An Improved Global Analysis of Population Distribution in Proximity to Active Volcanoes, 1975–2015
Abstract
:1. Introduction
1.1. Potential Global Population Exposure to Volcanic Hazard—Narrowing Data Gaps
1.2. The Contribution of the Global Human Settlement Layer (GHSL) to DRM
- Semantic robustness and interoperability
- Currency of data
- Spatial detail
- Global coverage
- Temporal depth
- Provision of open and free data
2. Materials and Methods
2.1. Data
2.1.1. Global Population Distribution Grids 1975–2015
- (i)
- the use of a single spatially and temporally-explicit proxy (built-up areas from GHSL);
- (ii)
- this proxy is mostly of higher spatial resolution than census data and is derived with a consistent approach;
- (iii)
- the employment of a simple, transparent and consistent methodology for population disaggregation.
2.1.2. Global Geographical Distribution of Volcanoes
2.2. Assessing Global Population Distribution and Volcanism
- (1)
- Calculation of distance buffers from volcanoes in World Equidistant Cylindrical projection;
- (2)
- Merging the resulting buffers by distance (i.e., dissolve by distance function);
- (3)
- Re-projection of the distance buffers to World Mollweide projection;
- (4)
- Rasterization to the working grid (i.e., 250 m World Mollweide aligned with the GHS global grid), and calculation of landmass surface and population counts per each buffer in World Mollweide.
3. Results and Discussion
3.1. Global Population Distribution from 1975 to 2015 in Relation to Volcanism
Sources of Uncertainty
3.2. Population Distribution from 1975 to 2015 in Relation to Volcanism, in Southeast Asia and Central America
- (a)
- Pressure for space in a context of relatively weak planning, causing settlement to encroach on volcanoes (overall average population densities are much higher in SE Asia than in Central America);
- (b)
- More recent dates of eruptions and variations in risk perception.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations Office for Disaster Risk Reduction. Making Development Sustainable: The Future of Disaster Risk Management. Global Assessment Report on Disaster Risk Reduction; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2015. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Volcanic Eruptions and Their Repose, Unrest, Precursors, and Timing; The National Academies Press: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Dilley, M.; Chen, R.S.; Deichmann, U.; Lerner-Lam, A.L.; Arnold, M. Natural Disaster Hotspots: A Global Risk Analysis; The World Bank: Washington, DC, USA, 2005. [Google Scholar]
- Ragona, M.; Hannstein, F.; Mazzocchi, M. The impact of volcanic ash crisis on the European Airline industry. In Governing Disasters: The Challenges of Emergency Risk regulations; Alemanno, A., Ed.; Edward Elgar Publishing: Cheltenham, UK, 2011. [Google Scholar]
- Poljanšek, K.; Marin Ferrer, M.; De Groeve, T.; Clark, I. Science for Disaster Risk Management 2017: Knowing Better and Losing Less; Publications Office of the European Union: Brussels, Belgium, 2017; JRC102482. [Google Scholar] [CrossRef]
- Chester, D.; Degg, M.; Duncan, A.; Guest, J. The increasing exposure of cities to the effects of volcanic eruptions: A global survey. Glob. Environ. Chang. Part B Environ. Hazards 2000, 2, 89–103. [Google Scholar] [CrossRef]
- Brown, S.K.; Jenkins, S.F.; Sparks, R.S.J.; Odbert, H.; Auker, M.R. Volcanic fatalities database: Analysis of volcanic threat with distance and victim classification. J. Appl. Volcanol. 2017, 6, 15. [Google Scholar] [CrossRef]
