Exploring the Efficacy of Four Apiaceae Essential Oils against Nine Stored-Product Pests in Wheat Protection
Abstract
:1. Introduction
2. Results
2.1. EO Chemical Compositions
2.2. Effectiveness against Alphitobius Diaperinus Larvae and Adults
2.3. Effectiveness against Tribolium Castaneum Larvae and Adults
2.4. Effectiveness against Tribolium Confusum Larvae and Adults
2.5. Effectiveness against Tenebrio Molitor Larvae and Adults
2.6. Effectiveness against Trogoderma Granarium Larvae and Adults
2.7. Effectiveness against Oryzaephilus Surinamensis Larvae and Adults
2.8. Effectiveness against Rhyzopertha Dominica Adults
2.9. Effectiveness against Sitophilus Oryzae Adults
2.10. Effectiveness against Acarus Siro Nymphs and Adults
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Isolation of EOs
4.3. Chemical Analysis of EOs
4.4. Insect and Mite Species
4.5. Grains
4.6. Bioassays
4.7. Data Analysis
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Desneux, N.; Decourtye, A.; Delpuech, J.M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef]
- Khan, B.A.; Nadeem, M.A.; Nawaz, H.; Amin, M.M.; Abbasi, G.H.; Nadeem, M.; Ali, M.; Ameen, M.; Javaid, M.M.; Maqbool, R.; et al. Pesticides: Impacts on agriculture productivity, environment, and management strategies. In Emerging Contaminants and Plants: Interactions, Adaptations and Remediation Technologies; Aftar, T., Ed.; Springer: Cham, Switzerland, 2023; pp. 109–134. [Google Scholar]
- Khan, H.A.A.; Shad, S.A.; Akram, W. Resistance to new chemical insecticides in the house fly, Musca domestica L., from dairies in Punjab, Pakistan. Parasitol. Res. 2013, 112, 2049–2054. [Google Scholar] [CrossRef]
- Hillocks, R.J. Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. Crop Prot. 2012, 31, 85–93. [Google Scholar] [CrossRef]
- Lucchi, A.; Benelli, G. Towards pesticide-free farming? Sharing needs and knowledge promotes Integrated Pest Management. Environ. Sci. Pollut. Res. 2018, 25, 13439–13445. [Google Scholar] [CrossRef]
- Rees, D. Insects of Stored Grain: A Pocket Reference, 2nd ed.; CSIRO Publishing: Clayton, Australia, 2007; pp. 1–76. [Google Scholar]
- Edde, P.A. A review of the biology and control of Rhyzopertha dominica (F.) the lesser grain borer. J. Stored Prod. Res. 2012, 48, 1–18. [Google Scholar] [CrossRef]
- Hagstrum, D.; Klejdysz, T.; Subramanyam, B.; Nawrot, J. Atlas of Stored-Product Insects and Mites; AACC International: Minnesota, MN, USA, 2013. [Google Scholar]
- Majeed, M.Z.; Mehmood, T.; Javed, M.; Sellami, F.; Riaz, M.A.; Afzal, M. Biology and management of stored products’ insect pest Rhyzopertha dominica (Fab.) (Coleoptera: Bostrichidae). Int. J. Biosci. 2015, 7, 78–93. [Google Scholar]
- Krizkova-Kudlikova, I.; Stejskal, V.; Hubert, J. Comparison of detection methods for Acarus siro (Acari: Acaridida: Acarididae) contamination in grain. J. Econ. Entomol. 2007, 100, 1928–1937. [Google Scholar] [CrossRef]
- Errico, S.; Dimatteo, S.; Moliterni, S.; Baldacchino, F. Effects of long-lasting cold storage on Tenebrio molitor larvae (Coleoptera: Tenebrionidae). J. Insects Food Feed 2021, 7, 1111–1116. [Google Scholar] [CrossRef]
- Parsia Aref, S.; Valizadegan, O.; Farashiani, M.E. The insecticidal effect of essential oil of Eucalyptus floribundi against two major stored product insect pests; Rhyzopertha dominica (F.) and Oryzaephilus surinamensis (L.). J. Essent. Oil-Bear. Plants 2016, 19, 820–831. [Google Scholar] [CrossRef]
- Baldo, B.A.; Panzani, R.C. Detection of IgE antibodies to a wide range of insect species in subjects with suspected inhalant allergies to insects. Int. Arch. Allergy Appl. Immunol. 1988, 85, 278–287. [Google Scholar] [CrossRef]
- Alanko, K.; Tuomi, T.; Vanhanen, M.; Pajari-Backas, M.; Kanerva, L.; Havu, K.; Saarinen, K.; Bruynzeel, D.P. Occupational IgE-mediated allergy to Tribolium confusum (confused flour beetle). Allergy 2000, 55, 879–882. [Google Scholar] [CrossRef]
- Krizkova-Kudlikova, I.; Hubert, J. Development of polyclonal antibodies for the detection of Tribolium castaneum contamination in wheat grain. J. Acric. Food Chem. 2008, 56, 8035–8040. [Google Scholar] [CrossRef]
- Son, M.; Jeong, K.Y.; Kim, B.J.; Lim, K.J.; Lee, J.H.; Park, J.W. IgE reactivity to Acarus siro extract in Korean dust mite allergic patients. Exp. Appl. Acarol. 2014, 63, 57–64. [Google Scholar] [CrossRef]
- Jakubas-Zawalska, J.; Asman, M.; Kłyś, M.; Solarz, K. Prevalence of sensitization to extracts from particular life stages of the saw-toothed grain beetle (Oryzaephilus surinamensis) in citizens of selected suburban areas of Southern Poland. J. Stored Prod. Res. 2016, 69, 252–256. [Google Scholar] [CrossRef]
- Barre, A.; Pichereaux, C.; Velazquez, E.; Maudouit, A.; Simplicien, M.; Garnier, L.; Bienvenu, F.; Bienvenu, J.; Burlet-Schiltz, O.; Auriol, C.; et al. Insights into the allergenic potential of the edible yellow mealworm (Tenebrio molitor). Foods 2019, 8, 515. [Google Scholar] [CrossRef]
- Duarte, S.; Barros, G.; Carvalho, L.; Guerreiro, O.; Mourato, M.; Carvalho, M.O. Early-warning detection protocol of khapra beetle (Trogoderma granarium Everts) and other insect pests associated with stored grains in portugal-preliminary results. In Proceedings of the 11th International Conference on Controlled Atmosphere and Fumigation in Stored Products (CAF2020), Winnipeg, WB, Canada, 23–27 August 2021. [Google Scholar]
- Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Safety of frozen and freeze-dried formulations of the lesser mealworm (Alphitobius diaperinus larva) as a novel food pursuant to regulation (EU) 2015/2283. EFSA J. 2022, 20, e07325. [Google Scholar]
- Witecka, J.; Malejky-Kłusek, N.; Solarz, K.; Pawełczyk, O.; Kłyś, M.; Izdebska, A.; Maslanko, W.; Asman, M. The identification of potential immunogenic antigens in particular active developmental stages of the rice weevil (Sitophilus oryzae). Int. J. Environ. Res. Public Health 2023, 20, 3917. [Google Scholar] [CrossRef]
- Arthur, F.H. Residual studies with cyfluthrin wettable powder: Toxicity toward red flour beetles (Coleoptera: Tenebrionidae) exposed for short intervals on treated concrete. J. Econ. Entomol. 1998, 91, 309–319. [Google Scholar] [CrossRef]
- Arthur, F.H. Efficacy of chlorfenapyr against Tribolium castaneum and Tribolium confusum (Coleoptera: Tenebrionidae) adults exposed on concrete, vinyl tile, and plywood surfaces. J. Stored Prod. Res. 2008, 44, 145–151. [Google Scholar] [CrossRef]
- Rajendran, S.; Nayak, K.R.; Anjum, S.S. The action of phosphine against the eggs of phosphine-resistant and-susceptible strains of Rhyzopertha dominica F. Pest Manag. Sci. 2001, 57, 422–426. [Google Scholar] [CrossRef]
- Hubert, J.; Stejskal, V.; Munzbergova, Z.; Hajslova, J.; Arthur, F.H. Toxicity and efficacy of selected pesticides and new acaricides to stored product mites (Acari: Acaridida). Exp. Appl. Acarol. 2007, 42, 283–290. [Google Scholar] [CrossRef]
- Kaufman, P.E.; Strong, C.; Rutz, D.A. Susceptibility of lesser mealworm (Coleoptera: Tenebrionidae) adults and larvae exposed to two commercial insecticides on unpainted plywood panels. Pest Manag. Sci. 2008, 64, 108–111. [Google Scholar] [CrossRef]
- Riaz, T.; Shakoori, F.R.; Ali, S.S. Toxicity of phosphine against tolerant and susceptible populations of Trogoderma granarium collected from Punjab, Pakistan. Punjab Univ. J. Zool 2016, 31, 2530. [Google Scholar]
- Pražić Golić, M.; Andrić, G.; Kljajić, P. Combined effects of contact insecticides and 50 °C temperature on Sitophilus oryzae (L.) (Coleoptera: Curculionidae) in wheat grain. J. Stored Prod. Res. 2016, 69, 245–251. [Google Scholar] [CrossRef]
- Kim, B.; Song, J.E.; Park, J.S.; Park, Y.; Shin, E.M.; Yang, J. Insecticidal effects of fumigants (EF, MB, and PH3) towards phosphine-susceptible and-resistant Sitophilus oryzae (Coleoptera: Curculionidae). Insects 2019, 10, 327. [Google Scholar] [CrossRef]
- Drummond, J.B.; Chapman, R.B. A comparison of two methods to determine the susceptibility of sawtoothed grain beetle (Oryzaephilus surinamensis) populations to pirimiphos-methyl from Canterbury, New Zealand. N. Z. Plant Prot. 2019, 72, 245–252. [Google Scholar] [CrossRef]
- Mbata, G.N.; Ivey, C.; Shapiro-Ilan, D. The potential for using entomopathogenic nematodes and fungi in the management of the maize weevil, Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae). Biol. Control 2018, 125, 39–43. [Google Scholar] [CrossRef]
- Campolo, O.; Giunti, G.; Russo, A.; Palmeri, V.; Zappalà, L. Essential oils in stored product insect pest control. J. Food Qual. 2018, 2018, 6906105. [Google Scholar] [CrossRef]
