Forgotten Gems: Exploring the Untapped Benefits of Underutilized Legumes in Agriculture, Nutrition, and Environmental Sustainability
Abstract
:1. Introduction
1.1. Benefits of Underutilized Legumes in Agriculture, Nutrition, and Sustainability
1.2. Rediscovering the Forgotten Gems
2. Agricultural Potential
2.1. Overview of Selected, Underutilized Legume Varieties
2.2. Comparative Analysis of Commonly Cultivated Legumes with Underutilized Legumes
2.3. Resilience and Adaptability of Underutilized Legumes to Diverse Climates and Soils
3. Nutritional Value
3.1. Nutrient Content and Health Benefits of Underutilized Legumes
Underutilized Legume | Common Name | Nutritional Composition | Reference |
---|---|---|---|
Vigna radiata | Mung bean | Protein; whole seed and (17.9–25.3%), crude fiber (2.9–17.04%), carbohydrate (32.14–66.33%), crude fat (0.12%–2.31%), minerals, vitamins, and essential amino acids | [57] |
Macrotyloma uniflorum | Horse gram | Protein; whole seeds (17.9–25.3%) and dehulled seeds (18.4–25.5%), carbohydrate; whole seeds (51.9–60.9%) and dehulled seeds (56.8 66.4%), essential amino acids, fat (0.6–2.6%), crude fiber (28.8%), minerals, and vitamins | [34] |
Vigna subterranean | Bambara groundnut | Carbohydrates (57.43–63.09%), protein (18.0–24.0%), fiber (5.0–12%), minerals, and vitamins | [50] |
Tylosema esculentum | Marama bean | Protein (29–38%), carbohydrate, dietary fiber (19–27%), lipids (32–42%), approximately 75% unsaturated fatty acids, minerals, and vitamins B6 and B12 | [58] |
Sphenostylis stenocarpa | African yam bean | Crude protein (24–28%), crude fiber (5.2–5.7%), carbohydrate (74.10%), fat (1.5–2.0%), some minerals, and vitamins | [59] |
Lablab purpureus | Lablab | Crude protein (20.46–25.47%), carbohydrate (60.63–66.32%), crude lipid (2.69–4.17%), and dietary fiber (4.98–6.90%) | [60] |
Psophocarpus tetragonolobus | Winged bean | Protein (32–37%), carbohydrate (23–40%), fat (14–25%), minerals, and vitamins B1, B2, B6, B9, A, C and E. | [61] |
Macrotyloma geocarpum | Kersting’s groundnut | Protein (21.3%), carbohydrate (61.53–73.3%), fiber (6.2%), and amino acids including arginine, phenylalanine, and histidine | [62] |
3.2. Contribution of Underutilized Legumes to Dietary Diversity, Malnutrition, and Food Security Issues
4. Environmental Sustainability
4.1. Underutilized Legumes with Nitrogen Fixation and Soil Health Improvement Potentials
4.2. Relevance of Biodiversity Conservation of Underutilized Legumes
5. Challenges and Solutions
5.1. Identification of Obstacles in the Widespread Adoption of Underutilized Legumes
5.2. Solutions and Strategies for Overcoming Challenges
5.3. Importance of Research, Awareness, and Policy Support
6. Future Prospects
6.1. Potential for Further Research and Innovation
6.2. Integration into Mainstream Agricultural Practices
6.3. Implications for Global Food Systems and Sustainability Goals
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Samal, I.; Bhoi, T.K.; Raj, M.N.; Majhi, P.K.; Murmu, S.; Pradhan, A.K.; Kumar, D.; Paschapur, A.U.; Joshi, D.C.; Guru, P. Underutilized legumes: Nutrient status and advanced breeding approaches for qualitative and quantitative enhancement. Front. Nutr. 2023, 10, 1110750. [Google Scholar] [CrossRef]
- Gayacharan; Chandora, R.; Rana, J.C. Moth bean (Vigna aconitifolia): A minor legume with major potential to address global agricultural challenges. Front. Plant Sci. 2023, 14, 1179547. [Google Scholar]
- Joseph, N.T.; Antoine, B.; Joseph, B.T.B.; Zinmanké, C. Evaluation of Quantitative Traits of Horse Gram Accessions [Macrotyloma uniflorum (Lam.) Verdc] Introduced in Burkina Faso. Am. J. BioScience 2023, 11, 187–195. [Google Scholar]
