Analyzing the Influence of Urban Street Greening and Street Buildings on Summertime Air Pollution Based on Street View Image Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Air Pollution Data
2.2. Street View Image Data
2.3. Street View Image Segmentation
2.4. Quantity of Street Greening and Street Buildings
2.5. Covariates
3. Statistical Analysis
4. Results
4.1. Air Pollution and Street View Metrics
4.2. Multilevel Regression Model
5. Discussion
5.1. The Associations between Streets and Summertime Air Pollution
5.2. Strengths and Limitations
6. Conclusions
- A method for measuring the vertical structure of street green space and street buildings in assessing summertime air pollution over a large scale of urban central areas is proposed.
- Use of deep-learning methods to extract the vertical distribution of street greening and buildings from street view images.
- The street green index and building index are proposed to quantify the street greening and street buildings within a certain radius.
- The association between the vertical structure of street green space and the summertime air pollution in the central area of the city on the urban scale is analyzed.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Z.; Hu, B.; Liu, Q.; Sun, Y.; Wang, Y.S. Source apportionment of urban fine particle number concentration during summertime in Beijing. Atmos. Environ. 2014, 96, 359–369. [Google Scholar] [CrossRef]
- Abhijith, K.V.; Kumar, P.; Gallagher, J. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments—A review. Atmos. Environ. 2017, 162, 71–86. [Google Scholar] [CrossRef]
- Jayasooriya, V.; Ng, A.; Muthukumaran, S.; Perera, B. Green infrastructure practices for improvement of urban air quality. Urban For. Urban Green. 2017, 21, 34–47. [Google Scholar] [CrossRef]
- Liu, J.; Cao, Z.; Zou, S.; Liu, H.; Hai, X.; Wang, S.; Duan, J.; Xi, B.; Yan, G.; Zhang, S.; et al. An investigation of the leaf retention capacity, efficiency and mechanism for atmospheric particulate matter of five greening tree species in Beijing, China. Sci. Total Environ. 2018, 616, 417–426. [Google Scholar] [CrossRef]
- Pugh, T.A.M.; MacKenzie, A.R.; Whyatt, J.D.; Hewitt, C.N. Effectiveness of Green Infrastructure for Improvement of Air Quality in Urban Street Canyons. Environ. Sci. Technol. 2012, 46, 7692–7699. [Google Scholar] [CrossRef] [Green Version]
- Weber, F.; Kowarik, I.; Säumel, I. Herbaceous plants as filters: Immobilization of particulates along urban street corridors. Environ. Pollut. 2014, 186, 234–240. [Google Scholar] [CrossRef]
- Vardoulakis, S.; Valiantis, M.; Milner, J. Operational air pollution modelling in the UK—Street canyon applications and challenges. Atmos. Environ. 2007, 41, 4622–4637. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Hoehn, R. Modeled PM2.5 removal by trees in ten U.S. cities and associated health effects. Environ. Pollut. 2013, 178, 395–402. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Li, S. Study on the Influence of the Street Side Buildings on the Pollutant Dispersion in the Street Canyon. Procedia Eng. 2015, 121, 37–44. [Google Scholar] [CrossRef]
- Salmond, J.A.; Williams, D.E.; Laing, G. The influence of vegetation on the horizontal and vertical distribution of pollutants in a street canyon. Sci. Total Environ. 2013, 443, 287–298. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Lam, Y.F.; Hao, S. Evaluating the role of green infrastructures on near-road pollutant dispersion and removal: Modelling and measurement. J. Environ. Manag. 2016, 182, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Jeanjean, A.; Monks, P.S.; Leigh, R.J. Modelling the effectiveness of urban trees and grass on PM2.5 reduction via dispersion and deposition at a city scale. Atmos. Environ. 2016, 147, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Iachou, K.; Livada, I.; Santamouris, M. Experimental study of temperature and airflow distribution inside an urban street canyon during hot summer weather conditions: Part 1: Air and surface temperatures. Build. Environ. 2008, 13, 1383–1392. [Google Scholar]