- Adak, T.; Barik, N.; Patil, N.B.; Gadratagi, B.G.; Annamalai, M.; Mukherjee, A.K.; Rath, P.C. Nanoemulsion of eucalyptus oil: An alternative to synthetic pesticides against two major storage insects (Sitophilus oryzae (L.) and Tribolium castaneum (Herbst)) of rice. Ind. Crops Prod. 2020, 143, 111849. [Google Scholar] [CrossRef]
- Korunić, Z.; Liška, A.; Lucić, P.; Hamel, D.; Rozman, V. Evaluation of diatomaceous earth formulations enhanced with natural products against stored product insects. J. Stored Prod. Res. 2020, 86, 101565. [Google Scholar] [CrossRef]
- Pavela, R.; Pavoni, L.; Bonacucina, G.; Cespi, M.; Cappellacci, L.; Petrelli, R.; Spinozzi, E.; Aguzzi, C.; Zeppa, L.; Ubaldi, M.; et al. Encapsulation of Carlina acaulis essential oil and carlina oxide to develop long-lasting mosquito larvicides: Microemulsions versus nanoemulsions. J. Pest Sci. 2021, 94, 899–915. [Google Scholar] [CrossRef]
- Cagáň, Ľ.; Apacsová Fusková, M.; Hlávková, D.; Skoková Habuštová, O. Essential oils: Useful tools in storage-pest management. Plants 2022, 11, 3077. [Google Scholar] [CrossRef]
- Draz, K.A.; Tabikha, R.M.; Eldosouky, M.I.; Darwish, A.A.; Abdelnasser, M. Biotoxicity of essential oils and their nano-emulsions against the coleopteran stored product insect pests Sitophilus oryzae L. and Tribolium castaneum Herbst. Int. J. Pest. Manag. 2022, 1–15. [Google Scholar] [CrossRef]
- Wakil, W.; Kavallieratos, N.G.; Eleftheriadou, N.; Yaseen, T.; Rasool, K.G.; Husain, M.; Aldawood, A.S. Natural warriors against stored-grain pests: The joint action of Beauveria bassiana and Steinernema carpocapsae. J. Fungi 2023, 9, 835. [Google Scholar] [CrossRef]
- Güner, P.; Aşkun, T.; Aylin, E.R. Entomopathogenic fungi and their potential role in the sustainable biological control of storage pests. Commagene J. Biol. 2023, 7, 90–97. [Google Scholar] [CrossRef]
- Hanif, M.A.; Nisar, S.; Khan, G.S.; Mushtaq, Z.; Zubair, M. Essential oils. In Essential Oil Research: Trends in Biosynthesis, Analytics, Industrial Applications and Biotechnological Production; Malik, S., Ed.; Springer Nature: Cham, Switzerland, 2019; pp. 3–17. [Google Scholar]
- Blank, A.F.; de Fátima Arrigoni-Blank, M.; Bacci, L.; Costa Junior, L.M.; de Castro Nizio, D.A. Chemical diversity and insecticidal and anti-tick properties of essential oils of plants from northeast Brazil. In Essential Oil Research: Trends in Biosynthesis, Analytics, Industrial Applications and Biotechnological Production; Malik, S., Ed.; Springer Nature: Cham, Switzerland, 2019; pp. 235–258. [Google Scholar]
- Isman, M.B. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochem. Rev. 2020, 19, 235–241. [Google Scholar] [CrossRef]
- Benelli, G. On a magical mystery tour of green insecticide research: Current issues and challenges. Molecules 2020, 25, 5014. [Google Scholar] [CrossRef]
- Ilboudo, Z.; Sanon, A.; Dabire-Binso, C.L.; Sankara, F.; Nebie, R.C.H. Optimizing the use of essential oils to protect stored cowpeas from Callosobruchus maculatus (Coleoptera: Bruchinae) damage. Afr. Entomol. 2015, 23, 94–100. [Google Scholar] [CrossRef]
- Alabi, O.Y.; Adewole, M.M. Essential oil extract from Moringa oleifera roots as cowpea seed protectant against cowpea beetle. Afr. Crop Sci. J. 2017, 25, 71–81. [Google Scholar] [CrossRef]
- Janaki, S.; Zandi-Sohani, N.; Ramezani, L.; Szumny, A. Chemical composition and insecticidal efficacy of Cyperus rotundus essential oil against three stored product pests. Int. Biodeterior. Biodegr. 2018, 133, 93–98. [Google Scholar] [CrossRef]
- Feng, Y.X.; Wang, Y.; Chen, Z.Y.; Guo, S.S.; You, C.X.; Du, S.S. Efficacy of bornyl acetate and camphene from Valeriana officinalis essential oil against two storage insects. Environ. Sci. Pollut. Res. 2019, 26, 16157–16165. [Google Scholar] [CrossRef]
- Vendl, T.; Stejskal, V.; Kadlec, J.; Aulicky, R. New approach for evaluating the repellent activity of essential oils against storage pests using a miniaturized model of stored-commodity packaging and a wooden transport pallet. Ind. Crops Prod. 2021, 172, 114024. [Google Scholar] [CrossRef]
- Chaudhari, A.K.; Singh, V.K.; Kedia, A.; Das, S.; Dubey, N.K. Essential oils and their bioactive compounds as eco-friendly novel green pesticides for management of storage insect pests: Prospects and retrospects. Environ. Sci. Pollut. Res. 2021, 28, 18918–18940. [Google Scholar] [CrossRef]
- Evergetis, E.; Koulocheri, S.D.; Haroutounian, S.A. Exploitation of Apiaceae family plants as valuable renewable source of essential oils containing crops for the production of fine chemicals: Part II. Ind. Crops Prod. 2015, 64, 59–67. [Google Scholar] [CrossRef]
- Renna, M. Reviewing the prospects of sea fennel (Crithmum maritimum L.) as emerging vegetable crop. Plants 2018, 7, 92. [Google Scholar] [CrossRef]
- Sánchez-Faure, A.; Calvo, M.M.; Pérez-Jiménez, J.; Martín-Diana, A.B.; Rico, D.; Montero, M.P.; del Carmen Gómez-Guillén, M.; López-Caballero, M.; Martínez-Alvarez, O. Exploring the potential of common iceplant, seaside arrowgrass and sea fennel as edible halophytic plants. Food Res. Int. 2020, 137, 109613. [Google Scholar] [CrossRef]
- Maggi, F.; Papa, F.; Giuliani, C.; Maleci Bini, L.; Venditti, A.; Bianco, A.; Nicoletti, M.; Innarelli, R.; Caprioli, G.; Sagratini, G.; et al. Essential oil chemotypification and secretory structures of the neglected vegetable Smyrnium olusatrum L. (Apiaceae) growing in central Italy. Flavour Fragr. J. 2015, 30, 139–159. [Google Scholar] [CrossRef]
- Yousefi-Manesh, H.; Dehpour, A.R.; Shirooie, S.; Bagheri, F.; Farrokhi, V.; Mousavi, S.E.; Ricciutelli, M.; Cappellacci, L.; López, V.; Maggi, F.; et al. Isofuranodiene, a natural sesquiterpene isolated from wild celery (Smyrnium olusatrum L.), protects rats against acute ischemic stroke. Pharmaceuticals 2021, 14, 344. [Google Scholar] [CrossRef]
- Srivastava, K.C. Extract of a spice—Omum (Trachyspermum ammi)-shows antiaggregatory effects and alters arachidonic acid metabolism in human platelets. Prostaglandins Leukot. Essent. Fat. Acids 1988, 33, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Sivropoulou, A.; Papanikolaou, E.; Nikolaou, C.; Kokkini, S.; Lanaras, T.; Arsenakis, M. Antimicrobial and cytotoxic activities of Origanum essential oils. J. Agric. Food Chem. 1996, 44, 1202–1205. [Google Scholar] [CrossRef]
- Ishwar, S.; Singh, V.P. Antifungal properties of aqueous and organic solution extracts of seed plants against Aspergillus flavus and A. niger. Phytomorphology 2000, 50, 151–157. [Google Scholar]
- Baser, K.H.C.; Özek, T.; Abduganiev, B.E.; Abdullaev, U.A.; Aripov, K.N. Composition of the essential oil of Bunium persicum (Boiss.) B. Fedtsch. from Tajikistan. J. Essent. Oil Res. 1997, 9, 597–598. [Google Scholar] [CrossRef]
- Jahansooz, F.; Sefidkon, F.; Najafi, A.; Ebrahimzadeh, H.; Najafi, M.S. Comparison of essential oils of Bunium persicum (Boiss.) populations grown in Iran, Pakistan and India. J. Essent. Oil-Bear. Plants 2012, 15, 761–765. [Google Scholar] [CrossRef]
- Sharififar, F.; Yassa, N.; Mozaffarian, V. Bioactivity of major components from the seeds of Bunium persicum (Boiss.) Fedtch. Pak. J. Pharm. Sci. 2010, 23, 300–304. [Google Scholar]
- POWO (Plants of the World Online). Royal Botanical Gardens Kew. Available online: https://powo.science.kew.org (accessed on 20 December 2023).
- Moravvej, G.; Of-Shahraki, Z.; Azizi-Arani, M. Contact and repellent activity of Elletaria cardamomum (L.) Maton. and Bunium persicum (Boiss.) Fedtsch. oils against Tribolium castaneum (Herbst) adults (Coleoptera: Tenebrionidae). Iran. J. Med. Aromat. Plants Res. 2011, 27, 224–238. [Google Scholar]
- Habashi, A.S.; Safaralizadeh, M.H.; Safavi, S.A. Fumigant toxicity of Carum copticum L. oil against Tribolium confusum du Val, Rhyzopertha dominica F. and Oryzaphilus surinamensis L. Munis Entomol. Zool. 2011, 6, 282–289. [Google Scholar]
- Chaubey, M.K. Biological effects of essential oils against rice weevil Sitophilus oryzae L.(Coleoptera: Curculionidae). J. Essent. Oil-Bear. Plants 2012, 15, 809–815. [Google Scholar] [CrossRef]
- Polatoğlu, K.; Karakoç, Ö.C.; Yücel, Y.Y.; Gücel, S.; Demirci, B.; Başer, K.H.C.; Demirci, F. Insecticidal activity of edible Crithmum maritimum L. essential oil against Coleopteran and Lepidopteran insects. Ind. Crops Prod. 2016, 89, 383–389. [Google Scholar] [CrossRef]
- Koutsaviti, A.; Antonopoulou, V.; Vlassi, A.; Antonatos, S.; Michaelakis, A.; Papachristos, D.P.; Tzakou, O. Chemical composition and fumigant activity of essential oils from six plant families against Sitophilus oryzae (Col: Curculionidae). J. Pest Sci. 2018, 91, 873–886. [Google Scholar] [CrossRef]