- Zafar, T.; Mehra, A.; Das, P.; Shaik, B.; Malik, A.A. Demystifying the advanced interventions of genetics and modern breeding approaches for nutritional security and sustainability of neglected and underused crop species (NUCS). Genet. Resour. Crop Evol. 2023, 71, 559–577. [Google Scholar] [CrossRef]
- Katoch, R.; Tripathi, A. Rice bean (Vigna umbellata): A promising legume with unexplored potential. In Neglected and Underutilized Crops; Academic Press: Cambridge, MA, USA, 2023; pp. 647–680. [Google Scholar]
- Ayilara, M.S.; Abberton, M.; Oyatomi, O.A.; Odeyemi, O.; Babalola, O.O. Potentials of underutilized legumes in food security. Front. Soil Sci. 2022, 2, 1020193. [Google Scholar] [CrossRef]
- Knez, M.; Ranic, M.; Gurinovic, M.; Glibetic, M.; Savic, J.; Mattas, K.; Yercan, M. Causes and Conditions for Reduced Cultivation and Consumption of Underutilized Crops: Is There a Solution? Sustainability 2023, 15, 3076. [Google Scholar] [CrossRef]
- Ikhajiagbe, B.; Ogwu, M.C.; Ogochukwu, O.F.; Odozi, E.B.; Adekunle, I.J.; Omage, Z.E. The place of neglected and underutilized legumes in human nutrition and protein security in Nigeria. Crit. Rev. Food Sci. Nutr. 2022, 62, 3930–3938. [Google Scholar] [CrossRef]
- Pandey, P.R.; Gaur, P.; Sajja, S.B. Pulses Value Chain Development for Achieving Food and Nutrition Security in South Asia: Current Status and Future Prospects; SAARC Agriculture Centre: Dhaka, Bangladesh, 2019. [Google Scholar]
- Tan, X.L.; Azam-Ali, S.; Goh, E.V.; Mustafa, M.; Chai, H.H.; Ho, W.K.; Mayes, S.; Mabhaudhi, T.; Azam-Ali, S.; Massawe, F. Bambara groundnut: An underutilized leguminous crop for global food security and nutrition. Front. Nutr. 2020, 7, 601496. [Google Scholar] [CrossRef]
- Cheng, A.; Raai, M.N.; Zain, N.A.M.; Massawe, F.; Singh, A.; Wan-Mohtar, W.A.A.Q.I. In search of alternative proteins: Unlocking the potential of underutilized tropical legumes. Food Secur. 2019, 11, 1205–1215. [Google Scholar] [CrossRef]
- Kumar, S.; Bamboriya, S.D.; Rani, K.; Meena, R.S.; Sheoran, S.; Loyal, A.; Kumawat, A.; Jhariya, M.K. Grain legumes: A diversified diet for sustainable livelihood, food, and nutritional security. In Advances in Legumes for Sustainable Intensification; Academic Press: Cambridge, MA, USA, 2022; pp. 157–178. [Google Scholar]
- Mayes, S.; Ho, W.K.; Chai, H.H.; Gao, X.; Kundy, A.C.; Mateva, K.I.; Zahrulakmal, M.; Hahiree, M.K.I.M.; Kendabie, P.; Licea, L.C. Bambara groundnut: An exemplar underutilised legume for resilience under climate change. Planta 2019, 250, 803–820. [Google Scholar] [CrossRef]
- Ditzler, L.; van Apeldoorn, D.F.; Pellegrini, F.; Antichi, D.; Bàrberi, P.; Rossing, W.A. Current research on the ecosystem service potential of legume inclusive cropping systems in Europe. A review. Agron. Sustain. Dev. 2021, 41, 26. [Google Scholar] [CrossRef]
- McAlvay, A.; Morgan, K. Legume-Based Agroecology for African Nutrition Security; Agroecology Policy Report. 2023. Available online: https://hcommons.org/deposits/item/hc:60347/ (accessed on 24 March 2024). [CrossRef]
- Hossain, A.; Krupnik, T.J.; Timsina, J.; Mahboob, M.G.; Chaki, A.K.; Farooq, M.; Bhatt, R.; Fahad, S.; Hasanuzzaman, M. Agricultural land degradation: Processes and problems undermining future food security. In Environment, Climate, Plant and Vegetation Growth; Springer: Cham, Switzerland, 2020; pp. 17–61. [Google Scholar]
- Toklu, F.; Sen Gupta, D.; Karaköy, T.; Özkan, H. Bioactives and nutraceuticals in food legumes: Nutritional Perspective. In Breeding for Enhanced Nutrition and Bio-Active Compounds in Food Legumes; Springer: Cham, Switzerland, 2021; pp. 229–245. [Google Scholar]
