Effects of Different Ripening Stages on the Content of the Mineral Elements and Vitamin C of the Fruit Extracts of Solanum Species: S. melanocerasum, S. nigrum, S. villosum, and S. retroflexum
Abstract
:1. Introduction
2. Results
2.1. The Effect of the Species and Ripening Stage on the Total Mineral Element Content
2.2. The Effect of Species and Ripening Stages on the Content of Macroelements
2.3. The Effect of Species and Ripening Stages on the Content of Microelements
2.4. The Effect of Species and Ripening Stages on the Content of Vitamin C
2.5. Correlation Analysis
3. Materials and Methods
3.1. Field Experiment
3.2. Sample Preparation
3.3. Soil Agrochemical Analyses
3.4. Mineral Element Analysis
3.5. Vitamin C Analysis
3.6. Color Parameter Analysis
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jilani, K.H.; Kaleem, A.M.; Rahman, K.; Rastogi, N.; Ali, M.A.; Akhtar, A.J.; Fatima, N. Identification of Anticancer and Antioxidant phytoconstituents from chloroform fraction of Solanum nigrum L. berries using GC-MS/MS analysis. Indian J. Exp. Biol. 2016, 54, 774–782. [Google Scholar]
- Azeez, S.O.; Faluyi, J.O. Proximate analysis, vitamin C, anti-nutrients and mineral composition of four Nigerian species of Physalis and Solanum nigrum. Acta Hortic 2019, 1238, 81–92. [Google Scholar] [CrossRef]
- Ndarake, E.G.; Sunday, A.B.; Enejo, S.S.; Nyakno, W.I.; Ernest, E.; Ime, U.U. Comparison of the chemical composition, nutritional values, total phenolics and flavonoids content of the ripe and unripe Solanum nigrum Linn. fruits from Nigeria. World J. Pharm. Pharm. Sci. 2023, 12, 18. [Google Scholar]
- Oyeyemi, S.D.; Ayeni, M.J.; Adebiyi, A.O.; Ademiluyi, B.O.; Tedela, P.O.; Osuji, I.B. Nutritional quality and phytochemical studies of Solanum anguivi (Lam.) fruits. J. Nat. Sci. Res. 2015, 5, 99–105. [Google Scholar]
- Melissa, A.; Ock, K.C. Vitamin C and heart health: A review based on findings from epidemiological studies. Mol. Sci. 2016, 17, 1328. [Google Scholar]
- Phillips, K.M.; Tarrago, T.M.T.; Gebhardt, S.E.; Exler, J.; Patterson, K.Y.; Haytowitz, D.B.; Pehrsson, P.R.; Holden, J.M. Stability of vitamin C in frozen raw fruit and vegetable homogenates. J. Food Compos. Anal. 2010, 23, 253–259. [Google Scholar] [CrossRef]
- Abu, B.N.M.; Akm, M.U.R.; Nowrose, M.; Md, A.H. Solanum nigrum (Maku): A review of pharmacological activities and clinical effects. Int. J. Appl. Res. 2017, 3, 12–17. [Google Scholar]
- Mohyuddin, A.; Kurniawan, T.A.; Khan, Z.U.D.; Nadeem, S.; Javed, M.; Dera, A.A.; Saeed, S. Comparative insights into the antimicrobial, antioxidant, and nutritional potential of the Solanum nigrum complex. Processes 2022, 10, 1455. [Google Scholar] [CrossRef]
- Akishin, D.V.; Vinnitskaya, V.F.; Vetrov, M.Y. Functional and nutritional value of fresh and processed fruit nightshade Sunberry. Technol. Food Process. Ind. AIC–Health Food 2017, 2, 41–48. [Google Scholar]
- Welch, R.M.; Graham, R.D. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 2004, 55, 353–364. [Google Scholar] [CrossRef]
- Grusak, M.A.; Cakmak, I. Methods to improve the crop-delivery of minerals to humans and livestock. Plant Nutr. Genom. 2005, 265–286. [Google Scholar]