- Small, C.; Naumann, T. The global distribution of human population and recent volcanism. Environ. Hazards 2001, 3, 93–109. [Google Scholar]
- Strader, S.M.; Ashley, W.; Walker, J. Changes in volcanic hazard exposure in the Northwest USA from 1940 to 2100. Nat. Hazards 2015, 77, 1365–1392. [Google Scholar] [CrossRef]
- UNISDR. Sendai Framework for Disaster Risk Reduction 2015–2030; UNISDR: Geneva, Switzerland, 2015. [Google Scholar]
- Lerner-Lam, A. Assessing global exposure to natural hazards: Progress and future trends. Environ. Hazards 2007, 7, 10–19. [Google Scholar] [CrossRef]
- Peduzzi, P.; Dao, H.; Herold, C.; Mouton, F. Assessing global exposure and vulnerability towards natural hazards: The Disaster Risk Index. Nat. Hazards Earth Syst. Sci. 2009, 9, 1149–1159. [Google Scholar] [CrossRef]
- UNISDR. Global Assessment Report on Disaster Risk Reduction 2013—From Shared Risk to Shared Value: The Business Case for Disaster Risk Reduction; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2013. [Google Scholar]
- Freire, S. Modeling of spatiotemporal distribution of urban population at high resolution—Value for risk assessment and emergency management. In Geographic Information and Cartography for Risk and Crisis Management; Springer: Berlin, Germany, 2013; pp. 53–67. [Google Scholar]
- National Research Council. Tools and Methods for Estimating Populations at Risk from Natural Disasters and Complex Humanitarian Crises, Report by the National Academy of Sciences; National Academy Press: Washington, DC, USA, 2007; p. 264. [Google Scholar]
- Linard, C.; Tatem, A.J. Large-scale spatial population databases in infectious disease research. Int. J. Health Geogr. 2012, 11, 7. [Google Scholar] [CrossRef]
- Mondal, P.; Tatem, A.J. Uncertainties in Measuring Populations Potentially Impacted by Sea Level Rise and Coastal Flooding. PLoS ONE 2012, 7, e48191. [Google Scholar] [CrossRef]
- Andredakis, I.; De Groeve, T. Towards a global humanitarian volcano impact alert model integrated into a multi-hazard system. In Detecting, Modelling and Responding to Effusive Eruptions; Harris, A.J.L., De Groeve, T., Garel, F., Carn, S.A., Eds.; Geological Society Special Publications: London, UK, 2015. [Google Scholar]
- Ewert, J.W.; Harpel, G.J. In harm’s way: Population and volcanic risk. Geotimes 2004, 49, 14–17. [Google Scholar]
- Pan, H.; Shi, P.; Ye, T.; Xu, W.; Wang, J. Mapping the expected annual fatality risk of volcano on a global scale. Int. J. Disaster Risk Reduct. 2015, 13, 52–60. [Google Scholar] [CrossRef]
- Riede, F. Volcanic activity and human society. Quat. Int. 2016, 394, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Siebert, L.; Simkin, T.; Kimberley, P. Volcanoes of the World, 3rd ed.; University of California Press: Berkeley, CA, USA, 2010. [Google Scholar]
- Siebert, L.; Cottrell, E.; Venzke, E.; Andrews, B. Earth’s volcanoes and Their Eruptions: An Overview. In Encyclopedia of Volcanoes; Sigurdsson, H., Houghton, B., Rymer, H., Stix, J., Eds.; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Aspinall, W.; Auker, M.; Hincks, T.; Mahony, S.; Nadim, F.; Pooley, J.; Sparks, R.S.J.; Syre, E. Volcano Hazard and Exposure in GFDRR Priority Countries and Risk Mitigation Measures—GFDRR Volcano Risk Study; Bristol University Cabot Institute and NGI Norway for the World Bank: Bristol, UK, 2011. [Google Scholar]
- Brown, S.K.; Auker, M.; Sparks, R. Populations around Holocene volcanoes and development of a Population Exposure Index. In Global Volcanic Hazards and Risk; Cambridge University Press: Cambridge, MA, USA, 2015; pp. 223–232. [Google Scholar]