- Singh, N.; Jain, P.; Ujinwal, M.; Langyan, S. Escalate protein plates from legumes for sustainable human nutrition. Front. Nutr. 2022, 9, 977986. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, M.W.; Grusak, M.A.; Pinto, E.; Gomes, A.; Ferreira, H.; Balázs, B.; Centofanti, T.; Ntatsi, G.; Savvas, D.; Karkanis, A. The biology of legumes and their agronomic, economic, and social impact. In The Plant Family Fabaceae: Biology and Physiological Responses to Environmental Stresses; Springer: Singapore, 2020; pp. 3–25. [Google Scholar]
- Yuvaraj, M.; Pandiyan, M.; Gayathri, P.J. Role of legumes in improving soil fertility status. In Legume Crops-Prospects, Production and Uses; InTechOpen: London, UK, 2020; pp. 16–27. [Google Scholar]
- Chibarabada, T.P.; Modi, A.T.; Mabhaudhi, T. Expounding the value of grain legumes in the semi-and arid tropics. Sustainability 2017, 9, 60. [Google Scholar] [CrossRef]
- Temba, M.C.; Njobeh, P.B.; Adebo, O.A.; Olugbile, A.O.; Kayitesi, E. The role of compositing cereals with legumes to alleviate protein energy malnutrition in Africa. Int. J. Food Sci. 2016, 51, 543–554. [Google Scholar] [CrossRef]
- Popoola, J.; Ojuederie, O.; Omonhinmin, C.; Adegbite, A. Neglected, and underutilized legume crops: Improvement and future prospects. In Recent Advances in Grain Crops Research; IntechOpen: London, UK, 2019. [Google Scholar]
- Raza, A.; Zahra, N.; Hafeez, M.B.; Ahmad, M.; Iqbal, S.; Shaukat, K.; Ahmad, G.J. Nitrogen fixation of legumes: Biology and Physiology. In The Plant Family Fabaceae: Biology and Physiological Responses to Environmental Stresses; Springer: Singapore, 2020; pp. 43–74. [Google Scholar]
- Babalola, O.O.; Olanrewaju, O.S.; Dias, T.; Ajilogba, C.F.; Kutu, F.R.; Cruz, C. Biological nitrogen fixation: The role of underutilized leguminous plants. In Microorganisms for Green Revolution: Volume 1: Microbes for Sustainable Crop Production; Springer: Singapore, 2017; pp. 431–443. [Google Scholar]
- Mohammed, M.; Jaiswal, S.K.; Dakora, F.D. Insights into the phylogeny, nodule function, and biogeographic distribution of microsymbionts nodulating the orphan Kersting’s groundnut [Macrotyloma geocarpum (Harms) Marechal & Baudet] in African soils. Appl. Environ. Microbiol. 2019, 85, e00342-19. [Google Scholar] [PubMed]
- Popoola, J.O.; Ojuederie, O.B.; Aworunse, O.S.; Adelekan, A.; Oyelakin, A.S.; Oyesola, O.L.; Akinduti, P.A.; Dahunsi, S.O.; Adegboyega, T.T.; Oranusi, S.U. Nutritional, functional, and bioactive properties of African underutilized legumes. Front. Plant Sci. 2023, 14, 1105364. [Google Scholar] [CrossRef]
- Ebert, A.W. Potential of underutilized traditional vegetables and legume crops to contribute to food and nutritional security, income and more sustainable production systems. Sustainability 2014, 6, 319–335. [Google Scholar] [CrossRef]
- Pataczek, L.; Zahir, Z.A.; Ahmad, M.; Rani, S.; Nair, R.; Schafleitner, R.; Cadisch, G.; Hilger, T. Beans with benefits—The role of Mungbean (Vigna radiate) in a changing environment. Am. J. Plant Sci. 2018, 9, 1577–1600. [Google Scholar] [CrossRef]
- Li, X.; Wani, S.P.; Li, Z. A Journey from Neglected and Underutilized Species to Future Smart Food for Achieving Zero Hunger. How can Scaling-Up be Achieved? In Scaling-up Solutions for Farmers: Technology, Partnerships and Convergence; Springer: Cham, Switzerland, 2021; pp. 205–227. [Google Scholar]
- Borase, D.N.; Murugeasn, S.; Nath, C.P.; Hazra, K.K.; Singh, S.S.; Kumar, N.; Singh, U.; Praharaj, C.S. Long-term impact of grain legumes and nutrient management practices on soil microbial activity and biochemical properties. Arch. Agron. Soil Sci. 2021, 67, 2015–2032. [Google Scholar] [CrossRef]
- Kaundal, S.P.; Sharma, A.; Kumar, R.; Kumar, V.; Kumar, R. Exploration of medicinal importance of an underutilized legume crop, Macrotyloma uniflorum (Lam.) Verdc. (Horse gram): A review. Int. J. Pharm. Sci. Res. 2019, 10, 3178–3186. [Google Scholar]