- Brantley, H.L.; Hagler, G.S.; Deshmukh, P.J.; Baldauf, R. Field assessment of the effects of roadside vegetation on near-road black carbon and particulate matter. Sci. Total Environ. 2014, 469, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, P.; Isakov, V.; Venkatram, A.; Yang, B.; Zhang, K.M.; Logan, R.; Baldauf, R. The effects of roadside vegetation characteristics on local, near-road air quality. Air Qual. Atmos. Health 2018, 12, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Tong, Z.; Whitlow, T.H.; Macrae, P.F.; Landers, A.J.; Harada, Y. Quantifying the effect of vegetation on near-road air quality using brief campaigns. Environ. Pollut. 2015, 201, 141–149. [Google Scholar] [CrossRef]
- Chen, L.; Liu, C.; Zou, R. Experimental examination of effectiveness of vegetation as bio-filter of particulate matters in the urban environment. Environ. Pollut. 2016, 208, 198–208. [Google Scholar] [CrossRef]
- Li, J.K. Modeling and Analysis of Influence of Road Green Belt Spatial Structure Design on Pollutant Diffusion. Environ. Sci. Manag. 2018, 43, 75–78. [Google Scholar]
- Zhang, Y.; Dong, R. Impacts of Street-Visible Greenery on Housing Prices: Evidence from a Hedonic Price Model and a Massive Street View Image Dataset in Beijing. ISPRS Int. J. Geo. Inf. 2018, 7, 104. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Sarkar, C.; Xiao, Y. The effect of street-level greenery on walking behavior: Evidence from Hong Kong. Soc. Sci. Med. 2018, 208, 41–49. [Google Scholar] [CrossRef]
- Helbich, M.; Yao, Y.; Liu, Y.; Zhang, J.; Liu, P.; Wang, R. Using deep learning to examine street view green and blue spaces and their associations with geriatric depression in Beijing, China. Environ. Int. 2019, 126, 107–117. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Paez, A.; Liu, D. Built environment and violent crime: An environmental audit approach using Google Street View. Comput. Environ. Urban Syst. 2017, 66, 83–95. [Google Scholar] [CrossRef]
- Fan, Z.; Bolei, Z.; Liu, L. Measuring human perceptions of a large-scale urban region using machine learning. Landsc. Urban Plan. 2018, 180, 148–160. [Google Scholar]
- Zeng, L.; Lu, J.; Li, W. A fast approach for large-scale Sky View Factor estimation using street view images. Build. Environ. 2018, 135, 74–84. [Google Scholar] [CrossRef]
- Gonga, F.Y.; Zeng, Z.C.; Zhang, F. Mapping sky, tree, and building view factors of street canyons in a high-density urban environment. Build. Environ. 2018, 134, 155–167. [Google Scholar] [CrossRef]
- Middel, A.; Lukasczyk, J.; Zakrzewski, S. Urban form and composition of street canyons: A human-centric big data and deep learning approach. Landsc. Urban Plan. 2019, 183, 122–132. [Google Scholar] [CrossRef]
- Liang, C.; Sensen, C.; Wenwen, Z. Use of Tencent Street View Imagery for Visual Perception of Streets. ISPRS Internatl. J. Geo. Inf. 2017, 6, 265. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 39, 640–651. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Scene Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Rossetti, T.; Lobel, H.; Rocco, V.; Hurtubia, R. Explaining subjective perceptions of public spaces as a function of the built environment: A massive data approach. Landsc. Urban Plan. 2019, 181, 169–178. [Google Scholar] [CrossRef]
- Dong, R.; Zhang, Y.; Zhao, J. How Green Are the Streets Within the Sixth Ring Road of Beijing? An Analysis Based on Tencent Street View Pictures and the Green View Index. Int. J. Environ. Res. Public Health 2018, 15, 1367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Lu, J.; Zhang, S.; Hall, P. Traffic signal detection and classification in street views using an attention model. Comput. Vis. Media 2018, 4, 253–266. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Zhao, C.; Yang, Y. A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014–2018. Atmos. Environ. 2020, 220, 117066. [Google Scholar] [CrossRef]
- Song, Z.; Deng, Q.; Ren, Z. Correlation and principal component regression analysis for studying air quality and meteorological elements in Wuhan, China. Environ. Prog. Sustain. Energy 2019, 39. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China. Determination of Atmospheric Articles PM10 and PM2.5 in Ambient Air by Gravimetric Method (HJ 618–2011). Available online: http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201109/W020120130460791166784.pdf (accessed on 10 January 2020).