- Mustapha, M.B.; Zardi-Bergaoui, A.; Chaieb, I.; Flamini, G.; Ascrizzi, R.; Jannet, H.B. Chemical Composition and Insecticidal activity of Crithmum maritimum L. essential oil against stored-product beetle Tribolium castaneum. Chem. Biodivers. 2020, 17, e1900552. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Boukouvala, M.C.; Ntalli, N.; Kontodimas, D.C.; Cappellacci, L.; Petrelli, R.; Ricciutelli, M.; Benelli, G.; Maggi, F. Efficacy of the furanosesquiterpene isofuranodiene against the stored-product insects Prostephanus truncatus (Coleoptera: Bostrychidae) and Trogoderma granarium (Coleoptera: Dermestidae). J. Stored Prod. Res. 2020, 86, 101553. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Nika, E.P.; Skourti, A.; Perinelli, D.R.; Spinozzi, E.; Bonacucina, G.; Cappellacci, L.; Morshedloo, M.R.; Canale, A.; Benelli, G.; et al. Apiaceae essential oil nanoemulsions as effective wheat protectants against five arthropod pests. Ind. Crops Prod. 2022, 186, 115001. [Google Scholar] [CrossRef]
- Perinelli, D.R.; Pavela, R.; Bonacucina, G.; Baldassarri, C.; Spinozzi, E.; Torresi, J.; Petrelli, R.; Morshedloo, M.R.; Maggi, F.; Benelli, G.; et al. Development, characterization, insecticidal and sublethal effects of Bunium persicum and Ziziphora clinopodioides-based essential oil nanoemulsions on Culex quinquefasciatus. Ind. Crops Prod. 2022, 186, 115249. [Google Scholar] [CrossRef]
- Moghaddam, M.; Mehdizadeh, L. Chemistry of essential oils and factors influencing their constituents. In Soft Chemistry and Food Fermentation; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2017; Volume 3, pp. 379–419. [Google Scholar]
- Azizi, M.; Davareenejad, G.; Bos, R.; Woerdenbag, H.J.; Kayser, O. Essential oil content and constituents of black zira (Bunium persicum [Boiss.] B. Fedtsch.) from Iran during field cultivation (domestication). J. Essent. Oil Res. 2009, 21, 78–82. [Google Scholar] [CrossRef]
- Chizzola, R.; Saeidnejad, A.H.; Azizi, M.; Oroojalian, F.; Mardani, H. Bunium persicum: Variability in essential oil and antioxidants activity of fruits from different Iranian wild populations. Genet. Resour. Crop Evol. 2014, 61, 1621–1631. [Google Scholar] [CrossRef]
- Mortazavi, S.V.; Eikani, M.H.; Mirzaei, H.; Jafari, M.; Golmohammad, F. Extraction of essential oils from Bunium persicum Boiss. using superheated water. Food Bioprod. Process. 2010, 88, 222–226. [Google Scholar] [CrossRef]
- Oroojalian, F.; Kasra-Kermanshahi, R.; Azizi, M.; Bassami, M.R. Phytochemical composition of the essential oils from three Apiaceae species and their antibacterial effects on food-borne pathogens. Food Chem. 2010, 120, 765–770. [Google Scholar] [CrossRef]
- Thappa, R.K.; Ghosh, S.; Agarwal, S.G.; Raina, A.K.; Jamwal, P.S. Comparative studies on the major volatiles of Kalazira (Bunium persicum seed) of wild and cultivated sources. Food Chem. 1991, 41, 129–134. [Google Scholar] [CrossRef]
- Quassinti, L.; Maggi, F.; Barboni, L.; Ricciutelli, M.; Cortese, M.; Papa, F.; Garulli, C.; Kalogris, C.; Vittori, S.; Bramucci, M. Wild celery (Smyrnium olusatrum L.) oil and isofuranodiene induce apoptosis in human colon carcinoma cells. Fitoterapia 2014, 97, 133–141. [Google Scholar] [CrossRef]
- Maggi, F.; Fortuné Randriana, R.; Rasoanaivo, P.; Nicoletti, M.; Quassinti, L.; Bramucci, M.; Lupidi, G.; Petrelli, D.; Vitali, L.A.; Papa, F.; et al. Chemical composition and in vitro biological activities of the essential oil of Vepris macrophylla (Baker) I. Verd. endemic to Madagascar. Chem. Biodivers. 2013, 10, 356–366. [Google Scholar] [CrossRef]
- Piatti, D.; Angeloni, S.; Maggi, F.; Caprioli, G.; Ricciutelli, M.; Arnoldi, L.; Bosisio, S.; Mombelli, G.; Drenaggi, E.; Sagratini, G. Comprehensive characterization of phytochemicals in edible sea fennel (Crithmum maritimum L., Apiaceae) grown in central Italy. J. Food Compos. Anal. 2023, 115, 104884. [Google Scholar] [CrossRef]
- Pavela, R.; Maggi, F.; Lupidi, G.; Cianfaglione, K.; Dauvergne, X.; Bruno, M.; Benelli, G. Efficacy of sea fennel (Crithmum maritimum L., Apiaceae) essential oils against Culex quinquefasciatus Say and Spodoptera littoralis (Boisd.). Ind. Crops Prod. 2017, 109, 603–610. [Google Scholar] [CrossRef]
- Benelli, G.; Rizzo, R.; Zeni, V.; Govigli, A.; Samková, A.; Sinacori, M.; Verde, G.L.; Pavela, R.; Cappellacci, L.; Petrelli, R.; et al. Carlina acaulis and Trachyspermum ammi essential oils formulated in protein baits are highly toxic and reduce aggressiveness in the medfly, Ceratitis capitata. Ind. Crops Prod. 2021, 161, 113191. [Google Scholar] [CrossRef]
- Kéita, S.M.; Vincent, C.; Schmit, J.P.; Ramaswamy, S.; Bélanger, A. Effect of various essential oils on Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J. Stored Prod. Res. 2000, 36, 355–364. [Google Scholar] [CrossRef]
- Lee, B.H.; Annis, P.C.; Tumaalii, F.; Lee, S. The potential of 1,8-cineole as a fumigant for stored wheat. In Proceedings of the Australian Postharvest Technical Conference, Canberra, Australia, 25–27 June 2003. [Google Scholar]
- Benkeblia, N. Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). LWT-Food Sci. Technol. 2004, 37, 263–268. [Google Scholar] [CrossRef]
- Rajendran, S.; Sriranjini, V. Plant products as fumigants for stored-product insect control. J. Stored Prod. Res. 2008, 44, 126–135. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- Jankowska, M.; Rogalska, J.; Wyszkowska, J.; Stankiewicz, M. Molecular targets for components of essential oils in the insect nervous system—A review. Molecules 2017, 23, 34. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Skourti, A.; Nika, E.P.; Ntalaka, C.T.; Boukouvala, M.C.; Bonacucina, G.; Cespi, M.; Petrelli, R.; Cappellacci, L.; Maggi, F.; et al. Isofuranodiene-based nanoemulsion: Larvicidal and adulticidal activity against tenebrionid beetles attacking stored wheat. J. Stored Prod. Res. 2021, 93, 101859. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Nika, E.P.; Skourti, A.; Virvidaki, A.J.V. Deltamethrin residual mission against Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) on concrete for six weeks. J. Stored Prod. Res. 2022, 99, 102036. [Google Scholar] [CrossRef]
- Neville, A.C. Biology of the Arthropod Cuticle; Springer: Berlin, Germany, 1975; p. 395. [Google Scholar]
- Mewis, I.; Ulrichs, C. Action of amorphous diatomaceous earth against different stages of the stored product pests Tribolium confusum, Tenebrio molitor, Sitophilus granarius and Plodia interpunctella. J. Stored Prod. Res. 2001, 37, 153–164. [Google Scholar] [CrossRef]
- Zettler, L.J. Pesticide resistance in Tribolium castaneum and T. confusum (Coleoptera: Tenebrionidae) from flour mills in the United States. J. Econ. Entomol. 1991, 84, 763–767. [Google Scholar] [CrossRef]
- Bell, C.H.; Wontner-Smith, T.J.; Savvidou, N. Some properties of sulphuryl fluoride in relation to its use as a fumigant in the cereals industry. In Proceedings of the 8th International Working Conference on Stored Product Protection, York, UK, 22–26 July 2002. [Google Scholar]
- Đukić, N.; Andrić, G.; Ninkovic, V.; Pražić Golić, M.; Kljajić, P.; Radonjić, A. Behavioural responses of Tribolium castaneum (Herbst) to different types of uninfested and infested feed. Bull. Entom. Res. 2020, 110, 550–557. [Google Scholar] [CrossRef]
- Arthur, F.H. Residual efficacy of aerosols to control Tribolium castaneum and Tribolium confusum. In Proceedings of the 10th International Working Conference on Stored Product Protection, Estoril, Portugal, 27 June–2 July 2010. [Google Scholar]
- Deb, M.; Kumar, D. Bioactivity and efficacy of essential oils extracted from Artemisia annua against Tribolium casteneum (Herbst. 1797) (Coleoptera: Tenebrionidae): An eco-friendly approach. Ecotoxicol. Environ. Saf. 2020, 189, 109988. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.K.; Jeong, G.; Kim, H.K.; Kim, B.S.; Yang, J.O.; Koo, H.N.; Kim, G.H. Fumigation activity against phosphine-resistant Tribolium castaneum (Coleoptera: Tenebrionidae) using carbonyl sulfide. Insects 2020, 11, 750. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Nika, E.P.; Skourti, A.; Spinozzi, E.; Ferrati, M.; Petrelli, R.; Maggi, F.; Benelli, G. Carlina acaulis essential oil: A candidate product for agrochemical industry due to its pesticidal capacity. Ind. Crops Prod. 2022, 188, 115572. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Skourti, A.; Nika, E.P.; Mártonfi, P.; Spinozzi, E.; Maggi, F. Tanacetum vulgare essential oil as grain protectant against adults and larvae of four major stored-product insect pests. J. Stored Prod. Res. 2021, 94, 101882. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Boukouvala, M.C.; Ntalli, N.; Skourti, A.; Karagianni, E.S.; Nika, E.P.; Kontodimas, D.C.; Cappellacci, L.; Petrelli, R.; Cianfaglione, K.; et al. Effectiveness of eight essential oils against two key stored-product beetles, Prostephanus truncatus (Horn) and Trogoderma granarium Everts. Food Chem. Toxicol. 2020, 139, 111255. [Google Scholar] [CrossRef]