- Aditya, J.; Bhartiya, A.; Chahota, R.K.; Joshi, D.; Chandra, N.; Kant, L.; Pattanayak, A. Ancient orphan legume horse gram: A potential food and forage crop of future. Planta 2019, 250, 891–909. [Google Scholar] [CrossRef]
- Bhartiya, A.; Aditya, J.; Kant, L. Nutritional and remedial potential of an underutilized food legume horse gram (Macrotyloma uniflorum): A review. J. Anim. Plant Sci. 2015, 25, 908–920. [Google Scholar]
- Sahoo, S.; Mohanty, M. Horsegram (Macrotyloma uniflorum) production technology: A review. Int. J. Chem. Stud. 2020, 8, 2723–2726. [Google Scholar] [CrossRef]
- Feldman, A.; Ho, W.K.; Massawe, F.; Mayes, S. Bambara groundnut is a climate-resilient crop: How could a drought-tolerant and nutritious legume improve community resilience in the face of climate change? In Sustainable Solutions for Food Security: Combating Climate Change by Adaptation; Springer: Cham, Switzerland, 2019; pp. 151–167. [Google Scholar]
- Chai, H.H.; Massawe, F.; Mayes, S. Effects of mild drought stress on the morpho-physiological characteristics of a Bambara groundnut segregating population. Euphytica 2016, 208, 225–236. [Google Scholar] [CrossRef]
- Chongtham, S.K.; Devi, E.L.; Samantara, K.; Yasin, J.K.; Wani, S.H.; Mukherjee, S.; Razzaq, A.; Bhupenchandra, I.; Jat, A.L.; Singh, L.K. Orphan legumes: Harnessing their potential for food, nutritional and health security through genetic approaches. Planta 2022, 256, 24. [Google Scholar] [CrossRef] [PubMed]
- Khatun, M.; Sarkar, S.; Era, F.M.; Islam, A.M.; Anwar, M.P.; Fahad, S.; Datta, R.; Islam, A.A. Drought stress in grain legumes: Effects, tolerance mechanisms and management. Agronomy 2021, 11, 2374. [Google Scholar] [CrossRef]
- Nadeem, M.; Li, J.; Yahya, M.; Sher, A.; Ma, C.; Wang, X.; Qiu, L. Research progress and perspective on drought stress in legumes: A review. Int. J. Mol. Sci. 2019, 20, 2541. [Google Scholar] [CrossRef] [PubMed]
- Bandurska, H. Drought stress responses: Coping strategy and resistance. Plants 2022, 11, 922. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.M.H.; Rafi, M.; Ramlee, S.I.; Jusoh, M.; Mamun, A. Bambara Groundnut (Vigna subterranea L. Verdc): A Model Underutilized Legume, its Resiliency to Drought and Excellency of Food & Nutrient values-A Review. Malays. J. Genet. 2022, 2, 12. [Google Scholar]
- Soumare, A.; Diedhiou, A.G.; Kane, A. Bambara groundnut: A neglected and underutilized climate-resilient crop with great potential to alleviate food insecurity in sub-Saharan Africa. J. Crop Improv. 2022, 36, 747–767. [Google Scholar] [CrossRef]
- Cullis, C.; Chimwamurombe, P.; Barker, N.; Kunert, K.; Vorster, J. Orphan legumes growing in dry environments: Marama bean as a case study. Front. Plant Sci. 2018, 9, 1199. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, J.; Chauhan, R.; Swarnkar, M.K.; Chahota, R.K.; Singh, A.K.; Shankar, R.; Yadav, S.K. Comprehensive transcriptomic study on horse gram (Macrotyloma uniflorum): De novo assembly, functional characterization and comparative analysis in relation to drought stress. BMC Genom. 2013, 14, 647. [Google Scholar] [CrossRef]
- Rybinski, W.; Banda, M.; Bocianowski, J.; Starzycka-Korbas, E.; Starzycki, M.; Nowosad, K. Estimation of the physicochemical variation of chickpea seeds (Cicer arietinum L.). Int. Agrophysics 2019, 33, 67–80. [Google Scholar] [CrossRef]
- Murthy, H.N.; Paek, K.Y. Health benefits of underutilized vegetables and legumes. In Bioactive Compounds in Underutilized Vegetables and Legumes; Springer: Cham, Switzerland, 2020; pp. 1–37. [Google Scholar]
- Ogunniyi, Q.A.; Ogbole, O.O.; Akin-Ajani, O.D.; Ajala, T.O.; Bamidele, O.; Fettke, J.; Odeku, O.A. Medicinal Importance and Phytoconstituents of Underutilized Legumes from the Caesalpinioideae DC Subfamily. Appl. Sci. 2023, 13, 8972. [Google Scholar] [CrossRef]