- Scandone, R.; Bartolini, S.; Martí, J. A scale for ranking volcanoes by risk. Bull. Volcanol. 2016, 78, 2. [Google Scholar] [CrossRef]
- Freire, S.; Schiavina, M.; Florczyk, A.J.; MacManus, K.; Pesaresi, M.; Corbane, C.; Borkovska, O.; Mills, J.; Pistolesi, L.; Squires, J.; et al. Enhanced data and methods for improving open and free global population grids: Putting leaving no one behind into practice. Int. J. Digit. Earth 2018, 1–17. [Google Scholar] [CrossRef]
- Aubrecht, C.; Meier, P.; Taubenböck, H. Speeding up the clock in remote sensing: Identifying the black spots in exposure dynamics by capitalizing on the full spectrum of joint high spatial and temporal resolution. Nat. Hazards 2017, 86, 177. [Google Scholar] [CrossRef]
- Pittore, M.; Wieland, M.; Fleming, K. Perspectives on global dynamic exposure modelling for geo-risk assessment. Nat. Hazards 2017, 86, 7–30. [Google Scholar] [CrossRef]
- Pesaresi, M.; Ehrlich, D. A methodology to quantify built-up structures from optical VHR imagery. In Global Mapping of Human Settlement Experiences, Datasets, and Prospects; Gamba, P., Herold, M., Eds.; CRC Press: Boca Raton, FL, USA, 2009; pp. 27–58. [Google Scholar]
- Pesaresi, M.; Huadong, G.; Blaes, X.; Ehrlich, D.; Ferri, S.; Gueguen, L.; Halkia, M.; Kauffmann, M.; Kemper, T.; Lu, L.; et al. A Global Human Settlement Layer from Optical HR/VHR RS Data: Concept and First Results. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2102–2131. [Google Scholar] [CrossRef]
- Pesaresi, M.; Ehrlich, D.; Ferri, S.; Florczyk, A.; Freire, S.; Halkia, M.; Julea, A.; Kemper, T.; Soille, P.; Syrris, V. Operating Procedure for the Production of the Global Human Settlement Layer from Landsat Data of the Epochs 1975, 1990, 2000, and 2014; JRC Technical Report EUR 27741 EN; Publications Office of the European Union: Ispra, Italy, 2016. [Google Scholar]
- Melchiorri, M.; Pesaresi, M.; Florczyk, A.J.; Corbane, C.; Kemper, T. Principles and Applications of the Global Human Settlement Layer as Baseline for the Land Use Efficiency Indicator—SDG 11.3.1. ISPRS Int. J. Geo Inf. 2019, 8, 96. [Google Scholar] [CrossRef]
- Freire, S.; Kemper, T.; Pesaresi, M.; Florczyk, F.; Syrris, V. Combining GHSL and GPW to Improve Global Population Mapping. In Proceedings of the 2015 IEEE International Geoscience & Remote Sensing Symposium Proceedings, Milan, Italy, 26–31 July 2015; pp. 2541–2543. [Google Scholar]
- Freire, S.; MacManus, K.; Pesaresi, M.; Doxsey-Whitfield, E.; Mills, J. Development of new open and free multi-temporal global population grids at 250 m resolution. In Proceedings of the 19th AGILE Conference on Geographic Information Science, Helsinki, Finland, 14–17 June 2016. [Google Scholar]
- Linard, C.; Kabaria, C.W.; Gilbert, M.; Tatem, A.J.; Gaughan, A.E.; Stevens, F.R.; Sorichetta, A.; Noor, A.M.; Snow, R.W. Modelling changing population distributions: An example of the Kenyan Coast, 1979–2009. Int. J. Digit. Earth 2017, 10, 1017–1029. [Google Scholar] [CrossRef]
- Nieves, J.J.; Stevens, F.R.; Gaughan, A.E.; Linard, C.; Sorichetta, A.; Hornby, G.; Patel, N.N.; Tatem, A.J. Examining the correlates and drivers of human population distributions across low- and middle-income countries. J. R. Soc. Interface 2017, 14, 20170401. [Google Scholar] [CrossRef] [Green Version]
- Balk, D.; Montgomery, M.R.; Engin, H.; Lin, N.; Major, E.; Jones, B. Urbanization in India: Population and Urban Classification Grids for 2011. Data 2019, 4, 35. [Google Scholar] [CrossRef]