- Ghimire, M.N.; Myers, S.W.; Arthur, F.H.; Phillips, T.W. Susceptibility of Trogoderma granarium Everts and Trogoderma inclusum LeConte (Coleoptera: Dermestidae) to residual contact insecticides. J. Stored Prod. Res. 2017, 72, 75–82. [Google Scholar] [CrossRef]
- Jawad, S.M.; Alshukri, B.M.; Altaee, R.A.; Al-Bdery, A.S. Microcin as an insecticidal antibiotic against Trogoderma granarium Everts (Coleoptera: Dermestidae). Ann. Romanian Soc. Cell Biol. 2021, 25, 4440–4449. [Google Scholar]
- Kavallieratos, N.G.; Nika, E.P.; Skourti, A.; Xefteri, D.N.; Cianfaglione, K.; Perinelli, D.R.; Spinozzi, E.; Bonacucina, G.; Canale, A.; Benelli, G.; et al. Piperitenone oxide-rich Mentha longifolia essential oil and its nanoemulsion to manage different developmental stages of insect and mite pests attacking stored wheat. Ind. Crops Prod. 2022, 178, 114600. [Google Scholar] [CrossRef]
- Gad, H.A.; Al-Anany, M.S.; Atta, A.A.; Abdelgaleil, S.A. Potential of low application rate combinations of three chitin synthesis inhibitor insecticides with spinosad for the control of Sitophilus oryzae on stored wheat. J. Stored Prod. Res. 2022, 95, 101926. [Google Scholar] [CrossRef]
- Akinbuluma, M.D.; Okunlola, O.T.; Alabi, O.Y.; Timothy, M.I.; Omobusuyi, D.O. Towards food security: Essential oil components as protectants against the rice weevil, Sitophilus oryzae. Jordan J. Biol. Sci. 2022, 15, 193–197. [Google Scholar]
- Benelli, G.; Pavela, R.; Canale, A.; Nicoletti, M.; Petrelli, R.; Cappellacci, L.; Galassi, R.; Maggi, F. Isofuranodiene and germacrone from Smyrnium olusatrum essential oil as acaricides and oviposition inhibitors against Tetranychus urticae: Impact of chemical stabilization of isofuranodiene by interaction with silver triflate. J. Pest Sci. 2017, 90, 693–699. [Google Scholar] [CrossRef]
- Chen, M.; Lou, Y.; Wu, Y.; Meng, Z.; Li, L.; Yu, L.; Zeng, S.; Zhou, H.; Jiang, H. Characterization of in vivo and in vitro metabolites of furanodiene in rats by high performance liquid chromatography–electrospray ionization mass spectrometry and nuclear magnetic resonance spectra. J. Pharm. Biomed. Anal. 2013, 86, 161–168. [Google Scholar] [CrossRef]
- Giordano, G.; Carbone, M.; Ciavatta, M.L.; Silvano, E.; Gavagnin, M.; Garson, M.J.; Cheney, K.L.; Mudianta, I.W.; Russo, G.F.; Villani, G.; et al. Volatile secondary metabolites as aposematic olfactory signals and defensive weapons in aquatic environments. Proc. Natl. Acad. Sci. USA 2017, 114, 3451–3456. [Google Scholar] [CrossRef]
- Arnason, J.T.; Philogène, B.J.R.; Duval, F.; McLachlan, D.; Picman, A.K.; Towers, G.H.N.; Balza, F. Effects of sesquiterpene lactones on development of Aedes atropalpus and relation to partition coefficient. J. Nat. Prod. 1985, 48, 581–584. [Google Scholar] [CrossRef]
- Guillet, G.; Harmatha, J.; Waddell, T.G.; Philogène, B.J.; Arnason, J.T. Synergistic insecticidal mode of action between sesquiterpene lactones and a phototoxin, α-terthienyl. Photochem Photobiol. 2000, 71, 111–115. [Google Scholar] [CrossRef]
- Liang, J.Y.; You, C.X.; Guo, S.S.; Zhang, W.J.; Li, Y.; Geng, Z.F.; Wang, C.F.; Du, S.S.; Deng, Z.W.; Zhang, J. Chemical constituents of the essential oil extracted from Rhododendron thymifolium and their insecticidal activities against Liposcelis bostrychophila or Tribolium castaneum. Ind. Crops Prod. 2016, 79, 267–273. [Google Scholar] [CrossRef]
- Liang, J.Y.; Yang, Y.Y.; An, Y.; Shao, Y.Z.; He, C.Y.; Zhang, J.; Jia, L.Y. Insecticidal and acetylcholine esterase inhibition activity of Rhododendron thymifolium essential oil and its main constituent against two stored product insects. J. Environ. Sci. Health B 2021, 56, 423–430. [Google Scholar] [CrossRef]
- Sun, J.S.; Feng, Y.; Wang, Y.; Li, J.; Zou, K.; Liu, H.; Hu, Y.; Xue, Y.; Yang, L.; Du, S.; et al. α-pinene, caryophyllene and β-myrcene from Peucedanum terebinthaceum essential oil: Insecticidal and repellent effects on three stored-product insects. Rec. Nat. Prod. 2020, 14, 189. [Google Scholar] [CrossRef]
- Youssefi, M.R.; Tabari, M.A.; Esfandiari, A.; Kazemi, S.; Moghadamnia, A.A.; Sut, S.; Dall’ Acqua, S.; Benelli, G.; Maggi, F. Efficacy of two monoterpenoids, carvacrol and thymol, and their combinations against eggs and larvae of the West Nile vector Culex pipiens. Molecules 2019, 24, 1867. [Google Scholar] [CrossRef]
- Yoon, J.; Tak, J.H. Cuticular property affects the insecticidal synergy of major constituents in thyme oil against houseflies, Musca domestica. Sci. Rep. 2023, 13, 12654. [Google Scholar] [CrossRef]
- Pavela, R. Acute and synergistic effects of some monoterpenoid essential oil compounds on the house fly (Musca domestica L.). J. Essent. Oil-Bear. Plants 2008, 11, 451–459. [Google Scholar] [CrossRef]
- Pavela, R. Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind. Crops Prod. 2014, 60, 247–258. [Google Scholar] [CrossRef]
- Aziz, A.; Dieng, H.; Hassan, A.A.; Satho, T.; Miake, F.; Salmah, M.R.C.; AbuBakar, S. Insecticide susceptibility of the dengue vector Aedes aegypti (Diptera: Culicidae) in Makkah City, Saudi Arabia. Asian Pac. J. Trop. Dis. 2011, 1, 94–99. [Google Scholar] [CrossRef]
- Cheng, S.S.; Huang, C.G.; Chen, Y.J.; Yu, J.J.; Chen, W.J.; Chang, S.T. Chemical compositions and larvicidal activities of leaf essential oils from two eucalyptus species. Bioresour. Technol. 2009, 100, 452–456. [Google Scholar] [CrossRef]
- Zhu, L.; Tian, Y.J. Chemical composition and larvicidal effects of essential oil of Blumea martiniana against Anopheles anthropophagus. Asian Pac. J. Trop. Med. 2011, 4, 371–374. [Google Scholar] [CrossRef]
- Nikkon, F.; Habib, M.R.; Saud, Z.A.; Karim, M.R. Tagetes erecta Linn. and its mosquitocidal potency against Culex quinquefasciatus. Asian Pac. J. Trop. Biomed. 2011, 1, 186–188. [Google Scholar] [CrossRef]
- Prabhu, K.; Murugan, K.; Nareshkumar, A.; Ramasubramanian, N.; Bragadeeswaran, S. Larvicidal and repellent potential of Moringa oleifera against malarial vector, Anopheles stephensi Liston (Insecta: Diptera: Culicidae). Asian Pac. J. Trop. Biomed. 2011, 1, 124–129. [Google Scholar] [CrossRef]
- Ravikumar, H.; Ramachandraswamy, N.; Puttaraju, H.P. Molecular strain typing of Wolbachia infection from Indian mosquitoes using wsp gene. Asian Pac. J. Trop. Dis. 2011, 1, 106–109. [Google Scholar] [CrossRef]
- Diksha; Singh, S.; Mahajan, E.; Sohal, S.K. Growth inhibitory, immunosuppressive, cytotoxic, and genotoxic effects of γ-terpinene on Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae). Sci. Rep. 2023, 13, 16472. [Google Scholar] [CrossRef]
- López, M.D.; Pascual-Villalobos, M.J. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind. Crops Prod. 2010, 31, 284–288. [Google Scholar] [CrossRef]
- Gong, X.; Ren, Y. Larvicidal and ovicidal activity of carvacrol, p-cymene, and γ-terpinene from Origanum vulgare essential oil against the cotton bollworm, Helicoverpa armigera (Hübner). Environ. Sci. Pollut. Res. 2020, 27, 18708–18718. [Google Scholar] [CrossRef]
- Fazolin, M.; Monteiro, A.F.M.; Bizzo, H.R.; Gama, P.E.; Viana, L.D.O.; Lima, M.É.C.D. Insecticidal activity of Piper aduncum oil: Variation in dillapiole content and chemical and toxicological stability during storage. Acta Amazon. 2022, 52, 179–188. [Google Scholar] [CrossRef]
- Xie, Q.H.; Li, B.Y.; Yu, J.N.; Zheng, Y.; Du, S.S.; Borjigidai, A. Bioactivities of thymol and p-cymene from the essential oil of Adenosma buchneroides against three stored-product insects. Environ. Sci. Pollut. Res. 2023, 30, 110841–110850. [Google Scholar] [CrossRef]
- Zahran, H.E.D.M.; Abdelgaleil, S.A. Insecticidal and developmental inhibitory properties of monoterpenes on Culex pipiens L. (Diptera: Culicidae). J. Asia Pac. Entomol. 2011, 14, 46–51. [Google Scholar] [CrossRef]
- Seo, S.M.; Jung, C.S.; Kang, J.; Lee, H.R.; Kim, S.W.; Hyun, J.; Park, I.K. Larvicidal and acetylcholinesterase inhibitory activities of Apiaceae plant essential oils and their constituents against Aedes albopictus and formulation development. J. Agric. Food Chem. 2015, 63, 9977–9986. [Google Scholar] [CrossRef]
