Prediction of Soil Nutrient Contents Using Visible and Near-Infrared Reflectance Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Soil Samples
2.2.1. Collection and Chemical Analysis of Soil Samples
2.2.2. Spectral Measurement and Pre-Treatment of Soil Samples
2.3. Modeling and Mapping Methods
2.3.1. Selection of Spectral Variables
2.3.2. Partial Least Squares Regression to Estimate Soil Nutrient Contents
2.3.3. Back-Propagation Neural Network to Estimate Soil Nutrient Contents
2.3.4. Genetic Algorithm—Back-Propagation Neural Network to Estimate Soil Nutrient Contents
2.3.5. Mapping Soil Nutrient Contents Based on the HuanJing-1A Hyperspectral Imager Image
3. Results
3.1. The Optimal Spectral Variables for Soil Nutrient Contents
3.2. Estimation and Accuracy Assessment of Soil Nutrient Contents for Soil Sample Points
3.3. Estimation and Accuracy Assessment of Soil Nutrient Contents at the Regional Scale
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, L.F.; He, Z.B.; Du, J.; Yang, J.J.; Zhu, X. Response of soil carbon cycling to climate warming: Challenges and perspectives. Acta Prataculturae Sin. 2015, 24, 183–194. [Google Scholar]
- Dong, X.; Tian, J.; Zhang, R.H.; He, D.X.; Chen, Q.M. Study on the Relationship between Soil Emissivity Spectra and Content of Soil Elements. Spectrosc. Spectr. Anal. 2017, 37, 557–565. [Google Scholar]
- Liu, P.; Liu, Z.; Hu, Y.; Shi, Z.; Pan, Y.; Wang, L.; Wang, G. Integrating a Hybrid Back Propagation Neural Network and Particle Swarm Optimization for Estimating Soil Heavy Metal Contents Using Hyperspectral Data. Sustainability 2019, 11, 419. [Google Scholar] [CrossRef]
- Hively, W.D.; Mccarty, G.W.; Reeves, J.B.; Lang, M.W.; Oesterling, R.A.; Delwiche, S.R. Use of Airborne Hyperspectral Imagery to Map Soil Properties in Tilled Agricultural Fields. Appl. Environ. Soil Sci. 2011, 2011, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.Z.; Lu, Q.P. Near infrared spectral analysis and measuring system for primary nutrient of soil. Spectroscopy and Spectral Analysis 2011, 31, 1245–1249. [Google Scholar]
- Xu, Y.M.; Smith, S.E.; Grunwald, S.; Abd-Elrahman, A.; Wani, S.P. Effects of image pan sharpening on soil total nitrogen prediction models in South India. Geoderma 2018, 320, 52–66. [Google Scholar] [CrossRef]
- Cao, F.X.; Yang, Z.J.; Ren, J.C.; Jiang, M.Y.; Ling, W.K. Linear vs. Nonlinear Extreme Learning Machine for Spectral-Spatial Classification of Hyperspectral Images. Sensors 2017, 17, 2603. [Google Scholar] [CrossRef]
- Leone, A.P.; Viscarra-Rossel, R.A.; Amenta, P.; Buondonno, A. Prediction of Soil Properties with PLSR and vis-NIR Spectroscopy: Application to Mediterranean Soils from Southern Italy. Curr. Anal. Chem. 2012, 8, 283–299. [Google Scholar] [CrossRef]
- Casa, R.; Castaldi, F.; Pascucci, S.; Basso, B.; Pignatti, S. Geophysical and Hyperspectral Data Fusion Techniques for In-Field Estimation of Soil Properties. Vadose Zone J. 2013, 12, 1–10. [Google Scholar] [CrossRef]
- Chen, T.; Chang, Q.; Liu, J.; Clevers, J.; Kooistra, L.; Clevers, J. Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: A case study in northwest China. Sci. Total Environ. 2016, 565, 155–164. [Google Scholar] [CrossRef]
- Hu, G.; Sudduth, K.A.; He, D.; Myers, D.B.; Nathan, M.V. Soil Phosphorus and Potassium Estimation by Reflectance Spectroscopy. Trans. ASABE 2016, 59, 97–105. [Google Scholar]