- Pesaresi, M.; Ehrlich, D.; Ferri, S.; Florczyk, A.; Freire, S.; Haag, F.; Halkia, M.; Julea, A.M.; Kemper, T.; Soille, P. Global Human Settlement Analysis for Disaster Risk Reduction. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 837–843. [Google Scholar] [CrossRef]
- Pesaresi, M.; Ehrlich, D.; Kemper, T.; Siragusa, A.; Florczyk, A.; Freire, S.; Corbane, C. Atlas of the Human Planet 2017: Global Exposure to Natural Hazards; Publications Office of the European Union: Brussels, Belgium, 2017. [Google Scholar]
- Ehrlich, D.; Melchiorri, M.; Florczyk, A.J.; Pesaresi, M.; Kemper, T.; Corbane, C.; Freire, S.; Schiavina, M.; Siragusa, A. Remote Sensing Derived Built-Up Area and Population Density to Quantify Global Exposure to Five Natural Hazards over Time. Remote Sens. 2018, 10, 1378. [Google Scholar] [CrossRef]
- Ehrlich, D.; Kemper, T.; Pesaresi, M.; Corbane, C. Built-up area and population density: Two Essential Societal Variables to address climate hazard impact. Environ. Sci. Policy 2018, 90, 73–82. [Google Scholar] [CrossRef]
- Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; De Roo, A.; Salamon, P.; Wyser, K.; Feyen, L.; Roo, A. Global projections of river flood risk in a warmer world. Earth’s Future 2017, 5, 171–182. [Google Scholar] [CrossRef]
- Freire, S.; Florczyk, A.; Pesaresi, M. New Multi-temporal Global Population Grids—Application to Volcanism. In Proceedings of the 13th International ISCRAM Conference, Rio de Janeiro, Brazil, 22–25 May 2016. [Google Scholar]
- Center for International Earth Science Information Network. Columbia University Gridded Population of the World; Version 4; Center for International Earth Science Information Network: Palisades, NY, USA, 2016. [Google Scholar]
- Doxsey-Whitfield, E.; MacManus, K.; Adamo, S.B.; Pistolesi, L.; Squires, J.; Borkovska, O.; Baptista, S.R. Taking Advantage of the Improved Availability of Census Data: A First Look at the Gridded Population of the World, Version 4. Pap. Appl. Geogr. 2015, 1, 1–9. [Google Scholar] [CrossRef]
- Global Volcanism Program. Volcanoes of the World; Venzke, E., Ed.; Smithsonian Institution: Washington, DC, USA, 2013. [Google Scholar]
- National Oceanic and Atmospheric Administration. National Geophysical Data Center World Data Service (NGDC/WDS): Significant Volcanic Eruptions Database; National Geophysical Data Center: Silver Spring, MD, USA, 2019. [CrossRef]
- Nakada, S. Hazards from pyroclastic flows and surges. In Encyclopedia of Volcanoes; Sigurdsson, H., Ed.; Academic Press: San Diego, CA, USA, 2000; pp. 945–956. [Google Scholar]
- Rodolfo, K.S. The hazard from lahars and Jokulhlaups. In Encyclopedia of Volcanoes; Sigurdsson, H., Ed.; Academic Press: San Diego, CA, USA, 2000; pp. 973–996. [Google Scholar]
1975 | 1990 | 2000 | 2015 | |||||
---|---|---|---|---|---|---|---|---|
Distance (km) | Pop. [106] | % | Pop. [106] | % | Pop. [106] | % | Pop. [106] | % |
10 | 29 | 0.7 | 41 | 0.8 | 49 | 0.8 | 59 | 0.8 |
30 | 176 | 4.3 | 243 | 4.6 | 284 | 4.6 | 340 | 4.6 |
50 | 301 | 7.4 | 415 | 7.8 | 489 | 8 | 592 | 8.1 |
100 | 566 | 13.9 | 751 | 14.1 | 870 | 14.2 | 1054 | 14.3 |
Global | 4061 | 100 | 5310 | 100 | 6127 | 100 | 7349 | 100 |
Distance (km) | 1975–1990 | 1990–2000 | 2000–2015 | 1975–2015 |
---|---|---|---|---|
10 | 2.29 | 1.76 | 1.27 | 1.78 |
30 | 2.19 | 1.58 | 1.19 | 1.66 |
50 | 2.17 | 1.64 | 1.29 | 1.71 |
100 | 1.90 | 1.48 | 1.29 | 1.57 |
Global | 1.80 | 1.44 | 1.22 | 1.49 |
1975 | 1990 | 2000 | 2015 | |||||
---|---|---|---|---|---|---|---|---|
Distance (km) | Pop. [106] | % | Pop. [106] | % | Pop. [106] | % | Pop. [106] | % |
10 | 12 | 0.3 | 16 | 0.3 | 18 | 0.3 | 21 | 0.3 |
30 | 87 | 2.2 | 115 | 2.2 | 130 | 2.1 | 150 | 2 |