- Benelli, G.; Pavoni, L.; Zeni, V.; Ricciardi, R.; Cosci, F.; Cacopardo, G.; Gendusa, S.; Spinozzi, E.; Petrelli, R.; Cappellacci, L.; et al. Developing a highly stable Carlina acaulis essential oil nanoemulsion for managing Lobesia botrana. Nanomaterials 2020, 10, 1867. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Boukouvala, M.C.; Skourti, A.; Filintas, C.S.; Eleftheriadou, N.; Gidari, D.L.S.; Spinozzi, E.; Ferrati, M.; Petrelli, R.; Cianfaglione, K.; et al. Essential oils from three Cupressaceae species as stored wheat protectants: Will they kill different developmental stages of nine noxious arthropods? J. Stored Prod. Res. 2023, 105, 102232. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Pearson: Essex, UK, 2014; p. 756. [Google Scholar]
- Scheff, D.S.; Arthur, F.H. Fecundity of Tribolium castaneum and Tribolium confusum adults after exposure to deltamethrin packaging. J. Pest Sci. 2018, 91, 717–725. [Google Scholar] [CrossRef]
- Sall, J.; Lehman, A.; Creighton, L. JMP Start Statistics: A Guide to Statistics and Data Analysis Using JMP and JMP IN Software; Duxbury Press: Belmont, CA, USA, 2001. [Google Scholar]
- SAS Institute Inc. Using JMP 16.2; SAS Institute Inc.: Cary, NC, USA, 2021. [Google Scholar]
- Sokal, R.R.; Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research; Freeman & Company: New York, NY, USA, 1995. [Google Scholar]
RI b | RI Lit c | Component a | T. ammi | C. maritimum | S. olusatrum | E. persica | ID e |
---|---|---|---|---|---|---|---|
Average Area % d | |||||||
926 | 924 | α-thujene | 0.4 | 0.4 | tr f | 0.3 | RI, MS |
929 | 932 | α-pinene | 0.2 | 7.0 | 2.0 | 0.5 | Std |
947 | 946 | camphene | — | tr | — | tr | RI, MS |
972 | 969 | sabinene | — | 5.1 | — | 0.8 | RI, MS |
975 | 974 | β-pinene | 2.2 | 0.4 | 0.3 | 0.8 | Std |
989 | 988 | myrcene | 0.3 | 0.5 | 29.4 | 0.5 | Std |
1002 | 1002 | α-phellandrene | — | 0.1 | — | 0.1 | RI, MS |
1004 | 998 | n-octanal | — | tr | — | — | RI, MS |
1009 | 1008 | δ-3-carene | — | tr | 0.4 | tr | Std |
1016 | 1014 | α-terpinene | 0.4 | 0.3 | — | 0.3 | RI, MS |
1024 | 1020 | p-cymene | 28.0 | 10.1 | 0.1 | 8.3 | Std |
1025 | 1026 | 1,8-cineole | — | — | — | 0.4 | Std |
1027 | 1025 | β-phellandrene | 0.4 | 14.7 | 15.3 | — | RI, MS |
1028 | 1024 | limonene | — | — | — | 5.9 | Std, RI, MS |
1036 | 1032 | (Z)-β-ocimene | — | 0.2 | — | — | RI, MS |
1048 | 1044 | (E)-β-ocimene | — | — | 1.4 | tr | RI, MS |
1058 | 1054 | γ-terpinene | 28.8 | 36.1 | 0.2 | 35.8 | Std |
1062 | 1065 | (Z)-sabinene hydrate | — | 0.3 | — | — | RI, MS |
1084 | 1086 | terpinolene | — | tr | 0.1 | 0.4 | Std |
1094 | 1098 | (E)-sabinene hydrate | — | 0.2 | — | — | RI, MS |
1100 | 1095 | linalool | — | tr | — | tr | Std |
1117 | 1119 | (E)- p-mentha-2,8-dien-1-ol | — | tr | — | — | RI, MS |
1122 | 1122 | α-campholenal | — | tr | — | — | RI, MS |
1176 | 1174 | terpinen-4-ol | 0.1 | 0.6 | — | 0.7 | Std |
1183 | 1179 | p-cymen-8-ol | — | — | — | tr | RI, MS |
1189 | 1196 | p-menth-3-en-7-al | — | — | — | 2.0 | RI, MS |
1190 | 1186 | α-terpineol | tr | 0.1 | — | — | Std |
1233 | 1232 | thymol, methyl ether | — | 11.2 | — | — | RI, MS |
1235 | 1238 | cumin aldehyde | — | — | — | 16.6 | RI, MS |
1242 | 1241 | carvacrol, methyl ether | — | 0.0 | — | — | RI, MS |
1277 | 1283 | α-terpinen-7-al | — | — | — | 11.7 | RI, MS |
1280 | 1287 | bornyl acetate | — | tr | — | 0.3 | Std |
1285 | 1290 | γ-terpinen-7-al | — | — | — | 14.0 | RI, MS |
1292 | 1289 | thymol | 38.9 | 0.2 | — | — | Std |
1302 | 1298 | carvacrol | 0.2 | tr | — | — | Std |
1394 | 1389 | β-elemene g | — | — | 0.1 | — | RI, MS |
1434 | 1434 | γ-elemene g | — | — | tr | — | RI, MS |
1484 | 1484 | germacrene D | — | — | 0.6 | — | Std, RI, MS |
1499 | 1499 | curzerene g | — | — | 16.3 | — | RI, MS |
1558 | 1555 | elemicin | — | tr | — | — | RI, MS |
1561 | 1559 | germacrene B g | — | — | 2.0 | — | RI, MS |
1607 | 1602 | (E)-β-elemenone g | — | — | 0.3 | — | RI, MS |
1626 | 1622 | dillapiole | — | 12.0 | — | — | RI, MS |
1693 | 1688 | isofuranodiene g | — | — | 6.2 | — | Std, RI, MS |
1696 | 1693 | germacrene | — | — | 20.5 | — | RI, MS |
1841 | 1833 | furano-4(15)-eudesmen-1-one g | — | — | 0.4 | — | RI, MS |
18884 | 1879 | furanoeremophil-1-one g | — | — | 4.0 | — | RI, MS |
1992 | 1988 | 1-β-acetoxyfurano-4(15)-eudesmene g | — | — | 0.1 | — | RI, MS |
Monoterpene hydrocarbons | 60.7 | 75.0 | 49.2 | 53.6 | |||
Oxygenated monoterpenes | 39.2 | 12.8 | 0.0 | 45.4 | |||
Sesquiterpenes hydrocarbons | 0.0 | 0.0 | 2.7 | 0.0 | |||
Oxygenated sesquiterpenes | 0.0 | 0.0 | 20.8 | 0.0 | |||
Furanosesquiterpenes | 0.0 | 0.0 | 27.0 | 0.0 | |||
Phenylpropanoids | 0.0 | 12.0 | 0.0 | 0.0 | |||
Others | 0.0 | 0.0 | 0.0 | 0.3 | |||
Total identified (%) | 99.9 | 99.7 | 99.7 | 99.3 |
Between Exposures | Within Exposures | ||||||||
---|---|---|---|---|---|---|---|---|---|
Pest Species | Intercept | Concentration | EO Type | Concentration × EO Type | Exposure | Exposure × Concentration | Exposure × EO Type | Exposure × Concentration × EO Type | |
df | 1 | 1 | 4 | 4 | 6 | 6 | 24 | 24 | |
A. diaperinus larvae | F | 2999.8 | 35.2 | 681.5 | 16.1 | 87.5 | 2.3 | 12.4 | 2.5 |
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.04 | <0.01 | <0.01 | |
A. diaperinus adults | F | 126.7 | 27.5 | 34.7 | 8.4 | 36.9 | 5.3 | 8.1 | 1.6 |
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.03 | |
T. castaneum larvae | F | 13,484.4 | 144.8 | 37.5 | 12.9 | 128.0 | 10.9 | 8.9 | 2.9 |
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | |
T. castaneum adults | F | 237.8 | 120.3 | 87.3 | 27.3 | 274.1 | 254.2 | 33.5 | 33.3 |
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | |
T. confusum larvae | F | 11,897.9 | 95.8 | 58.6 | 15.9 | 137.8 | 6.9 | 7.1 | 3.8 |
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | |
T. confusum adults | F | 50.1 | 24.0 | 7.1 | 2.2 | 14.3 | 8.7 | 4.6 | 3.1 |
p | <0.01 | <0.01 | <0.01 | 0.08 | <0.01 | <0.01 | <0.01 | <0.01 | |
T. molitor larvae | F | 235.0 | 9.9 | 75.9 | 2.9 | 37.6 | 1.3 | 5.7 | 1.1 |
p | <0.01 | 0.01 | <0.01 | 0.03 | <0.01 | 0.29 | <0.01 | 0.39 | |
T. molitor adults | F | 2847.3 | 30.1 | 284.8 | 5.8 | 91.8 | 0.8 | 11.6 | 2.1 |
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.55 | <0.01 | <0.01 | |
T. granarium larvae | F | 1444.9 | 41.0 | 186.8 | 6.5 | 53.8 | 2.0 | 4.4 | 2.0 |
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.08 | <0.01 | <0.01 | |
T. granarium adults | F | 8020.9 | 42.9 | 35.3 | 7.3 | 200.3 | 4.4 | 9.2 | 4.4 |
p | <0.01 | <0.01 | <0.01 | 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | |
O. surinamensis larvae | F | 5089.8 | 209.9 | 98.2 | 32.2 | 108.9 | 2.7 | 6.6 | 2.1 |
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.02 | <0.01 | <0.01 | |
O. surinamensis adults | F | 2234.6 | 19.1 | 48.6 | 3.8 | 74.9 | 0.5 | 5.3 | 1.2 |
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.77 | <0.01 | 0.27 | |
R. dominica adults | F | 3136.6 | 185.2 | 41.2 | 33.7 | 58.2 | 2.1 | 4.1 | 2.1 |
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.07 | <0.01 | <0.01 | |
S. oryzae adults | F | 2511.0 | 37.4 | 242.1 | 7.7 | 35.0 | 1.9 | 4.3 | 1.6 |
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.09 | <0.01 | 0.03 | |
A. siro nymphs | F | 812.0 | 12.1 | 23.3 | 1.9 | 114.5 | 1.7 | 3.3 | 0.8 |
p | <0.01 | <0.01 | <0.01 | 0.12 | <0.01 | 0.13 | <0.01 | 0.70 | |
A. siro adults | F | 1128.9 | 3.5 | 20.7 | 0.5 | 130.1 | 0.5 | 2.5 | 0.5 |
p | <0.01 | 0.07 | <0.01 | 0.77 | <0.01 | 0.81 | <0.01 | 0.99 |
Exposure | 1 Day | 2 Days | 3 Days | 4 Days | 5 Days | 6 Days | 7 Days | ||
---|---|---|---|---|---|---|---|---|---|
Larvae | |||||||||
EO Type | Concentration: | 500 ppm | F | p | |||||
Crithmum maritimum | 0.0 ± 0.0 Bc | 0.0 ± 0.0 Bc | 0.0 ± 0.0 Bc | 0.0 ± 0.0 Bc | 3.3 ± 1.7 Bb | 11.1 ± 2.0 Ac | 13.3 ± 1.7 Ac | 35.9 | <0.01 |
Smyrnium olusatrum | 28.9 ± 3.5 Ca | 43.3 ± 4.1 BCa | 51.1 ± 5.4 ABa | 53.3 ± 4.7 ABa | 57.8 ± 5.7 ABa | 66.7 ± 6.2 ABa | 68.9 ± 6.1 Aa | 8.6 | <0.01 |
pirimiphos-methyl | 8.9 ± 2.0 Cb | 15.6 ± 2.4 Bb | 21.1 ± 3.1 ABb | 26.7 ± 3.3 ABb | 28.9 ± 3.5 ABa | 34.4 ± 4.8 Ab | 36.7 ± 4.7 Ab | 12.5 | <0.01 |
F | 72.5 | 600.0 | 698.8 | 1093.0 | 101.6 | 170.7 | 620.0 | ||
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | ||
Concentration: | 1000 ppm | ||||||||
Crithmum maritimum | 0.0 ± 0.0 Cc | 5.6 ± 1.7 BCc | 8.9 ± 2.6 Bc | 15.6 ± 3.7 ABc | 18.9 ± 5.1 ABc | 32.2 ± 6.0 Ab | 44.4 ± 4.8 Ab | 13.1 | <0.01 |
Smyrnium olusatrum | 45.6 ± 3.4 Da | 72.2 ± 4.7 Ca | 77.8 ± 4.7 BCa | 92.2 ± 3.6 ABa | 98.9 ± 1.1 Aa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 35.7 | <0.01 |
pirimiphos-methyl | 8.9 ± 1.1 Db | 14.4 ± 2.4 CDb | 20.0 ± 2.4 BCb | 23.3 ± 1.7 ABCb | 27.8 ± 2.2 ABb | 33.3 ± 2.9 ABb | 37.8 ± 3.2 Ab | 14.6 | <0.01 |