- Baiyeri, K.P.; Aba, S.C.; Otitoju, G.T.; Mbah, O.B. The effects of ripening and cooking method on mineral and proximate composition of plantain (Musa sp. AAB cv.‘Agbagba’) fruit pulp. Afr. J. Biotechnol. 2011, 10, 6979–6984. [Google Scholar]
- Schwarz, J.R.; Bauer, C.K. Functions of erg K+ channels in excitable cells. J. Cell. Mol. Med. 2004, 8, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Ko, E.A.; Han, J.; Jung, I.D.; Park, W.S. Physiological roles of K+ channels in vascular smooth muscle cells. J. Smooth Muscle Res. 2008, 44, 65–81. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, G.; Loza, M.; Gasquez, J.A.; Fusco, M.; Sosa, A.; Ciuffo, G.M.; Ciuffo, L.E. The potentiality of non timber forest products. Fruit availability, phytochemical properties of Rosa rubiginosa L. rose hips. Am. J. Plant Sci. 2016, 7, 2287–2772. [Google Scholar] [CrossRef]
- Rosenthal, J.J.C.; Gilly, W.F. Identified ion channels in the squid nervous system. Neurosignals 2003, 12, 126–141. [Google Scholar] [CrossRef]
- Lambert, I.H.; Hoffmann, E.K.; Pedersen, S.F. Cell volume regulation: Physiology and pathophysiology. Acta Physiol. 2008, 194, 255–282. [Google Scholar] [CrossRef]
- Costa, F.; Lures, B.M.; Saraiva, D.; Verissimo, M.T.; Ramos, F. Evolution of mineral contents in tomato fruits during the ripening process after harvest. Food Anal. Methods 2011, 4, 410–415. [Google Scholar] [CrossRef]
- Paunovic, V.; Nikolic, M.; Miletić, R.; Mašković, P. Vitamin and mineral content in black currant (Ribes nigrum L.) fruits as affected by soil management system. Acta Sci. Polonorum. Hortorum Cultus 2017, 16, 135–144. [Google Scholar] [CrossRef]
- Szefer, P.; Grembecka, M. Mineral components in food crops, beverages, luxury food, spices, and dietary food. Miner. Compon. Foods 2006, 7, 231–322. [Google Scholar]
- EU Regulation. No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004. Off. J. Eur. Union 2011, 304, 18–63. [Google Scholar]
- Akubugwo, I.E.; Obasi, N.A.; Chinyere, G.C.; Ugbogu, A.E. Mineral and phytochemical contents in leaves of Amaranthus hybridus L and Solanum nigrum L. subjected to different processing methods. Afr. J. Biochem. Res. 2008, 2, 40–44. [Google Scholar]
- Sivakumar, D.; Phan, A.D.T.; Slabbert, R.M.; Sultanbawa, Y.; Remize, F. Phytochemical and nutritional quality changes during irrigation and postharvest processing of the underutilized vegetable African nightshade. Front. Nutr. 2020, 7, 532–576. [Google Scholar] [CrossRef] [PubMed]
- Martínez, B.M.C.; Dominguez, P.R.; Moreno, D.A.; Muries, B.; Alcaraz, L.C.; Bastías, E.; García-Viguera, C.; Carvajal, M. Minerals in plant food: Effect of agricultural practices and role in human health. A review. Agron. Sustain. Dev. 2010, 30, 295–309. [Google Scholar] [CrossRef]
- Theobald, H.E. Dietary calcium and health. Nutr. Bull. 2005, 30, 237–277. [Google Scholar] [CrossRef]