50 | 169 | 4.1 | 222 | 4.2 | 254 | 4.1 | 297 | 4 |
100 | 333 | 8.2 | 444 | 8.4 | 515 | 8.4 | 616 | 8.4 |
Global | 4061 | 100 | 5310 | 100 | 6127 | 100 | 7349 | 100 |
Distance (km) | 1975–1990 | 1990–2000 | 2000–2015 | 1975–2015 |
---|---|---|---|---|
10 | 1.90 | 1.43 | 1.03 | 1.45 |
30 | 1.82 | 1.28 | 0.96 | 1.36 |
50 | 1.86 | 1.36 | 1.05 | 1.43 |
100 | 1.94 | 1.48 | 1.20 | 1.55 |
Global | 1.80 | 1.44 | 1.22 | 1.49 |
1975 | 1990 | 2000 | 2015 | |||||
---|---|---|---|---|---|---|---|---|
Dist. (km) | HV | SV | HV | SV | HV | SV | HV | SV |
Southeast Asia | ||||||||
10 | 11 (6.6%) | [4 (2.5%)] | 18 (7.3%) | [7 (2.8%)] | 22 (7.5%) | [8 (2.9%)] | 27 (7.4%) | [10 (2.9%)] |
30 | 73 (42.5%) | [42 (24.2%)] | 109 (44.6%) | [59 (24.3%)] | 129 (44.3%) | [69 (23.7%)] | 153 (42.5%) | [81 (22.4%)] |
50 | 118 (68.4%) | [80 (46.2%)] | 171 (69.9%) | [113 (46.1%)] | 202 (69.6%) | [132 (45.4%)] | 243 (67.7%) | [157 (43.6%)] |
100 | 143 (82.8%) | [132 (76.2%)] | 207 (84.9%) | [189 (77.4%)] | 247 (85.1%) | [225 (77.4%)] | 301 (83.7%) | [272 (75.8%)] |
Region | 173 (100%) | 244 (100%) | 290 (100%) | 359 (100%) | ||||
Central America | ||||||||
10 | 6 (7.1%) | [2 (3%)] | 8 (6.9%) | [3 (2.7%)] | 9 (6.8%) | [3 (2.5%)] | 11 (6.4%) | [4 (2.3%)] |
30 | 29 (35.3%) | [11 (14.1%)] | 40 (34.6%) | [16 (13.9%)] | 47 (34.1%) | [19 (13.8%)] | 57 (32.8%) | [23 (13.4%)] |
50 | 41 (50.3%) | [22 (27%)] | 56 (49.1%) | [30 (26.4%)] | 67 (48.3%) | [36 (25.9%)] | 81 (46.7%) | [43 (24.9%)] |
100 | 57 (70.6%) | [44 (53.9%)] | 81 (70.3%) | [60 (52.2%)] | 97 (70%) | [71 (51.2%)] | 120 (69.4%) | [86 (49.7%)] |
Region | 81 (100%) | 115 (100%) | 139 (100%) | 173 (100%) |
1975–1990 | 1990–2000 | 2000–2015 | 1975–2015 | |||||
---|---|---|---|---|---|---|---|---|
Dist. (km) | HV | SV | HV | SV | HV | SV | HV | SV |
Southeast Asia | ||||||||
10 | 3.05 | [3.15] | 2.10 | [2.16] | 1.36 | [1.34] | 2.17 | [2.22] |
30 | 2.66 | [2.37] | 1.69 | [1.49] | 1.15 | [1.05] | 1.85 | [1.65] |
50 | 2.48 | [2.32] | 1.71 | [1.59] | 1.25 | [1.15] | 1.82 | [1.7] |
100 | 2.51 | [2.44] | 1.77 | [1.74] | 1.32 | [1.29] | 1.88 | [1.83] |
Region | 2.34 | 1.75 | 1.43 | 1.85 | ||||
Central America | ||||||||
10 | 2.14 | [1.67] | 1.67 | [1.31] | 1.07 | [0.84] | 1.62 | [1.27] |
30 | 2.21 | [2.25] | 1.75 | [1.84] | 1.21 | [1.28] | 1.72 | [1.78] |
50 | 2.19 | [2.19] | 1.74 | [1.74] | 1.24 | [1.19] | 1.72 | [1.7] |
100 | 2.31 | [2.13] | 1.88 | [1.71] | 1.41 | [1.27] | 1.86 | [1.7] |
Region | 2.34 | 1.91 | 1.47 | 1.91 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freire, S.; Florczyk, A.J.; Pesaresi, M.; Sliuzas, R. An Improved Global Analysis of Population Distribution in Proximity to Active Volcanoes, 1975–2015. ISPRS Int. J. Geo-Inf. 2019, 8, 341. https://doi.org/10.3390/ijgi8080341
Freire S, Florczyk AJ, Pesaresi M, Sliuzas R. An Improved Global Analysis of Population Distribution in Proximity to Active Volcanoes, 1975–2015. ISPRS International Journal of Geo-Information. 2019; 8(8):341. https://doi.org/10.3390/ijgi8080341
Chicago/Turabian StyleFreire, Sergio, Aneta J. Florczyk, Martino Pesaresi, and Richard Sliuzas. 2019. "An Improved Global Analysis of Population Distribution in Proximity to Active Volcanoes, 1975–2015" ISPRS International Journal of Geo-Information 8, no. 8: 341. https://doi.org/10.3390/ijgi8080341
APA StyleFreire, S., Florczyk, A. J., Pesaresi, M., & Sliuzas, R. (2019). An Improved Global Analysis of Population Distribution in Proximity to Active Volcanoes, 1975–2015. ISPRS International Journal of Geo-Information, 8(8), 341. https://doi.org/10.3390/ijgi8080341