F | 197.2 | 83.9 | 82.8 | 93.6 | 86.8 | 557.6 | 1287.0 | ||
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | ||
Adults | |||||||||
Concentration: | 1000 ppm | ||||||||
Crithmum maritimum | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 10.0 ± 2.9 ABa | 13.3 ± 4.4 Aa | 13.3 ± 4.4 Aa | 13.3 ± 4.4 Aab | 13.3 ± 4.4 Ab | 4.9 | <0.04 |
Elwendia persica | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 4.4 ± 1.8 ABb | 5.6 ± 1.8 ABb | 5.6 ± 1.8 ABb | 6.7 ± 1.7 Ab | 6.7 ± 1.7 Ab | 4.0 | <0.02 |
pirimiphos-methyl | 0.0 ± 0.0 D | 0.0 ± 0.0 D | 4.4 ± 1.8 CDb | 7.8 ± 2.2 BCb | 16.7 ± 2.9 ABa | 22.2 ± 2.2 Aa | 23.3 ± 2.4 Aa | 25.8 | <0.01 |
F | - | - | 5.4 | 7.0 | 12.2 | 20.7 | 21.1 | ||
p | - | - | 0.01 | 0.01 | <0.01 | <0.01 | <0.01 |
Exposure | 1 Day | 2 Days | 3 Days | 4 Days | 5 Days | 6 Days | 7 Days | ||
---|---|---|---|---|---|---|---|---|---|
Larvae | |||||||||
EO Type | Concentration: | 500 ppm | F | p | |||||
Crithmum maritimum | 0.0 ± 0.0 Dc | 0.0 ± 0.0 Dd | 13.3 ± 4.1 Cb | 23.3 ± 2.4 Bb | 42.2 ± 4.0 ABb | 61.1 ± 5.6 Aab | 67.8 ± 6.2 Aab | 78.8 | <0.01 |
Smyrnium olusatrum | 17.8 ± 3.6 Ca | 44.4 ± 2.4 Ba | 55.6 ± 3.4 ABa | 68.9 ± 5.4 Aa | 73.3 ± 4.7 Aa | 76.7 ± 3.7 Aa | 77.8 ± 3.2 Aa | 40.1 | <0.01 |
Trachyspermum ammi | 10.0 ± 2.9 Cab | 16.7 ± 3.3 BCbc | 28.9 ± 3.9 ABa | 34.4 ± 5.0 ABb | 51.1 ± 3.9 Ab | 57.8 ± 4.9 Aab | 61.1 ± 4.2 Aabc | 12.4 | <0.01 |
Elwendia persica | 3.3 ± 1.7 Cbc | 8.9 ± 2.0 Bc | 23.3 ± 4.1 Aa | 35.6 ± 3.8 Ab | 38.9 ± 4.2 Ab | 44.4 ± 5.0 Ab | 48.9 ± 3.5 Ac | 24.9 | <0.01 |
pirimiphos-methyl | 20.0 ± 3.3 Ca | 22.2 ± 3.6 Cab | 28.9 ± 3.5 BCa | 35.6 ± 3.4 ABb | 41.1 ± 3.1 ABb | 51.1 ± 4.2 Ab | 56.7 ± 2.9 Abc | 12.7 | <0.01 |
F | 18.9 | 35.1 | 8.2 | 11.2 | 9.3 | 5.4 | 6.2 | ||
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.01 | 0.01 | ||
Concentration: | 1000 ppm | ||||||||
Crithmum maritimum | 12.2 ± 2.8 Bc | 16.7 ± 2.9 Bd | 40.0 ± 6.0 Abc | 61.1 ± 3.5 Ab | 82.2 ± 4.3 Ab | 91.1 ± 3.9 Aab | 91.1 ± 3.9 Aa | 19.2 | <0.01 |
Smyrnium olusatrum | 48.9 ± 3.9 Ca | 78.9 ± 5.6 Ba | 91.1 ± 4.6 ABa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 34.3 | <0.01 |
Trachyspermum ammi | 28.9 ± 2.0 Dab | 52.2 ± 3.2 Cab | 77.8 ± 2.8 Ba | 93.3 ± 3.3 Aa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 134.9 | <0.01 |
Elwendia persica | 22.2 ± 2.8 Dab | 33.3 ± 3.3 Cbc | 51.1 ± 4.8 Bb | 65.7 ± 4.8 ABb | 73.3 ± 5.8 ABb | 81.1 ± 5.1 Ab | 90.0 ± 4.4 Aa | 31.3 | <0.01 |
pirimiphos-methyl | 17.8 ± 2.8 Ebc | 22.2 ± 3.2 DEcd | 27.8 ± 2.2 CDc | 34.4 ± 1.8 BCc | 42.2 ± 1.5 ABc | 53.3 ± 2.9 Ac | 58.9 ± 3.1 Ab | 25.4 | <0.01 |
F | 9.0 | 15.1 | 21.3 | <67.5 | 59.9 | 38.7 | 33.7 | ||
p | <0.01 | <0.01 | <0.01 | 0.01 | <0.01 | <0.01 | <0.01 | ||
Adults | |||||||||
Concentration: | 500 ppm | ||||||||
Smyrnium olusatrum | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 2.2 ± 1.5 AB | 5.6 ± 2.4 ABa | 7.8 ± 3.6 ABa | 10.0 ± 3.7 ABa | 13.3 ± 3.3 Aa | 4.6 | <0.01 |
pirimiphos-methyl | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 0.0 ± 0.0 b | - | - |
F | - | - | 2.3 | 6.3 | 6.1 | 9.6 | 25.8 | ||
p | - | - | 0.08 | 0.01 | 0.01 | <0.01 | <0.01 | ||
Concentration: | 1000 ppm | ||||||||
Crithmum maritimum | 0.0 ± 0.0 B | 0.0 ± 0.0 Bb | 0.0 ± 0.0 Bb | 0.0 ± 0.0 Bc | 1.1 ± 1.1 ABc | 2.2 ± 1.5 ABcd | 5.6 ± 2.4 Ac | 3.2 | <0.01 |
Smyrnium olusatrum | 0.0 ± 0.0 E | 26.7 ± 2.4 Da | 46.7 ± 5.0 Ca | 58.9 ± 5.4 BCa | 71.1 ± 3.5 ABa | 77.8 ± 2.8 ABa | 81.1 ± 2.6 Aa | 457.0 | <0.01 |
Trachyspermum ammi | 0.0 ± 0.0 B | 0.0 ± 0.0 Bb | 1.1 ± 1.1 ABb | 2.2 ± 1.5 ABc | 4.4 ± 1.8 Abc | 5.6 ± 2.4 Ac | 5.6 ± 2.4 Ac | 2.4 | 0.04 |
Elwendia persica | 0.0 ± 0.0 C | 0.0 ± 0.0 Cb | 3.3 ± 1.7 BCb | 6.7 ± 1.7 ABb | 7.8 ± 1.5 ABb | 13.3 ± 1.7 Ab | 13.3 ± 1.7 Ab | 18.7 | <0.01 |
pirimiphos-methyl | 0.0 ± 0.0 | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 0.0 ± 0.0 c | 0.0 ± 0.0 c | 0.0 ± 0.0 d | 0.0 ± 0.0 c | - | - |
F | - | 1550.2 | 53.2 | 49.3 | 39.1 | 45.4 | 33.9 | ||
p | - | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Exposure | 1 Day | 2 Days | 3 Days | 4 Days | 5 Days | 6 Days | 7 Days | ||
---|---|---|---|---|---|---|---|---|---|
Larvae | |||||||||
EO Type | Concentration: | 500 ppm | F | p | |||||
Crithmum maritimum | 0.0 ± 0.0 Ed | 3.3 ± 1.7 DEc | 5.6 ± 1.8 CDc | 12.2 ± 2.2 BCb | 16.7 ± 2.4 ABc | 22.2 ± 3.6 ABc | 36.7 ± 5.0 Ac | 23.5 | <0.01 |
Smyrnium olusatrum | 33.3 ± 4.7 Ba | 51.1 ± 4.8 Aa | 57.8 ± 5.5 Aa | 61.1 ± 4.8 Aa | 62.2 ± 4.0 Aa | 65.6 ± 3.4 Aa | 65.6 ± 3.4 Aab | 6.3 | <0.01 |
Trachyspermum ammi | 25.6 ± 3.8 Cab | 41.1 ± 6.1 BCab | 47.8 ± 5.7 ABCab | 52.2 ± 6.6 ABa | 64.4 ± 3.4 ABa | 75.6 ± 4.4 Aa | 80.0 ± 4.1 Aa | 7.9 | <0.01 |
Elwendia persica | 6.7 ± 1.7 Dc | 15.6 ± 2.6 Cb | 20.0 ± 3.3 BCb | 32.2 ± 2.2 ABa | 36.7 ± 2.4 ABb | 41.1 ± 3.9 ABb | 50.0 ± 1.7 Ab | 20.0 | <0.01 |
pirimiphos-methyl | 14.4 ± 3.8 Cbc | 24.4 ± 2.9 Bab | 32.2 ± 3.2 ABab | 43.3 ± 2.9 ABa | 55.6 ± 2.4 Aa | 62.2 ± 3.2 Aa | 67.8 ± 2.8 Aab | 14.7 | <0.01 |
F | 23.0 | 28.2 | 21.8 | 15.2 | 53.4 | 29.1 | 19.0 | ||
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | ||
Concentration: | 1000 ppm | ||||||||
Crithmum maritimum | 12.2 ± 3.2 Ccd | 24.4 ± 3.8 Bb | 37.8 ± 4.9 ABbc | 48.9 ± 6.1 ABb | 63.3 ± 6.5 Abc | 76.7 ± 8.0 Abc | 82.2 ± 7.6 Abc | 15.0 | <0.01 |
Smyrnium olusatrum | 38.9 ± 3.5 Cab | 73.3 ± 3.3 Ba | 81.1 ± 2.6 ABa | 86.7 ± 3.3 ABa | 87.8 ± 3.2 ABa | 90.0 ± 2.9 ABab | 96.7 ± 1.7 Aab | 41.0 | <0.01 |
Trachyspermum ammi | 60.0 ± 6.9 Ca | 75.6 ± 5.3 Ba | 86.7 ± 4.1 ABa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 18.8 | <0.01 |
Elwendia persica | 6.7 ± 1.7 Cd | 24.4 ± 1.8 Bb | 47.8 ± 2.2 ABb | 60.0 ± 3.7 Ab | 81.1 ± 5.6 Aab | 87.8 ± 6.0 Aab | 94.4 ± 2.9 Aab | 41.9 | <0.01 |
pirimiphos-methyl | 16.7 ± 2.2 Ebc | 25.6 ± 2.4 Db | 31.1 ± 2.6 CDc | 43.3 ± 3.3 BCb | 57.8 ± 4.5 ABc | 64.4 ± 3.4 Ac | 68.9 ± 2.0 Ac | 37.6 | <0.01 |
F | 13.9 | 40.5 | 25.3 | 19.7 | 10.6 | 6.7 | 9.8 | ||
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | ||
Adults | |||||||||
Concentration: | 500 ppm | ||||||||
Elwendia persica | 0.0 ± 0.0 | 0.0 ± 0.0 | 2.2 ± 1.5 | 3.3 ± 1.7 a | 3.3 ± 1.7 a | 4.4 ± 1.8 a | 4.4 ± 1.8 a | 1.8 | 0.11 |
pirimiphos-methyl | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 0.0 ± 0.0 b | - | - |
F | - | - | 2.3 | 4.0 | 4.0 | 6.4 | 6.4 | ||
p | - | - | 0.08 | 0.01 | 0.01 | 0.01 | 0.01 | ||
Concentration: | 1000 ppm | ||||||||
Crithmum maritimum | 2.2 ± 1.5 | 2.2 ± 1.5 | 2.2 ± 1.5 ab | 2.2 ± 1.5 ab | 5.6 ± 1.8 a | 5.6 ± 1.8 ab | 7.8 ± 2.2 a | 1.7 | 0.14 |
Smyrnium olusatrum | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 0.0 ± 0.0 Bb | 4.4 ± 1.8 ABab | 5.6 ± 1.8 ABa | 8.9 ± 3.1 Aa | 10.0 ± 2.9 Aa | 5.5 | <0.01 |
Trachyspermum ammi | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 0.0 ± 0.0 Bb | 0.0 ± 0.0 Bb | 0.0 ± 0.0 Bb | 2.2 ± 1.5 Bab | 13.3 ± 2.9 Aa | 24.2 | <0.01 |
Elwendia persica | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 5.6 ± 1.8 ABa | 6.7 ± 1.7 Aa | 7.8 ± 2.2 Aa | 7.8 ± 2.2 Aa | 8.9 ± 2.0 Aa | 5.6 | <0.01 |
pirimiphos-methyl | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 0.0 ± 0.0 b | - | - |
F | 2.3 | 2.3 | 5.7 | 5.2 | 6.0 | 3.6 | 6.5 | ||
p | 0.08 | 0.08 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Exposure | 1 Day | 2 Days | 3 Days | 4 Days | 5 Days | 6 Days | 7 Days | ||
---|---|---|---|---|---|---|---|---|---|
Larvae | |||||||||
EO Type | Concentration: | 500 ppm | F | p | |||||
Smyrnium olusatrum | 0.0 ± 0.0 B | 0.0 ± 0.0 Bb | 0.0 ± 0.0 Bb | 3.3 ± 1.7 ABb | 4.4 ± 1.8 ABb | 7.8 ± 2.8 Ab | 11.1 ± 2.6 Ab | 6.6 | <0.01 |
pirimiphos-methyl | 1.1 ± 1.1 D | 4.4 ± 2.4 CDa | 7.8 ± 2.2 BCa | 11.1 ± 2.0 ABa | 13.3 ± 1.7 ABa | 20.0 ± 2.9 Aa | 30.0 ± 2.4 Aa | 15.7 | <0.01 |
F | 1.0 | 3.9 | 15.6 | 19.7 | 34.8 | 35.4 | 72.6 | ||
p | 0.42 | 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | ||
Concentration: | 1000 ppm | ||||||||
Crithmum maritimum | 0.0 ± 0.0 B | 0.0 ± 0.0 Bb | 0.0 ± 0.0 Bb | 1.1 ± 1.1 ABb | 2.2 ± 1.5 ABb | 3.3 ± 1.7 ABb | 4.4 ± 1.8 Ab | 2.4 | 0.04 |
Smyrnium olusatrum | 0.0 ± 0.0 C | 2.2 ± 1.5 Cab | 5.6 ± 1.8 BCa | 10.0 ± 2.4 ABa | 12.2 ± 3.2 ABa | 15.6 ± 3.8 ABa | 18.9 ± 3.1 Aa | 10.1 | <0.01 |
Elwendia persica | 0.0 ± 0.0 | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 1.1 ± 1.1 b | 1.1 ± 1.1 b | 2.2 ± 1.5 bc | 1.2 | 0.34 |
pirimiphos-methyl | 2.2 ± 1.5 D | 5.6 ± 1.8 CDa | 6.7 ± 1.7 BCDa | 8.9 ± 1.1 ABCa | 14.4 ± 3.4 ABCa | 18.9 ± 2.6 ABa | 31.1 ± 1.1 Aa | 10.3 | <0.01 |
F | 2.3 | 5.7 | 9.7 | 20.2 | 13.0 | 23.8 | 35.4 | ||
p | 0.08 | 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | ||
