375 | 0.081 | 0.085 | 0.342 |
500,000 (ours) | 0.783 | 0.367 | 0.079 | 0.082 | 0.326 |
1,000,000 | 0.785 | 0.362 | 0.080 | 0.081 | 0.328 |
All users | 0.792 | 0.357 | 0.081 | 0.082 | 0.311 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Z.; Chen, X.; Chen, B.; Luo, Y.; Zhang, Y.; Teng, W.; Zhang, C. Generating Large-Scale Origin–Destination Matrix via Progressive Growing Generative Adversarial Networks Model. ISPRS Int. J. Geo-Inf. 2025, 14, 172. https://doi.org/10.3390/ijgi14040172
Yuan Z, Chen X, Chen B, Luo Y, Zhang Y, Teng W, Zhang C. Generating Large-Scale Origin–Destination Matrix via Progressive Growing Generative Adversarial Networks Model. ISPRS International Journal of Geo-Information. 2025; 14(4):172. https://doi.org/10.3390/ijgi14040172
Chicago/Turabian StyleYuan, Zehao, Xuanyan Chen, Biyu Chen, Yubo Luo, Yu Zhang, Wenxin Teng, and Chao Zhang. 2025. "Generating Large-Scale Origin–Destination Matrix via Progressive Growing Generative Adversarial Networks Model" ISPRS International Journal of Geo-Information 14, no. 4: 172. https://doi.org/10.3390/ijgi14040172
APA StyleYuan, Z., Chen, X., Chen, B., Luo, Y., Zhang, Y., Teng, W., & Zhang, C. (2025). Generating Large-Scale Origin–Destination Matrix via Progressive Growing Generative Adversarial Networks Model. ISPRS International Journal of Geo-Information, 14(4), 172. https://doi.org/10.3390/ijgi14040172