- Ramoelo, A.; Skidmore, A.; Cho, M.A.; Mathieu, R.; Heitkönig, I.; Dudeni-Tlhone, N.; Schlerf, M.; Prins, H. Non-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data. ISPRS J. Photogramm. Remote Sens. 2013, 82, 27–40. [Google Scholar] [CrossRef]
- Mouazen, A.; Maleki, M.; De Baerdemaeker, J.; Ramon, H. On-line measurement of some selected soil properties using a VIS–NIR sensor. Soil Tillage Res. 2007, 93, 13–27. [Google Scholar] [CrossRef]
- Liu, H.Z.; Shi, T.Z.; Chen, Y.Y.; Wang, J.J.; Fei, T.; Wu, G.F. Improving Spectral Estimation of Soil Organic Carbon Content through Semi-Superv ised Regression. Remote Sens. 2017, 9, 29. [Google Scholar] [CrossRef]
- Ma, W.B.; Tan, K.; Li, H.D.; Yan, Q.W. Hyperspectral Inversion of Heavy Metals in Soil of a Mining Area Using Extreme Learning Machine. J. Ecol. Rural Environ. 2016, 32, 213–218. [Google Scholar]
- Balabin, R.M.; Lomakina, E.I. Support vector machine regression (SVR/LS-SVM)—An alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Analyst 2011, 136, 1703–1712. [Google Scholar] [CrossRef]
- Tang, F.; Chen, M.; Wang, Z. New approach to training support vector machine. J. Syst. Eng. Electron. 2006, 17, 200–219. [Google Scholar]
- Ma, L.; Chen, C.; Shen, Y.; Wu, L.F.; Huang, Z.L.; Cao, H.L. Determinants of tree survival at local scale in a sub-tropical forest. Ecol. Res. 2014, 29, 69–80. [Google Scholar] [CrossRef]
- Falahatkar, S.; Hosseini, S.M.; Ayoubi, S.; Salmanmahiny, A. Predicting soil organic carbon density using auxiliary environmental variables in northern Iran. Arch. Agron. Soil Sci. 2016, 62, 375–393. [Google Scholar] [CrossRef]
- Song, Y.Q.; Zhao, X.; Su, H.Y.; Li, B.; Hu, Y.M.; Cui, X.S. Predicting Spatial Variations in Soil Nutrients with Hyperspectral Remote Sensing at Regional Scale. Sensors 2018, 18, 3086. [Google Scholar] [CrossRef]
- Yu, L.; Hong, Y.S.; Zhou, Y.; Zhu, Q. Inversion of Soil Organic Matter Content Using Hyperspectral Data Based on Continuous Wavelet Transformation. Spectrosc. Spectr. Anal. 2016, 36, 1428–1433. [Google Scholar]
- Mouazen, A.; Kuang, B.; De Baerdemaeker, J.; Ramon, H. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma 2010, 158, 23–31. [Google Scholar] [CrossRef]
- An, X.F.; Wu, G.W.; Dong, J.J.; Guo, J.H.; Meng, Z.J. Study on the Prediction Model Based on a Portable Soil TN Detector. In Computer and Computing Technologies in Agriculture IX; Springer International Publishing: Cham, Switzerland, 2015; pp. 117–126. [Google Scholar]
- Xu, S.X.; Zhao, Y.C.; Wang, M.Y.; Shi, X.Z. Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by Vis–NIR spectroscopy. Geoderma 2018, 310, 29–43. [Google Scholar] [CrossRef]
- Wang, F.; Gao, J.; Zha, Y. Hyperspectral sensing of heavy metals in soil and vegetation: Feasibility and challenges. ISPRS J. Photogramm. Remote Sens. 2018, 136, 73–84. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, C.; Li, Q.; Li, J. Chinese HJ-1A/B satellites and data characteristics. Sci. China Earth Sci. 2010, 53, 51–57. [Google Scholar] [CrossRef]
- Walkley, A.J.; Black, C.A. An estimation of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Wang, J.; Cui, L.; Gao, W.; Shi, T.; Chen, Y.; Gao, Y. Prediction of low heavy metal concentrations in agricultural soils using visible and near-infrared reflectance spectroscopy. Geoderma 2014, 216, 1–9. [Google Scholar] [CrossRef]