- Huskisson, E.; Maggini, S.; Ruf, M. The role of vitamins and minerals in energy metabolism and well-being. J. Int. Med. Res. 2007, 35, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Morgan, K.T. Nutritional determinants of bone health. J. Nutr. Elder. 2008, 27, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Hänsch, R.; Mendel, R.R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 2009, 12, 259–266. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Ito, O.; Berry, W.L.; Wheeler, R.M. Sodium a functional plant nutrient. Crit. Rev. Plant Sci. 2003, 22, 391–416. [Google Scholar]
- Nieder, R.; Benbi, D.K.; Reichl, F.X.; Nieder, R.; Benbi, D.K.; Reichl, F.X. Microelements and their role in human health. Soil Compon. Hum. Health 2018, 47, 317–374. [Google Scholar]
- Rop, O.; Sochor, J.; Jurikova, T.; Zitka, O.; Skutkova, H.; Mlcek, J.; Kizek, R. Effect of five different stages of ripening on chemical compounds in medlar (Mespilus germanica L.). Molecules 2010, 16, 74–91. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, K.V.; Paul, V.; Pandey, R. Dynamics of mineral nutrients in tomato (Solanum lycopersicum L.) fruits during ripening. Plant Physiol. Rep. 2021, 26, 23–37. [Google Scholar] [CrossRef]
- Shenkin, A. Basics in clinical nutrition: Physiological function and deficiency states of trace elements. Eur. e-J. Clin. Nutr. Metab. 2008, 3, 255–258. [Google Scholar] [CrossRef]
- Davey, M.W.; Van Montagu, M.; Inze´, D.; Sanmartin, M.; Kanellis, A.; Smirnoff, N. Plant L-ascorbic acid: Chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agric. 2000, 80, 825–860. [Google Scholar] [CrossRef]
- Kabasakalis, V.; Siopidou, D.; Moshatou, E. Ascorbic acid content of commercial fruit juices and its rate of loss upon storage. Food Chem. 2000, 70, 325–328. [Google Scholar] [CrossRef]
- Yang, X.Y.; Xie, J.X.; Wang, F.F.; Zhong, J.; Liu, Y.Z.; Li, G.H.; Peng, S.A. Comparison of ascorbate metabolism in fruits of two citrus species with obvious difference in ascorbate content in pulp. J. Plant Physiol. 2011, 168, 2196–2205. [Google Scholar] [CrossRef]
- Mamboleo, T.F.; Msuya, J.M.; Mwanri, A.W. Vitamin C, iron and zinc levels of selected African green leafy vegetables at different stages of maturity. Afr. J. Biotechnol. 2018, 17, 567–573. [Google Scholar]
- Martinez, S.; López, M.; González, R.M.; Bernardo, A.A. The effects of ripening stage and processing systems on vitamin C content in sweet peppers (Capsicum annuum L.). Int. J. Food Sci. Nutr. 2005, 56, 45–51. [Google Scholar] [CrossRef]
- Park, M.H.; Sangwanangkul, P.; Baek, D.R. Changes in carotenoid and chlorophyll content of black tomatoes (Lycopersicon esculentum L.) during storage at various temperatures. Saudi J. Biol. Sci. 2018, 25, 57–65. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Corell, M.; Moriana, A.; Hernanz, D.; Stinco, C.M.; Mapelli-Brahm, P.; Meléndez-Martínez, A.J. Effect of regulated deficit irrigation on commercial quality parameters, carotenoids, phenolics and sugars of the black cherry tomato (Solanum lycopersicum L.) ‘Sunchocola’. J. Food Compos. Anal. 2022, 105, 1–9. [Google Scholar] [CrossRef]
- Kliszcz, A. Phenological growth stages and BBCH-identification keys of Jerusalem artichoke (Helianthus tuberosus L.). Ann. Univ. Paedagog. Cracoviensis Stud. Naturae 2021, 6, 203–225. [Google Scholar] [CrossRef]
- LST ISO 10390:2005; Soil Quality—Determination of pH. Lithuanian Organization for Standardization: Vilnius, Lithuania, 2005.