- Veldsman, Z.; Pretorius, B.; Schönfeldt, H.C. Examining the contribution of an underutilized food source, Bambara Groundnut, in improving protein intake in Sub-Saharan Africa. Front. Sustain. Food Syst. 2023, 7, 1183890. [Google Scholar] [CrossRef]
- Udeh, E.L.; Nyila, M.A.; Kanu, S.A. Nutraceutical and antimicrobial potentials of Bambara groundnut (Vigna subterranean): A review. Heliyon 2020, 6, e05205. [Google Scholar] [CrossRef] [PubMed]
- Ekpo, G.I.; Eteng, O.E.; Bassey, S.O.; Peculiar, W.; Eteng, M. Phytochemical constituents and proximate composition of Bambara groundnut (Vigna subterranean) Aand pigeon pea (Cajanus cajan) underutilized in Calabar, Cross River State. Fudma J. Sci. 2022, 6, 311–317. [Google Scholar] [CrossRef]
- Ajiboye, A.; Oyejobi, G. In vitro antimicrobial activities of Vigna subterranea. J. Antimicrob. Agents 2017, 3, 1–4. [Google Scholar]
- Ramatsetse, K.E.; Ramashia, S.E.; Mashau, M.E. A review on health benefits, antimicrobial and antioxidant properties of Bambara groundnut (Vigna subterranean). Int. J. Food Prop. 2023, 26, 91–107. [Google Scholar] [CrossRef]
- Shukla, S.; Mahajan, V.; Gupta, H. Horsegram in Uttaranchal–Status, Constraints and Prospects. Horsegram India 2006, 99, 114. [Google Scholar]
- Herath, H.; Samaranayake, M.; Liyanage, S.; Abeysekera, W. Horse Gram: An incredible food grain as a potential source of functional and nutritional food ingredient. Int. J. Food Sci. Nutr. 2020, 5, 93–101. [Google Scholar]
- Ingle, K.P.; Al-Khayri, J.M.; Chakraborty, P.; Narkhede, G.W.; Suprasanna, P. Bioactive compounds of horse gram (Macrotyloma uniflorum lam. [Verdc.]). In Bioactive Compounds in Underutilized Vegetables and Legumes; Springer: Cham, Switzerland, 2020; pp. 1–39. [Google Scholar]
- Mekkara nikarthil Sudhakaran, S.; Bukkan, D.S. A review on nutritional composition, antinutritional components and health benefits of green gram (Vigna radiata (L.) Wilczek). J. Food Biochem. 2021, 45, e13743. [Google Scholar] [CrossRef] [PubMed]
- Omotayo, A.O.; Aremu, A.O. Marama bean [Tylosema esculentum (Burch.) A. Schreib.]: An indigenous plant with potential for food, nutrition, and economic sustainability. Food Funct. 2021, 12, 2389–2403. [Google Scholar] [PubMed]
- Sam, S. Nutrient and antinutrient constituents in seeds of Sphenostylis stenocarpa (Hochst. Ex A. Rich.) Harms. Afr. J. Plant Sci. 2019, 13, 107–112. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. The pharmacology and medical importance of Dolichos lablab (Lablab purpureus)—A review. IOSR J. Pharm. 2017, 7, 22–30. [Google Scholar] [CrossRef]
- Bassal, H.; Merah, O.; Ali, A.M.; Hijazi, A.; El Omar, F. Psophocarpus tetragonolobus: An underused species with multiple potential uses. Plants 2020, 9, 1730. [Google Scholar] [CrossRef] [PubMed]
- Fassinou, F.T.K.; Agoyi, E.E.; Affonfere, M.; Sacla Aide, E.; Assogbadjo, A.E.; Chadare, F.J. Comparative analysis of proximate compositions, physical properties, and sensory attributes of kersting’s groundnut (Macrotyloma geocarpum (harms) maréchal & baudet) accessions. J. Food Qual. 2023, 2023, 6372248. [Google Scholar]
- Mazac, R.; Renwick, K.; Seed, B.; Black, J.L. An approach for integrating and analyzing sustainability in food-based dietary guidelines. Front. Sustain. Food Syst. 2021, 5, 544072. [Google Scholar] [CrossRef]
- Li, X.; Yadav, R.; Siddique, K.H. Neglected and underutilized crop species: The key to improving dietary diversity and fighting hunger and malnutrition in Asia and the Pacific. Front. Nutr. 2020, 7, 593711. [Google Scholar] [CrossRef]