- Ministry of Ecology and Environment of the People’s Republic of China. Specifications and Test Procedures for Ambient Air Quality Continuous Automated Monitoring System for SO2, NO2, O3 and CO (HJ 654-2013). Available online: http://www.cnemc.cn/jcgf/dqhj/201711/P020181010540087558130.pdf (accessed on 10 January 2020).
- Ministry of Ecology and Environment of the People’s Republic of China. Technical Regulation on Ambient Air Quality Index (on Trial) (HJ 633–2012). Available online: http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201203/W020120410332725219541.pdf (accessed on 10 January 2020).
- Arsanjani, J.J.; Mooney, P.; Zipf, A. OpenStreetMap in GIScience: Experiences, Research, Applications; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Lu, Y. The Association of Urban Greenness and Walking Behavior: Using Google Street View and Deep Learning Techniques to Estimate Residents’ Exposure to Urban Greenness. Int. J. Environ. Res. Public Health 2018, 15, 1576. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Khosla, A.; Lapedriza, A. Object Detectors Emerge in Deep Scene CNNs. arXiv 2014, arXiv:1412.6856. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 3213–3223. [Google Scholar]
- Yang, J.; Zhao, L.; McBride, J.; Gong, P. Can you see green? Assessing the visibility of urban forests in cities. Landsc. Urban Plan. 2009, 91, 97–104. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Li, W.; Ricard, R.; Meng, Q.; Zhang, W. Assessing street-level urban greenery using Google Street View and a modified green view index. Urban For. Urban Green. 2015, 14, 675–685. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Transact. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schwartz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 31–38. [Google Scholar] [CrossRef]
- Fabozzi, F.J.; Focardi, S.M.; Rachev, S.T. The Basics of Financial Econometrics (Tools, Concepts, and Asset Management Applications) In Appendix E: Model Selection Criterion: AIC and BIC [M]; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Wang, Y.; Kang, Y.; Chen, Y. Influence of Buildings and Tree Planting on Air Pollutants Diffusion in Street Canyon. J. Donghua Univ. Nat. Sci. 2012, 38, 740–744. [Google Scholar]
- Zhu, Q.; Kang, Y.; Yang, F. Impacts of upstream buildings on the flow fields and pollutant distributions in street canyons. China Environ. Sci. 2015, 35, 45–54. [Google Scholar]
- Fu, L.; Hao, J.; He, D. The Emission Characteristics of Pollutants from Motor Vehicles in Beijing. Chin. J. Environ. Sci. 2000, 21, 68–70. [Google Scholar]
- Larkin, A.; Hystad, P. Evaluating street view exposure measures of visible greenspace for health research. J. Expo. Sci. Environ. Epidemiol. 2018, 1, 447–456. [Google Scholar]
Air Pollution Index | Unit | Measurement Method |
---|---|---|
NO2 | μg/m3 | Chemiluminescence method |
PM10 | μg/m3 | Micro oscillating balance method and β-absorption method |
PM2.5 | μg/m3 | Micro oscillating balance method and β-absorption method |