- Oreshkin, N. Extraction of mobile forms of phosphorus and potassium by the Egner–Riehm–Domingo method. Agrokhimiia 1980, 8, 135–138. [Google Scholar]
- Janghel, E.K.; Gupta, V.K.; Rai, M.K.; Rai, J.K. Micro determination of ascorbic acid using methyl viologen. Talanta 2007, 72, 1013–1016. [Google Scholar] [CrossRef] [PubMed]
Microelement | ||||
Ripening Stage/Species | SM | SR | SN | SV |
I | 375.47 e | 519.34 b | 374.76 e | 411.88 d |
II | 386.06 e | 299.91 f | 423.16 d | 305.32 f |
III | 211.12 g | 422.82 d | 491.10 c | 756.48 a |
Macroelement | ||||
SM | SR | SN | SV | |
I | 60,518.65 c | 67,035.23 b | 50,103.97 e | 46,405.89 f |
II | 37,017.53 i | 38,352.13 h | 74,763.55 a | 26,104.95 l |
III | 29,171.17 k | 58,557.06 d | 36,529.45 j | 45,750.3 g |
Ripening Stage | Color Parameter | ||||
---|---|---|---|---|---|
L* | a* | b* | C | h° | |
S. retroflexum | |||||
I | 51.39 | −5.90 | 32.69 | 33.22 | 100.23 |
51.63 | −5.20 | 32.42 | 32.83 | 99.11 | |
51.63 | −5.20 | 32.39 | 32.80 | 99.12 | |
II | 49.04 | 3.15 | 8.84 | 9.38 | 70.39 |
50.57 | 3.15 | 7.87 | 8.48 | 68.19 | |
50.93 | 3.21 | 6.65 | 7.38 | 64.23 | |
III | 42.44 | 4.99 | 4.02 | 6.41 | 38.86 |
44.40 | 5.37 | 2.63 | 5.98 | 26.09 | |
44.82 | 5.43 | 2.41 | 5.94 | 23.93 | |
S. melanocerasum | |||||
I | 55.14 | −5.23 | 26.99 | 27.49 | 100.97 |
54.80 | −5.33 | 27.00 | 27.52 | 101.17 | |
54.67 | −5.47 | 27.15 | 27.70 | 101.39 | |
II | 43.96 | 1.27 | 10.28 | 10.36 | 82.96 |
43.86 | 1.46 | 10.06 | 10.17 | 81.74 | |
43.53 | 1.61 | 9.44 | 9.58 | 80.32 | |
III | 30.30 | 8.93 | 2.19 | 9.19 | 13.78 |
30.27 | 8.91 | 2.25 | 9.19 | 14.17 | |
29.96 | 8.92 | 2.30 | 9.21 | 14.46 | |
S. nigrum | |||||
I | 46.60 | −1.60 | 21.93 | 21.99 | 94.17 |
47.14 | −1.45 | 22.09 | 22.14 | 93.76 | |
46.76 | −1.60 | 21.85 | 21.91 | 94.19 | |
II | 44.05 | 4.81 | 5.99 | 7.68 | 51.24 |
44.03 | 4.76 | 6.01 | 7.67 | 51.62 | |
44.11 | 4.86 | 5.64 | 7.45 | 49.25 | |
III | 40.33 | 6.70 | 1.47 | 6.86 | 12.37 |
42.91 | 7.46 | 1.24 | 7.56 | 9.44 | |
42.79 | 7.52 | 1.15 | 7.61 | 8.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staveckienė, J.; Medveckienė, B.; Jarienė, E.; Kulaitienė, J. Effects of Different Ripening Stages on the Content of the Mineral Elements and Vitamin C of the Fruit Extracts of Solanum Species: S. melanocerasum, S. nigrum, S. villosum, and S. retroflexum. Plants 2024, 13, 343. https://doi.org/10.3390/plants13030343
Staveckienė J, Medveckienė B, Jarienė E, Kulaitienė J. Effects of Different Ripening Stages on the Content of the Mineral Elements and Vitamin C of the Fruit Extracts of Solanum Species: S. melanocerasum, S. nigrum, S. villosum, and S. retroflexum. Plants. 2024; 13(3):343. https://doi.org/10.3390/plants13030343
Chicago/Turabian StyleStaveckienė, Jūratė, Brigita Medveckienė, Elvyra Jarienė, and Jurgita Kulaitienė. 2024. "Effects of Different Ripening Stages on the Content of the Mineral Elements and Vitamin C of the Fruit Extracts of Solanum Species: S. melanocerasum, S. nigrum, S. villosum, and S. retroflexum" Plants 13, no. 3: 343. https://doi.org/10.3390/plants13030343