- Naresh, R.; Chandra, M.S.; Mahajan, N.; Singh, P.K.; Baliyan, A.; Ahlawat, P.; Shalini, P. Neglected and underutilized crop species the key to improving soil nutritional security for fighting poverty, hunger and malnutrition in north-western IGP: A review. Pharma Innov. J. 2021, 10, 1833–1839. [Google Scholar]
- Myers, S.S.; Smith, M.R.; Guth, S.; Golden, C.D.; Vaitla, B.; Mueller, N.D.; Dangour, A.D.; Huybers, P. Climate change and global food systems: Potential impacts on food security and undernutrition. Annu. Rev. Public Health 2017, 38, 259–277. [Google Scholar] [CrossRef] [PubMed]
- Guzo, S.; Lulekal, E.; Nemomissa, S. Ethnobotanical study of underutilized wild edible plants and threats to their long-term existence in Midakegn District, West Shewa Zone, Central Ethiopia. J. Ethnobiol. Ethnomed. 2023, 19, 30. [Google Scholar] [CrossRef]
- Sharma, K.; Mogensen, K.M.; Robinson, M.K. Pathophysiology of critical illness and role of nutrition. Nutr. Clin. Pract. 2019, 34, 12–22. [Google Scholar] [CrossRef]
- Horton, S.; Steckel, R.H. Malnutrition: Global economic losses attributable to malnutrition 1900–2000 and projections to 2050. In How Much Have Global Problems Cost the World?: A Scorecard from 1900 to 2050; Cambridge University Press: Cambridge, UK, 2013; pp. 247–272. [Google Scholar]
- Hossain, A.; Islam, M.T.; Maitra, S.; Majumder, D.; Garai, S.; Mondal, M.; Ahmed, A.; Roy, A.; Skalicky, M.; Brestic, M. Neglected and Underutilized Crop Species: Are They Future Smart Crops in Fighting Poverty, Hunger and Malnutrition Under Changing Climate? In Neglected and Underutilized Crops-Towards Nutritional Security and Sustainability; Springer: Singapore, 2021; pp. 1–50. [Google Scholar]
- Gulzar, M.; Minnaar, A. Underutilized protein resources from African legumes. In Sustainable Protein Sources; Academic Press: Cambridge, MA, USA, 2017; pp. 197–208. [Google Scholar]
- Halimi, R.A.; Barkla, B.J.; Mayes, S.; King, G.J. The potential of the underutilized pulse bambara groundnut (Vigna subterranea (L.) Verdc.) for nutritional food security. J. Food Compos. Anal. 2019, 77, 47–59. [Google Scholar] [CrossRef]
- Liu, A.; Contador, C.A.; Fan, K.; Lam, H.-M. Interaction and regulation of carbon, nitrogen, and phosphorus metabolisms in root nodules of legumes. Front. Plant Sci. 2018, 9, 1860. [Google Scholar] [CrossRef]
- Schulz, S.; Keatinge, J.; Wells, G. Productivity and residual effects of legumes in rice-based cropping systems in a warm-temperate environment: I. Legume biomass production and N fixation. Field Crops Res. 1999, 61, 23–35. [Google Scholar] [CrossRef]
- Paliwal, R.; Abberton, M.; Faloye, B.; Olaniyi, O. Developing the role of legumes in West Africa under climate change. Curr. Opin. Plant Biol. 2020, 56, 242–258. [Google Scholar] [CrossRef] [PubMed]
- Han, T.X.; Wang, E.T.; Han, L.L.; Chen, W.F.; Sui, X.H.; Chen, W.X. Molecular diversity and phylogeny of rhizobia associated with wild legumes native to Xinjiang, China. Syst. Appl. Microbiol. 2008, 31, 287–301. [Google Scholar] [CrossRef]
- Puozaa, D.K.; Jaiswal, S.K.; Dakora, F.D. African origin of Bradyrhizobium populations nodulating Bambara groundnut (Vigna subterranea L. Verdc) in Ghanaian and South African soils. PLoS ONE 2017, 12, e0184943. [Google Scholar]
- Adeleke, M.; Haruna, I. Residual nitrogen contributions from grain legumes to the growth and development of succeeding maize crop. Int. Sch. Res. Not. 2012, 2012, 213729. [Google Scholar] [CrossRef]
- Nyalemegbe, K.; Osakpa, T. Rotation of maize with some leguminous food crops for sustainable production on the vertisols of the Accra plains of Ghana. West Afr. J. Appl. Ecol. 2012, 20, 33–40. [Google Scholar]
- World Health Organization. Guidance on Mainstreaming Biodiversity for Nutrition and Health; 2020. Available online: https://iris.who.int/bitstream/handle/10665/351047/9789240006690-eng.pdf (accessed on 24 March 2024).