- Gomez, C.; Lagacherie, P.; Coulouma, G. Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements. Geoderma 2008, 148, 141–148. [Google Scholar] [CrossRef]
- Adeline, K.; Gomez, C.; Gorretta, N.; Roger, J.-M. Predictive ability of soil properties to spectral degradation from laboratory Vis-NIR spectroscopy data. Geoderma 2017, 288, 143–153. [Google Scholar] [CrossRef]
- Fabre, S.; Briottet, X.; Lesaignoux, A. Estimation of Soil Moisture Content from the Spectral Reflectance of Bare Soils in the 0.4-2.5 µm Domain. Sensors 2015, 15, 3262–3281. [Google Scholar] [CrossRef]
- Lin, L.X.; Wang, Y.J.; Teng, J.Y.; Xi, X.X. Hyperspectral Analysis of Soil Total Nitrogen in Subsided Land Using the Local Correlation Maximization-Complementary Superiority (LCMCS) Method. Sensors 2015, 15, 17990–18011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Hu, Y.-M.; Zhou, W.; Liu, Z.-H.; Pan, Y.-C.; Shi, Z.; Wang, L.; Wang, G.-X. Estimation Methods for Soil Mercury Content Using Hyperspectral Remote Sensing. Sustainablity 2018, 10, 2474. [Google Scholar] [CrossRef]
- Salmerón Gómez, R.; García Pérez, J.; López Martín, M.D.M.; García, C.G. Collinearity diagnostic applied in ridge estimation through the variance inflation factor. J. Appl. Stat. 2016, 43, 1831–1849. [Google Scholar] [CrossRef]
- Kang, J.; Jin, R.; Li, X.; Zhang, Y.; Zhu, Z. Spatial Upscaling of Sparse Soil Moisture Observations Based on Ridge Regression. Remote Sens. 2018, 10, 192. [Google Scholar] [CrossRef]
- Wold, H. Nonlinear Estimation by Iterative Least Squares Procedure. In Research Papers in Statistics; David, F., Ed.; Wiley: Hoboken, NJ, USA, 1966; pp. 441–444. [Google Scholar]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemometr. Intell. Lab. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Duan, S.M. Design and Development of Detection Node in Wireless Sensor Network Based on Neural Network. Adv. Mater. Res. 2014, 1022, 292–295. [Google Scholar] [CrossRef]
- Panda, S.S.; Ames, D.P.; Panigrahi, S. Application of Vegetation Indices for Agricultural Crop Yield Prediction Using Neural Network Techniques. Remote Sens. 2010, 2, 673–696. [Google Scholar] [CrossRef] [Green Version]
- Haque, M. ANN back-propagation prediction model for fracture toughness in microalloy steel. Int. J. Fatigue 2002, 24, 1003–1010. [Google Scholar] [CrossRef]
- Lu, P.; Wang, L.; Niu, Z.; Li, L.; Zhang, W. Prediction of soil properties using laboratory VIS–NIR spectroscopy and Hyperion imagery. J. Geochem. Explor. 2013, 132, 26–33. [Google Scholar] [CrossRef]
- Saleh, S.; Ibrahim, K.; Eiteba, M.M.; Mohamed, S. Study of genetic algorithm performance through design of multi-step LC compensator for time-varying nonlinear loads. Appl. Soft Comput. 2016, 48, 535–545. [Google Scholar] [CrossRef]
- Keshava, N.; Mustard, J.F. Spectral unmixing. IEEE Signal Process. Mag. 2002, 19, 44–57. [Google Scholar] [CrossRef]
- Pirie, A.; Singh, B.; Islam, K. Ultra-violet, visible, near-infrared and mid-infrared diffuse reflectance spectroscopis techniques to predict several soil properties. Aust. J. Soil Res. 2005, 43, 713–772. [Google Scholar] [CrossRef]