Adults | |||||||||
Concentration: | 500 ppm | ||||||||
Smyrnium olusatrum | 2.2 ± 1.5 Bb | 4.4 ± 2.4 Bc | 7.8 ± 2.2 Bc | 26.7 ± 4.4 Ab | 40.0 ± 3.7 Ab | 67.8 ± 4.7 Ab | 75.6 ± 2.9 Ab | 26.5 | <0.01 |
Trachyspermum ammi | 13.3 ± 3.3 Ca | 41.1 ± 7.2 Ba | 64.4 ± 6.3 ABa | 87.8 ± 4.7 Aa | 96.9 ± 1.7 Aa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 23.3 | <0.01 |
Elwendia persica | 0.0 ± 0.0 Bb | 0.0 ± 0.0 Bc | 1.1 ± 1.1 ABd | 2.2 ± 1.5 ABc | 6.7 ± 2.4 ABc | 6.7 ± 2.4 ABc | 7.8 ± 2.2 Ac | 4.7 | <0.01 |
pirimiphos-methyl | 7.8 ± 1.5 Ea | 12.2 ± 2.2 DEb | 21.1 ± 2.0 CDb | 32.2 ± 1.5 BCb | 42.2 ± 2.8 ABb | 51.1 ± 2.6 ABb | 64.4 ± 2.9 Ab | 30.5 | <0.01 |
F | 12.5 | 52.7 | 59.0 | 67.2 | 84.9 | 97.9 | 112.9 | ||
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | ||
Concentration: | 1000 ppm | ||||||||
Crithmum maritimum | 0.0 ± 0.0 c | 0.0 ± 0.0 c | 0.0 ± 0.0 d | 0.0 ± 0.0 d | 0.0 ± 0.0 d | 0.0 ± 0.0 d | 1.1 ± 1.1 d | 1.0 | 0.44 |
Smyrnium olusatrum | 6.7 ± 1.7 Db | 15.6 ± 3.4 CDb | 20.0 ± 2.4 BCb | 41.1 ± 3.5 ABb | 65.6 ± 4.4 Ab | 88.9 ± 4.6 Aa | 96.7 ± 2.4 Aa | 27.7 | <0.01 |
Trachyspermum ammi | 27.8 ± 2.8 Ca | 77.8 ± 4.7 Ba | 94.4 ± 2.4 Aa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 115.5 | <0.01 |
Elwendia persica | 1.1 ± 1.1 Cc | 4.4 ± 2.9 Cc | 7.8 ± 4.3 BCc | 14.4 ± 4.4 ABc | 21.1 ± 3.9 Ac | 21.1 ± 3.9 Ac | 26.7 ± 4.4 A c | 12.3 | <0.01 |
pirimiphos-methyl | 10.0 ± 1.7 Db | 13.3 ± 2.4 CDb | 24.4 ± 3.8 BCb | 35.6 ± 2.4 ABb | 44.4 ± 2.4 ABb | 56.7 ± 3.3 Ab | 68.9 ± 1.1 Ab | 19.8 | <0.01 |
F | 29.6 | 34.3 | 51.7 | 75.7 | 386.9 | 440.7 | 159.3 | ||
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Exposure | 1 Day | 2 Days | 3 Days | 4 Days | 5 Days | 6 Days | 7 Days | ||
---|---|---|---|---|---|---|---|---|---|
Larvae | |||||||||
EO Type | Concentration: | 500 ppm | F | p | |||||
Smyrnium olusatrum | 3.3 ± 1.7 D | 7.8 ± 2.2 CDa | 17.8 ± 3.6 BCa | 27.8 ± 5.2 ABa | 31.1 ± 5.4 ABa | 47.8 ± 5.5 ABa | 50.0 ± 5.0 Aa | 16.3 | <0.01 |
Trachyspermum ammi | 3.3 ± 1.7 C | 6.6 ± 1.7 BCa | 17.8 ± 3.2 ABa | 26.7 ± 5.5 Aa | 35.6 ± 5.3 Aa | 41.1 ± 5.1 Aa | 41.1 ± 5.1 Aa | 13.0 | <0.01 |
pirimiphos-methyl | 2.2 ± 1.5 C | 3.3 ± 1.7 Cab | 6.7 ± 1.7 BCa | 15.6 ± 2.9 ABb | 20.0 ± 2.9 Aa | 23.3 ± 2.4 Ab | 26.7 ± 2.9 Ab | 14.8 | <0.01 |
F | 1.8 | 6.7 | 21.1 | 59.3 | 170.5 | 457.0 | 457.7 | ||
p | 0.14 | 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | ||
Concentration: | 1000 ppm | ||||||||
Crithmum maritimum | 0.0 ± 0.0 Cb | 0.0 ± 0.0 Cb | 0.0 ± 0.0 Cb | 3.3 ± 1.7 BCc | 12.2 ± 4.7 ABc | 14.4 ± 4.1 ABb | 17.8 ± 4.0 Ac | 11.3 | <0.01 |
Smyrnium olusatrum | 13.3 ± 3.3 Ca | 32.2 ± 4.3 Ba | 54.4 ± 5.3 ABa | 63.3 ± 5.5 ABa | 72.2 ± 4.9 Aa | 86.7 ± 4.1 Aa | 93.3 ± 2.9 Aa | 18.9 | <0.01 |
Trachyspermum ammi | 8.9 ± 2.0 Ca | 23.3 ± 2.9 Ba | 41.1 ± 4.2 ABa | 47.8 ± 4.7 ABa | 55.6 ± 5.0 Aa | 63.3 ± 5.3 Aa | 68.9 ± 4.6 Aab | 22.4 | <0.01 |
Elwendia persica | 0.0 ± 0.0 Bb | 0.0 ± 0.0 Bb | 0.0 ± 0.0 Bb | 0.0 ± 0.0 Bc | 0.0 ± 0.0 Bd | 2.2 ± 1.5 ABc | 4.4 ± 2.4 Ad | 2.8 | 0.02 |
pirimiphos-methyl | 1.1 ± 1.1 Cb | 3.3 ± 1.7 Cb | 8.9 ± 3.1 BCb | 13.3 ± 2.4 ABb | 17.8 ± 2.2 Ab | 21.1 ± 3.9 Ab | 25.6 ± 3.4 Abc | 14.5 | <0.01 |
F | 15.0 | 70.1 | 57.4 | 57.7 | 46.9 | 34.6 | 30.7 | ||
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | ||
Adults | |||||||||
Concentration: | 500 ppm | ||||||||
Crithmum maritimum | 0.0 ± 0.0 Eb | 5.6 ± 1.8 Dc | 8.9 ± 1.1 CDc | 14.4 ± 3.4 BCDc | 21.1 ± 5.9 ABCc | 42.2 ± 7.2 ABb | 48.9 ± 6.8 Ab | 21.7 | <0.01 |
Smyrnium olusatrum | 0.0 ± 0.0 Cb | 27.8 ± 2.8 Ba | 42.2 ± 5.2 Bab | 70.0 ± 8.3 Aa | 80.0 ± 6.7 Aa | 81.1 ± 6.1 Aa | 81.1 ± 6.1 Aa | 274.2 | <0.01 |
Trachyspermum ammi | 18.9 ± 2.6 Ca | 40.0 ± 4.1 Ba | 57.8 ± 4.3 ABa | 65.6 ± 4.4 ABa | 71.1 ± 4.8 ABab | 77.8 ± 4.3 Aa | 78.9 ± 4.6 Aa | 13.7 | <0.01 |
Elwendia persica | 0.0 ± 0.0 Cb | 8.9 ± 2.6 Bbc | 30.0 ± 3.7 Ab | 32.2 ± 4.3 Ab | 35.6 ± 3.4 Ab | 38.9 ± 3.1 Ab | 42.2 ± 2.8 Ab | 51.0 | <0.01 |
pirimiphos-methyl | 13.3 ± 1.7 Da | 18.9 ± 2.6 Dab | 32.2 ± 2.8 Cab | 43.3 ± 4.4 BCab | 52.2 ± 4.0 ABab | 63.3 ± 3.3 ABa | 72.2 ± 3.6 Aa | 45.1 | <0.01 |
F | 82.1 | 11.8 | 20.8 | 15.0 | 12.4 | 11.8 | 12.8 | ||
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | ||
Concentration: | 1000 ppm | ||||||||
Crithmum maritimum | 3.3 ± 1.7 Dbc | 16.7 ± 3.3 Cc | 33.3 ± 4.4 BCc | 43.3 ± 4.7 ABb | 57.8 ± 3.2 ABb | 81.1 ± 3.5 ABb | 91.1 ± 2.6 Aa | 29.5 | <0.01 |
Smyrnium olusatrum | 25.6 ± 5.8 Ba | 58.9 ± 5.9 Aa | 91.1 ± 4.6 Aa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 15.9 | <0.01 |
Trachyspermum ammi | 24.4 ± 5.6 Ca | 44.4 ± 6.0 Bab | 66.7 ± 7.5 ABab | 88.9 ± 7.5 ABa | 97.8 ± 2.2 Aa | 98.7 ± 1.1 Aab | 100.0 ± 0.0 Aa | 13.6 | <0.01 |
Elwendia persica | 0.0 ± 0.0 Ec | 16.7 ± 2.4 Dc | 42.2 ± 3.2 Cbc | 56.7 ± 4.7 BCb | 80.0 ± 7.3 ABa | 87.8 ± 6.0 Aab | 87.8 ± 6.0 Aa | 321.7 | <0.01 |
pirimiphos-methyl | 13.3 ± 4.7 Cab | 18.9 ± 5.1 BCbc | 31.1 ± 3.5 ABc | 42.2 ± 4.3 ABb | 54.4 ± 4.4 Ab | 64.4 ± 4.8 Ac | 70.0 ± 5.8 Ab | 14.5 | <0.01 |
F | 11.0 | 7.6 | 15.7 | 24.2 | 20.3 | 12.4 | 8.6 | ||
p | <0.01 | 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Exposure | 1 Day | 2 Days | 3 Days | 4 Days | 5 Days | 6 Days | 7 Days | ||
---|---|---|---|---|---|---|---|---|---|
Larvae | |||||||||
EO Type | Concentration: | 500 ppm | F | p | |||||
Crithmum maritimum | 0.0 ± 0.0 Cb | 0.0 ± 0.0 Cc | 3.3 ± 1.7 Cc | 10.0 ± 2.4 Bb | 13.3 ± 2.4 ABb | 20.0 ± 2.9 ABb | 26.7 ± 4.1 Aa | 27.4 | <0.01 |
Smyrnium olusatrum | 23.3 ± 3.3 Ba | 40.0 ± 5.3 ABa | 47.8 ± 5.2 Aa | 53.3 ± 5.0 Aa | 57.8 ± 6.2 Aa | 57.8 ± 6.2 Aa | 57.8 ± 6.2 Aa | 7.4 | <0.01 |
Trachyspermum ammi | 3.3 ± 1.7 Bb | 10.0 ± 2.9 Bb | 28.9 ± 4.2 Aab | 37.8 ± 6.0 Aa | 44.4 ± 4.4 Aa | 47.8 ± 4.7 Aab | 53.3 ± 4.1 Aa | 21.0 | <0.01 |
Elwendia persica | 0.0 ± 0.0 Bb | 0.0 ± 0.0 Bc | 0.0 ± 0.0 Bc | 0.0 ± 0.0 Bc | 3.3 ± 1.7 ABc | 5.6 ± 2.4 ABc | 6.7 ± 2.4 Ab | 4.7 | <0.01 |
pirimiphos-methyl | 2.2 ± 1.5 Db | 10.0 ± 2.4 Cb | 16.7 ± 2.4 BCb | 25.6 ± 2.9 ABa | 35.6 ± 4.4 ABa | 45.6 ± 5.3 Aab | 62.2 ± 5.2 Aa | 31.2 | <0.01 |
F | 26.9 | 29.4 | 61.9 | 58.0 | 29.2 | 26.2 | 25.3 | ||
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | ||
Concentration: | 1000 ppm | ||||||||
Crithmum maritimum | 6.7 ± 1.7 Cb | 12.2 ± 1.5 Bbc | 15.6 ± 2.4 Bb | 28.9 ± 4.2 ABb | 38.9 ± 5.6 Ab | 46.7 ± 5.8 Ab | 61.1 ± 7.2 Ab | 19.0 | <0.01 |
Smyrnium olusatrum | 34.4 ± 3.8 Ca | 72.2 ± 2.8 Ba | 85.6 ± 3.4 ABa | 96.7 ± 1.7 Aa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 71.3 | <0.01 |
Trachyspermum ammi | 34.4 ± 2.9 Da | 47.8 ± 2.8 Ca | 67.8 ± 2.8 Ba | 87.8 ± 3.2 Aa | 96.7 ± 1.7 Aa | 100.0 ± 10.0 Aa | 100.0 ± 0.0 Aa | 90.2 | <0.01 |
Elwendia persica | 11.1 ± 2.0 Db | 14.4 ± 1.8 CDb | 16.7 ± 1.7 CDb | 26.7 ± 2.9 BCb | 36.7 ± 3.3 ABb | 46.7 ± 3.7 ABb | 53.3 ± 2.9 Ab | 20.1 | <0.01 |
pirimiphos-methyl | 2.2 ± 1.5 Db | 8.9 ± 2.0 Cc | 14.4 ± 2.4 BCb | 26.7 ± 2.9 ABb | 30.0 ± 2.4 ABb | 43.3 ± 3.3 Ab | 63.3 ± 3.7 Ab | 27.5 | <0.01 |
F | 21.1 | 29.0 | 29.9 | 50.4 | 43.9 | 32.3 | 21.2 | ||
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | ||
Adults | |||||||||
Concentration: | 500 ppm | ||||||||
Crithmum maritimum | 3.3 ± 1.7 Dab | 10.0 ± 1.7 Ca | 17.8 ± 2.8 BCa | 23.3 ± 2.4 ABCa | 25.6 ± 2.4 ABCa | 35.6 ± 4.1 ABa | 43.3 ± 4.4 Aa | 16.7 | <0.01 |
Smyrnium olusatrum | 14.4 ± 4.4 Ba | 21.1 ± 4.8 ABa | 27.8 ± 5.2 Aa | 30.0 ± 5.0 Aa | 33.3 ± 4.4 Aa | 35.6 ± 4.4 Aa | 41.1 ± 3.1 Aa | 4.7 | <0.01 |
Trachyspermum ammi | 0.0 ± 0.0 Db | 12.2 ± 1.5 Ca | 27.8 ± 2.8 Ba | 34.4 ± 3.4 ABa | 37.8 ± 3.6 ABa | 42.2 ± 4.0 Aa | 48.9 ± 3.5 Aa | 232.0 | <0.01 |
Elwendia persica | 5.6 ± 1.8 Cab | 8.9 ± 2.6 BCab | 14.4 ± 2.9 ABCa | 18.9 ± 2.6 ABa | 25.6 ± 2.9 Aa | 30.0 ± 33.3 Aa | 33.3 ± 1.7 Aa | 9.3 | <0.01 |
pirimiphos-methyl | 2.2 ± 1.5 Bab | 2.2 ± 1.5 Bb | 3.3 ± 1.7 ABb | 6.7 ± 1.7 ABb | 7.8 ± 1.5 ABb | 8.9 ± 1.1 Ab | 8.9 ± 1.1 Ab | 4.5 | <0.01 |
F | 4.1 | 7.0 | 12.1 | 12.6 | 13.6 | 15.0 | 26.9 | ||
p | 0.01 | 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | ||
Concentration: | 1000 ppm | ||||||||
Crithmum maritimum | 12.2 ± 2.2 Da | 25.6 ± 3.8 Ca | 36.7 ± 4.7 BCb | 53.3 ± 4.4 ABa | 56.7 ± 4.7 ABa | 72.2 ± 4.0 Aa | 77.8 ± 4.3 Aa | 20.7 | <0.01 |
Smyrnium olusatrum | 26.7 ± 4.7 Ca | 36.7 ± 5.8 BCa | 48.9 ± 5.9 ABCb | 60.0 ± 5.0 ABa | 67.8 ± 4.7 ABa | 71.1 ± 4.6 ABa | 75.6 ± 3.4 Aa | 5.0 | <0.01 |
Trachyspermum ammi | 0.0 ± 0.0 Db | 26.7 ± 4.1 Ca | 52.2 ± 4.3 Bb | 64.4 ± 4.8 ABa | 67.8 ± 4.3 ABa | 68.9 ± 3.5 ABa | 76.7 ± 2.4 Aa | 315.9 | <0.01 |
Elwendia persica | 10.0 ± 1.7 Da | 22.2 ± 2.8 Ca | 31.1 ± 2.6 BCb | 42.2 ± 4.0 ABa | 48.9 ± 3.1 ABa | 63.3 ± 3.7 Aa | 65.6 ± 3.8 Aa | 26.5 | <0.01 |