AQI | non-dimensional | Calculated from six atmospheric pollutants [38] |
Air Quality Level | AQI | NO2 (μg/m3) | PM10 (μg/m3) | PM2.5 (μg/m3) |
---|---|---|---|---|
I | 0–50 | 0–40 | 0–50 | 0–35 |
II | 51–100 | 41–80 | 51–150 | 36–75 |
III | 101–150 | 81–180 | 151–250 | 76–115 |
IV | 151–200 | 181–280 | 251–350 | 116–150 |
V | 201–300 | 281–565 | 351–420 | 151–250 |
VI | >300 | >565 | >420 | >250 |
Index | Buffer_Distance (km) | Mean (SD) | Min | Max |
---|---|---|---|---|
BVI_site | 0–1 | 0.1813 (0.0767) | 0.0581 | 0.3117 |
1–2 | 0.1882 (0.0688) | 0.0658 | 0.3120 | |
2–3 | 0.1898 (0.0570) | 0.0777 | 0.2780 | |
3–4 | 0.1840 (0.0691) | 0.0542 | 0.2558 | |
4–5 | 0.1816 (0.0643) | 0.0524 | 0.2676 | |
GVI_site | 0–1 | 0.2231 (0.0552) | 0.1269 | 0.3130 |
1–2 | 0.2149 (0.0385) | 0.1464 | 0.3330 | |
2–3 | 0.2061 (0.0287) | 0.1494 | 0.2548 | |
3–4 | 0.2117 (0.0256) | 0.1508 | 0.2564 | |
4–5 | 0.2045 (0.0235) | 0.1548 | 0.2545 |
Model a1 | Model a2 | Model a3 | Model b1 | Model b2 | Model b3 | Model b4 | Model c1 | ||
---|---|---|---|---|---|---|---|---|---|
AQI | AIC | 3933 | 3758 | 3664 | 4379 | 4332 | 4039 | 3607 | 3348 |
BIC | 3940 | 3771 | 3678 | 4384 | 4341 | 4051 | 3622 | 3369 | |
PM10 | AIC | 4125 | 4052 | 3958 | 4690 | 4614 | 4370 | 3935 | 3647 |
BIC | 4133 | 4066 | 3971 | 4695 | 4622 | 4383 | 3951 | 3666 | |
PM2.5 | AIC | 3650 | 3406 | 3203 | 3785 | 3660 | 3399 | 3170 | 3011 |
BIC | 3657 | 3419 | 3217 | 3790 | 3668 | 3411 | 3186 | 3031 | |
NO2 | AIC | 3021 | 2740 | 2837 | 3076 | 2755 | 2477 | 2471 | 2362 |
BIC | 3028 | 2753 | 2850 | 3081 | 2764 | 2489 | 2487 | 2382 |
Model b1 | Model b2 | Model b3 | Model b4 | Model c1 | |
---|---|---|---|---|---|
NO2 | 0.209 | 0.322 | 0.171 | 0.005 | 0.049 |
PM2.5 | 0.156 | 0.16 | 0.237 | 0.14 | 0.071 |
PM10 | 0.152 | 0.105 | 0.245 | 0.253 | 0.093 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Gong, J.; Liang, J.; Sun, J.; Zhang, G. Analyzing the Influence of Urban Street Greening and Street Buildings on Summertime Air Pollution Based on Street View Image Data. ISPRS Int. J. Geo-Inf. 2020, 9, 500. https://doi.org/10.3390/ijgi9090500
Wu D, Gong J, Liang J, Sun J, Zhang G. Analyzing the Influence of Urban Street Greening and Street Buildings on Summertime Air Pollution Based on Street View Image Data. ISPRS International Journal of Geo-Information. 2020; 9(9):500. https://doi.org/10.3390/ijgi9090500
Chicago/Turabian StyleWu, Dong, Jianhua Gong, Jianming Liang, Jin Sun, and Guoyong Zhang. 2020. "Analyzing the Influence of Urban Street Greening and Street Buildings on Summertime Air Pollution Based on Street View Image Data" ISPRS International Journal of Geo-Information 9, no. 9: 500. https://doi.org/10.3390/ijgi9090500
APA StyleWu, D., Gong, J., Liang, J., Sun, J., & Zhang, G. (2020). Analyzing the Influence of Urban Street Greening and Street Buildings on Summertime Air Pollution Based on Street View Image Data. ISPRS International Journal of Geo-Information, 9(9), 500. https://doi.org/10.3390/ijgi9090500