- Razakamanarivo, R.H.; Grinand, C.; Razafindrakoto, M.A.; Bernoux, M.; Albrecht, A. Mapping organic carbon stocks in eucalyptus plantations of the central highlands of Madagascar: A multiple regression approach. Geoderma 2011, 162, 335–346. [Google Scholar] [CrossRef]
- Khosravi, V.; Ardejani, F.D.; Yousefi, S.; Aryafar, A. Monitoring soil lead and zinc contents via combination of spectroscopy with extreme learning machine and other data mining methods. Geoderma 2018, 318, 29–41. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, Y.; Peng, Y.; Zhao, L.; Wang, G.; Hu, Y. Estimation of Soil Heavy Metal Content Using Hyperspectral Data. Remote Sens. 2019, 11, 1464. [Google Scholar] [CrossRef]
Soil Nutrients | Dataset | Mean | Max | Min | St. Dev | CV (%) |
---|---|---|---|---|---|---|
TN(g/kg) | All | 1.36 | 2.79 | 0.21 | 0.57 | 41.91 |
Training | 1.38 | 2.79 | 0.34 | 0.57 | 41.30 | |
Test | 1.33 | 2.76 | 0.21 | 0.56 | 42.11 | |
TP(g/kg) | All | 0.75 | 3.15 | 0.13 | 0.55 | 73.33 |
Training | 0.74 | 2.65 | 0.13 | 0.51 | 68.91 | |
Test | 0.77 | 3.15 | 0.14 | 0.63 | 81.81 | |
TK(g/kg) | All | 10.55 | 30.39 | 0.62 | 7.61 | 72.13 |
Training | 10.35 | 30.39 | 0.62 | 7.47 | 72.17 | |
Test | 10.96 | 30.83 | 0.87 | 7.87 | 71.81 |
Soil Nutrient | The Spectral Variables | Correlation Coefficients |
---|---|---|
TN | R342, FD562, FD1418, SD714, RL768 | −0.24 **, −0.44 **,0.34 **, −0.26 **, 0.25 ** |
TP | R1302, FD1009, FD613, FD356, SD905, RL1065 | −0.23 **, −0.50 **, −0.48 **, 0.45 **, −0.32 **, 0.37 ** |
TK | R2498, FD442, FD625, SD1043, RL2461 | 0.20 **, 0.50 **, −0.42 **, −0.25 **, −0.27 ** |
Soil Nutrients | Model | R² | RRMSE (%) | RPD |
---|---|---|---|---|
TN | PLSR | 0.25 | 37.05 | 1.16 |
BPNN | 0.65 | 25.71 | 1.68 | |
GA-BPNN | 0.82 | 21.61 | 2.00 | |
TP | PLSR | 0.50 | 59.09 | 1.42 |
BPNN | 0.74 | 45.37 | 1.85 | |
GA-BPNN | 0.79 | 42.84 | 1.96 | |
TK | PLSR | 0.12 | 70.33 | 1.04 |
BPNN | 0.81 | 31.86 | 2.30 | |
GA-BPNN | 0.90 | 25.42 | 2.88 |
Soil Nutrients | OOSV-Based GA-BPNN Model | SCOSV-Based GA-BPNN Model | ||||||
---|---|---|---|---|---|---|---|---|
Mean (g/kg) | St. Dev | R2 | RRMSE (%) | Mean (g/kg) | St. Dev | R2 | RRMSE (%) | |
TN | 1.10 | 0.53 | 0.50 | 42.72 | 0.97 | 0.52 | 0.58 | 40.41 |
TP | 1.16 | 0.63 | 0.66 | 38.50 | 1.02 | 0.54 | 0.69 | 34.71 |
TK | 19.92 | 8.57 | 0.72 | 24.52 | 17.64 | 5.81 | 0.80 | 20.37 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Zhao, L.; Hu, Y.; Wang, G.; Wang, L.; Liu, Z. Prediction of Soil Nutrient Contents Using Visible and Near-Infrared Reflectance Spectroscopy. ISPRS Int. J. Geo-Inf. 2019, 8, 437. https://doi.org/10.3390/ijgi8100437
Peng Y, Zhao L, Hu Y, Wang G, Wang L, Liu Z. Prediction of Soil Nutrient Contents Using Visible and Near-Infrared Reflectance Spectroscopy. ISPRS International Journal of Geo-Information. 2019; 8(10):437. https://doi.org/10.3390/ijgi8100437
Chicago/Turabian StylePeng, Yiping, Li Zhao, Yueming Hu, Guangxing Wang, Lu Wang, and Zhenhua Liu. 2019. "Prediction of Soil Nutrient Contents Using Visible and Near-Infrared Reflectance Spectroscopy" ISPRS International Journal of Geo-Information 8, no. 10: 437. https://doi.org/10.3390/ijgi8100437
APA StylePeng, Y., Zhao, L., Hu, Y., Wang, G., Wang, L., & Liu, Z. (2019). Prediction of Soil Nutrient Contents Using Visible and Near-Infrared Reflectance Spectroscopy. ISPRS International Journal of Geo-Information, 8(10), 437. https://doi.org/10.3390/ijgi8100437