pirimiphos-methyl | 1.1 ± 1.1 b | 2.2 ± 1.5 b | 3.3 ± 1.7 a | 6.7 ± 3.7 b | 7.8 ± 3.6 b | 8.9 ± 3.9 b | 11.1 ± 3.5 b | 1.4 | 0.21 |
F | 22.6 | 18.7 | 39.0 | 32.1 | 29.2 | 28.6 | 25.1 | ||
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Exposure | 1 Day | 2 Days | 3 Days | 4 Days | 5 Days | 6 Days | 7 Days | ||
---|---|---|---|---|---|---|---|---|---|
EO Type | Concentration | 500 ppm | F | p | |||||
Crithmum maritimum | 2.2 ± 1.5 Bb | 8.9 ± 2.6 ABc | 11.1 ± 2.0 Ab | 15.6 ± 2.9 Ab | 15.6 ± 2.9 Ab | 16.7 ± 3.3 Ac | 17.8 ± 3.2 Ac | 4.6 | <0.01 |
Smyrnium olusatrum | 5.6 ± 2.4 Ca | 13.3 ± 4.1 BCb | 26.7 ± 4.4 ABab | 31.1 ± 4.6 ABab | 33.3 ± 4.7 ABab | 36.7 ± 4.4 ABab | 41.1 ± 4.6 Ab | 6.1 | <0.01 |
Elwendia persica | 3.3 ± 1.7 Cb | 6.7 ± 1.7 BCc | 12.2 ± 2.2 ABab | 17.8 ± 1.5 Aab | 23.3 ± 2.4 Aab | 24.4 ± 1.8 Abc | 24.4 ± 1.8 Abc | 13.9 | <0.01 |
pirimiphos-methyl | 7.8 ± 2.2 Da | 20.0 ± 2.4 Ca | 30.0 ± 2.9 BCa | 44.4 ± 1.8 ABa | 54.4 ± 2.9 ABa | 68.9 ± 3.1 Aa | 80.0 ± 2.9 Aa | 29.5 | <0.01 |
F | 3.0 | 9.2 | 25.2 | 37.1 | 40.0 | 85.7 | 98.3 | ||
p | 0.03 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | ||
Concentration: | 1000 ppm | ||||||||
Crithmum maritimum | 18.9 ± 2.0 Ca | 42.2 ± 2.8 Bab | 50.0 ± 2.9 ABb | 53.3 ± 3.7 ABb | 61.1 ± 4.8 Ab | 65.6 ± 5.6 Ab | 68.9 ± 4.6 Abc | 29.4 | <0.01 |
Smyrnium olusatrum | 24.4 ± 1.8 Ca | 57.8 ± 3.2 Ba | 83.3 ± 3.7 Aa | 88.9 ± 3.1 Aa | 92.2 ± 2.2 Aa | 95.6 ± 1.8 Aa | 95.6 ± 1.8 Aa | 133.4 | <0.01 |
Trachyspermum ammi | 17.8 ± 2.8 Da | 22.2 ± 2.8 CDbc | 26.7 ± 3.3 BCDcd | 32.2 ± 4.3 ABCc | 35.6 ± 4.1 ABCc | 41.1 ± 3.1 ABc | 45.6 ± 2.4 Ad | 8.0 | <0.01 |
Elwendia persica | 6.7 ± 1.7 Db | 11.1 ± 2.6 CDd | 18.9 ± 2.6 BCd | 31.1 ± 4.6 ABc | 37.8 ± 4.9 ABc | 43.3 ± 6.2 ABc | 56.7 ± 6.5 Acd | 13.5 | <0.01 |
pirimiphos-methyl | 4.4 ± 2.4 Db | 17.8 ± 3.6 Ccd | 30.0 ± 2.9 BCc | 41.1 ± 2.6 ABbc | 53.3 ± 2.4 ABb | 68.9 ± 2.6 Aab | 82.2 ± 4.0 Aab | 41.6 | <0.01 |
F | 13.0 | 13.8 | 29.1 | 17.0 | 21.0 | 18.6 | 21.0 | ||
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Exposure | 1 Day | 2 Days | 3 Days | 4 Days | 5 Days | 6 Days | 7 Days | ||
---|---|---|---|---|---|---|---|---|---|
EO Type | Concentration: | 500 ppm | F | p | |||||
Crithmum maritimum | 3.3 ± 1.7 Cbc | 10.0 ± 1.7 Bc | 14.4 ± 1.8 ABc | 17.8 ± 2.2 ABCc | 28.9 ± 3.5 Ab | 31.1 ± 3.1 Ab | 33.3 ± 3.3 Ab | 21.3 | <0.01 |
Smyrnium olusatrum | 20.0 ± 3.3 Ba | 48.9 ± 3.9 Aa | 56.7 ± 2.4 Aa | 68.9 ± 2.0 Aa | 85.6 ± 4.1 Aa | 87.8 ± 3.6 Aa | 90.0 ± 2.9 Aa | 18.3 | <0.01 |
Elwendia persica | 0.0 ± 0.0 Bc | 0.0 ± 0.0 Bd | 0.0 ± 0.0 Bd | 0.0 ± 0.0 Bd | 3.3 ± 1.7 ABc | 6.7 ± 2.4 Ac | 6.7 ± 2.4 Ac | 5.6 | <0.01 |
pirimiphos-methyl | 10.0 ± 2.9 Dab | 22.2 ± 2.2 Cb | 40.0 ± 2.4 BCb | 47.8 ± 2.8 ABb | 65.6 ± 2.9 ABa | 74.4 ± 3.8 ABa | 91.1 ± 3.1 Aa | 31.5 | <0.01 |
F | 17.1 | 171.1 | 1078.4 | 1081.3 | 117.2 | 88.9 | 94.1 | ||
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | ||
Concentration: | 1000 ppm | ||||||||
Crithmum maritimum | 17.8 ± 3.6 Da | 38.9 ± 5.1 Cab | 52.2 ± 6.2 BCab | 67.8 ± 7.4 ABa | 78.9 ± 6.3 ABa | 86.7 ± 6.7 Aa | 94.4 ± 4.4 Aa | 30.9 | <0.01 |
Smyrnium olusatrum | 82.2 ± 5.5 Ba | 97.8 ± 1.5 Aa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 12.7 | <0.01 |
Trachyspermum ammi | 3.3 ± 1.7 bc | 3.3 ± 1.7 c | 4.4 ± 1.8 c | 5.6 ± 2.4 b | 6.7 ± 2.4 b | 7.8 ± 2.2 b | 8.9 ± 2.0 b | 1.1 | 0.39 |
Elwendia persica | 0.0 ± 0.0 Bc | 0.0 ± 0.0 Bd | 0.0 ± 0.0 Bd | 3.3 ± 1.7 ABb | 3.3 ± 1.7 ABb | 6.7 ± 1.7 Ab | 11.1 ± 3.1 Ab | 6.1 | <0.01 |
pirimiphos-methyl | 8.9 ± 2.0 Dab | 24.4 ± 2.4 Cb | 38.9 ± 2.0 BCb | 50.0 ± 2.4 ABa | 65.6 ± 3.4 ABa | 77.8 ± 4.3 Aa | 93.3 ± 4.1 Aa | 35.2 | <0.01 |
F | 12.6 | 96.6 | 103.8 | 43.3 | 44.5 | 34.8 | 28.4 | ||
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Exposure | 1 Day | 2 Days | 3 Days | 4 Days | 5 Days | 6 Days | 7 Days | ||
---|---|---|---|---|---|---|---|---|---|
Nymphs | |||||||||
EO Type | Concentration: | 500 ppm | F | p | |||||
Crithmum maritimum | 0.0 ± 0.0 D | 1.1 ± 1.1 CD | 3.3 ± 1.7 BCDb | 6.7 ± 2.9 ABCDbc | 11.1 ± 3.9 ABCbc | 13.3 ± 4.4 ABbc | 17.8 ± 4.5 Ab | 6.4 | <0.01 |
Smyrnium olusatrum | 1.1 ± 1.1 C | 1.1 ± 1.1 C | 3.3 ± 1.7 Cb | 17.8 ± 2.8 Ba | 24.4 ± 2.9 ABa | 40.0 ± 7.1 ABa | 55.6 ± 6.3 Aa | 48.2 | <0.01 |
Trachyspermum ammi | 1.1 ± 1.1 C | 1.1 ± 1.1 C | 2.2 ± 2.2 Cb | 14.4 ± 3.4 Bab | 18.9 ± 3.5 ABab | 30.0 ± 5.5 ABab | 47.8 ± 4.0 Aa | 37.6 | <0.01 |
Elwendia persica | 0.0 ± 0.0 C | 0.0 ± 0.0 C | 0.0 ± 0.0 Cb | 1.1 ± 1.1 BCc | 3.3 ± 1.7 ABCc | 5.6 ± 1.8 ABc | 6.7 ± 1.7 Ab | 5.7 | <0.01 |
pirimiphos-methyl | 1.1 ± 1.1 C | 3.3 ± 1.7 C | 11.1 ± 2.0 Ba | 21.1 ± 3.9 ABa | 27.8 ± 5.2 ABa | 42.2 ± 5.2 Aa | 52.2 ± 4.7 Aa | 35.4 | <0.01 |
F | 0.5 | 1.1 | 7.2 | 14.5 | 11.7 | 11.9 | 17.2 | ||
p | 0.74 | 0.35 | 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | ||
Concentration: | 1000 ppm | ||||||||
Crithmum maritimum | 2.2 ± 1.5 C | 6.7 ± 2.9 BCab | 10.0 ± 3.3 ABCa | 16.7 ± 5.3 ABCa | 22.2 ± 5.7 ABab | 25.6 ± 5.6 ABab | 32.2 ± 7.4 Aab | 5.0 | <0.01 |
Smyrnium olusatrum | 3.3 ± 1.7 C | 7.8 ± 1.5 Ba | 11.1 ± 2.0 Ba | 35.6 ± 4.4 Aa | 43.3 ± 5.3 Aa | 52.2 ± 4.9 Aa | 63.3 ± 4.1 Aa | 26.3 | <0.01 |
Trachyspermum ammi | 1.1 ± 1.1 C | 5.6 ± 1.8 Cab | 7.8 ± 2.2 BCa | 28.9 ± 6.3 ABa | 34.4 ± 7.1 Aa | 44.4 ± 5.0 Aa | 56.7 ± 6.7 Aa | 16.8 | <0.01 |
Elwendia persica | 0.0 ± 0.0 B | 0.0 ± 0.0 Bb | 0.0 ± 0.0 Bb | 3.3 ± 2.4 Bb | 6.7 ± 2.4 ABb | 12.2 ± 3.2 Ab | 15.6 ± 4.4 Ab | 9.6 | <0.01 |
pirimiphos-methyl | 1.1 ± 1.1 D | 2.2 ± 1.5 Dab | 7.8 ± 1.5 Ca | 15.6 ± 2.4 BCa | 25.6 ± 4.1 ABCa | 41.1 ± 3.1 ABa | 53.3 ± 2.9 Aa | 25.3 | <0.01 |
F | 1.1 | 1.0 | 6.4 | 9.1 | 5.4 | 7.8 | 7.9 | ||
p | 0.38 | 0.01 | 0.01 | <0.01 | 0.01 | <0.01 | <0.01 | ||
Adults | |||||||||
Concentration: | 500 ppm | ||||||||
Crithmum maritimum | 2.2 ± 1.5 D | 4.4 ± 1.8 CDb | 7.8 ± 2.2 BCDb | 12.2 ± 2.8 ABCbc | 17.8 ± 3.6 ABbc | 21.1 ± 4.2 ABbc | 26.7 ± 4.7 Ab | 8.0 | <0.01 |
Smyrnium olusatrum | 2.2 ± 1.5 C | 3.3 ± 1.7 Cb | 7.8 ± 2.2 Cb | 22.2 ± 4.9 Bab | 30.0 ± 5.8 ABab | 46.7 ± 7.3 ABa | 67.8 ± 2.8 Aa | 26.7 | <0.01 |
Trachyspermum ammi | 2.2 ± 1.5 B | 4.4 ± 5.3 Bb | 7.8 ± 2.8 Bb | 22.2 ± 3.2 Aab | 26.7 ± 4.1 Aab | 37.8 ± 4.7 Aab | 55.6 ± 4.8 Aa | 22.1 | <0.01 |
Elwendia persica | 0.0 ± 0.0 D | 0.0 ± 0.0 Db | 2.2 ± 1.5 CDb | 5.6 ± 2.4 BCDc | 8.9 ± 3.1 ABCc | 13.3 ± 2.9 ABc | 15.6 ± 2.4 Ac | 12.0 | <0.01 |
pirimiphos-methyl | 4.4 ± 1.8 D | 15.6 ± 1.8 Ca | 27.8 ± 2.8 BCa | 43.3 ± 3.3 ABa | 58.9 ± 4.6 ABa | 65.6 ± 3.4 Aa | 72.2 ± 2.8 Aa | 40.1 | <0.01 |
F | 1.3 | 9.6 | 7.1 | 11.3 | 10.2 | 13.3 | 37.7 | ||
p | 0.29 | <0.01 | 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | ||
Concentration: | 1000 ppm | ||||||||
Crithmum maritimum | 3.3 ± 1.7 C | 8.9 ± 3.5 BCab | 15.6 ± 3.8 ABab | 24.4 ± 5.6 Aab | 31.1 ± 7.5 Aab | 36.7 ± 8.8 Aab | 45.6 ± 9.6 Aab | 11.3 | <0.01 |
Smyrnium olusatrum | 4.4 ± 2.4 D | 8.9 ± 3.1 CDab | 15.6 ± 4.4 BCab | 30.0 ± 6.0 ABa | 38.9 ± 4.2 ABa | 55.6 ± 5.8 Aa | 76.7 ± 5.3 Aa | 16.4 | <0.01 |
Trachyspermum ammi | 3.3 ± 2.4 C | 7.8 ± 2.8 BCab | 12.2 ± 4.0 BCab | 28.9 ± 6.1 ABa | 36.7 ± 7.6 ABa | 52.2 ± 7.8 Aa | 65.6 ± 10.4 Aa | 8.3 | <0.01 |
Elwendia persica | 0.0 ± 0.0 C | 0.0 ± 0.0 Cb | 4.4 ± 1.8 BCb | 10.0 ± 4.1 ABCb | 14.4 ± 5.3 ABb | 20.0 ± 4.7 ABb | 23.3 ± 5.5 Ab | 9.2 | <0.01 |
pirimiphos-methyl | 5.6 ± 1.8 D | 16.7 ± 2.4 Ca | 27.8 ± 4.0 BCa | 42.2 ± 4.9 ABa | 53.3 ± 4.7 ABa | 65.6 ± 4.4 Aa | 73.3 ± 3.7 Aa | 31.2 | <0.01 |
F | 1.7 | 6.7 | 4.2 | 5.0 | 4.4 | 6.8 | 8.1 | ||
p | 0.17 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kavallieratos, N.G.; Eleftheriadou, N.; Boukouvala, M.C.; Skourti, A.; Filintas, C.S.; Gidari, D.L.S.; Maggi, F.; Rossi, P.; Drenaggi, E.; Morshedloo, M.R.; et al. Exploring the Efficacy of Four Apiaceae Essential Oils against Nine Stored-Product Pests in Wheat Protection. Plants 2024, 13, 533. https://doi.org/10.3390/plants13040533
Kavallieratos NG, Eleftheriadou N, Boukouvala MC, Skourti A, Filintas CS, Gidari DLS, Maggi F, Rossi P, Drenaggi E, Morshedloo MR, et al. Exploring the Efficacy of Four Apiaceae Essential Oils against Nine Stored-Product Pests in Wheat Protection. Plants. 2024; 13(4):533. https://doi.org/10.3390/plants13040533
Chicago/Turabian StyleKavallieratos, Nickolas G., Nikoleta Eleftheriadou, Maria C. Boukouvala, Anna Skourti, Constantin S. Filintas, Demeter Lorentha S. Gidari, Filippo Maggi, Paolo Rossi, Ettore Drenaggi, Mohammad Reza Morshedloo, and et al. 2024. "Exploring the Efficacy of Four Apiaceae Essential Oils against Nine Stored-Product Pests in Wheat Protection" Plants 13, no. 4: 533. https://doi.org/10.3390/plants13040533