- Ulian, T.; Diazgranados, M.; Pironon, S.; Padulosi, S.; Liu, U.; Davies, L.; Howes, M.J.R.; Borrell, J.S.; Ondo, I.; Pérez-Escobar, O.A. Unlocking plant resources to support food security and promote sustainable agriculture. Plants People Planet 2020, 2, 421–445. [Google Scholar] [CrossRef]
- Muluneh, M.G. Impact of climate change on biodiversity and food security: A global perspective—A review article. Agric. Food Secur. 2021, 10, 36. [Google Scholar] [CrossRef]
- Rajpurohit, D.; Jhang, T. In situ and ex-situ conservation of plant genetic resources and traditional knowledge. In Plant Genetic Resources and Traditional Knowledge for Food Security; Springer: Singapore, 2015; pp. 137–162. [Google Scholar]
- Palai, J.B.; Jena, J.; Maitra, S. Prospects of underutilized food legumes in sustaining pulse needs in India–A review. Crop Res. 2019, 54, 82–88. [Google Scholar]
- Jacob, C.; Carrasco, B.; Schwember, A.R. Advances in breeding and biotechnology of legume crops. Plant Cell Tissue Organ Cult. 2016, 127, 561–584. [Google Scholar] [CrossRef]
- Begemann, F. Ecogeographic Differentiation of Bambara Groundnut (Vigna subterranea) in the Collection of the International Institute of Tropical Agriculture; 1988. Available online: https://agris.fao.org/search/en/providers/122621/records/647396af3ed73003714ce252 (accessed on 24 March 2024).
- Stanton, W.; Doughty, J.; Orraca-Tetteh, R.; Steele, W. Voandzeia subterranea thouars. In Grain Legumes in Africa; Food Agriculture Organization: Rome, Italy, 1966; pp. 128–133. [Google Scholar]
- Paliwal, R.; Adegboyega, T.T.; Abberton, M.; Faloye, B.; Oyatomi, O. Potential of genomics for the improvement of underutilized legumes in sub-Saharan Africa. Legume Sci. 2021, 3, e69. [Google Scholar] [CrossRef]
- Lybæk, R.; Hauggaard-Nielsen, H. A Qualitative Investigation of European Grain Legume Supply Markets through the Lens of Agroecology in Four Companies. Sustainability 2023, 15, 6103. [Google Scholar] [CrossRef]
- Neda, E.K. Grain legumes production in Ethiopia: A review of adoption, opportunities, constraints, and emphases for future interventions. Turk. J. Agric. Food Sci. Technol. 2020, 8, 977–989. [Google Scholar] [CrossRef]
- Adelabu, D.; Franke, A. Research status of seed improvement in underutilized crops: Prospects for enhancing food security. J. Agric. Sci. 2023, 161, 398–411. [Google Scholar] [CrossRef]
- Knez, M.; Ranić, M.; Gurinović, M. Underutilized plants increase biodiversity, improve food and nutrition security, reduce malnutrition, and enhance human health and well-being. Let’s put them back on the plate! Nutr. Rev. 2023, nuad103. [Google Scholar] [CrossRef]
- Chandra, M.S.; Naresh, R.; Thenua, O.; Singh, R.; Geethanjali, D. Improving resource conservation, productivity and profitability of neglected and underutilized crops in the breadbasket of India: A review. Breed. Sci. 2020, 70, 19–31. [Google Scholar]
- Gregory, P.J.; Mayes, S.; Hui, C.H.; Jahanshiri, E.; Julkifle, A.; Kuppusamy, G.; Kuan, H.W.; Lin, T.X.; Massawe, F.; Suhairi, T. Crops For the Future (CFF): An overview of research efforts in the adoption of underutilised species. Planta 2019, 250, 979–988. [Google Scholar] [CrossRef]
- Westengen, O.T.; Dalle, S.P.; Mulesa, T.H. Navigating toward resilient and inclusive seed systems. Proc. Natl. Acad. Sci. USA 2023, 120, e2218777120. [Google Scholar] [CrossRef]
- Aderibigbe, O.; Ezekiel, O.; Owolade, S.; Korese, J.; Sturm, B.; Hensel, O. Exploring the potentials of underutilized grain amaranth (Amaranthus spp.) along the value chain for food and nutrition security: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 656–669. [Google Scholar] [PubMed]
- Padulosi, S.; Thompson, J.; Rudebjer, P. Fighting Poverty, Hunger and Malnutrition with Neglected and Underutilized Species (NUS): Needs, Challenges and the Way Forward; Bioversity International: Rome, Italy, 2013. [Google Scholar]
- Chakraborty, M.; Budhwar, S.; Kumar, S. Development of fermented products with enriched fiber and micronutrients by using underutilized cereal-legume milling by-products as novel food ingredients. Int. J. Gastron. Food Sci. 2022, 27, 100493. [Google Scholar] [CrossRef]
- Patel, A.; Temgire, S.; Borah, A. Agro-industrial waste as source of bioactive compounds and their utilization: A review. Pharma Innov. 2021, 10, 192–196. [Google Scholar] [CrossRef]
- Dhaliwal, S.K.; Talukdar, A.; Gautam, A.; Sharma, P.; Sharma, V.; Kaushik, P. Developments and prospects in imperative underexploited vegetable legumes breeding: A review. Int. J. Mol. Sci. 2020, 21, 9615. [Google Scholar] [CrossRef]
- Gweyi-Onyango, J.P.; Sakha, M.A.; Jefwa, J. Agricultural interventions to enhance climate change adaptation of underutilized root and tuber crops. In African Handbook of Climate Change Adaptation; Springer: Cham, Switzerland, 2021; pp. 61–86. [Google Scholar]
- Mustafa, M.; Mayes, S.; Massawe, F. Crop diversification through a wider use of underutilised crops: A strategy to ensure food and nutrition security in the face of climate change. In Sustainable Solutions for Food Security: Combating Climate Change by Adaptation; Springer: Cham, Switzerland, 2019; pp. 125–149. [Google Scholar]
- Augustin, M.; Cole, M. Towards a sustainable food system by design using faba bean protein as an example. Trends Food Sci. Technol. 2022, 125, 1–11. [Google Scholar] [CrossRef]
- Mazumdar, S.D.; Durgalla, P.; Gaur, P.M. Utilization of Pulses–Value Addition and Product Development. In Pulses for Sustainable Food and Nutrition Security in SAARC Region; SAARC Agriculture Centre: Dhaka, Bangladesh, 2016; pp. 65–98. [Google Scholar]
- Desire, M.F.; Blessing, M.; Elijah, N.; Ronald, M.; Agather, K.; Tapiwa, Z.; Florence, M.R.; George, N. Exploring food fortification potential of neglected legume and oil seed crops for improving food and nutrition security among smallholder farming communities: A systematic review. J. Agric. Food Res. 2021, 3, 100117. [Google Scholar] [CrossRef]
- Subramaniam, Y.; Masron, T.A.; Naseem, N.A.M. The Impact of Logistics on Four Dimensions of Food Security in Developing Countries. J. Knowl. Econ. 2023, 14, 3431–3452. [Google Scholar] [CrossRef]
- Shulla, K.; Leal-Filho, W. Achieving the UN Agenda 2030: Overall Actions for the Successful Implementation of the Sustainable Development Goals before and after the 2030 Deadline; European Union Parliament: Maastricht, The Netherlands, 2023; Available online: https://www.europarl.europa.eu/thinktank/en/document/EXPO_IDA(2022)702576 (accessed on 24 March 2024).
- Meena, R.S.; Das, A.; Yadav, G.S.; Lal, R. Legumes for Soil Health and Sustainable Management; Springer: Singapore, 2018. [Google Scholar]
Aspect | Commonly Cultivated Legumes | Underutilized Legumes |
---|---|---|
Nutritional value | Well-studied and consistent nutritional profiles | Generally high, but may vary widely |
Genetic diversity | Extensively bred with higher genetic diversity | Often limited due to less breeding |
Environmental impact | Mixed, depending on farming practices | Generally lower ecological footprint |
Market accessibility | Well-established markets and distribution channels | Limited market access and awareness |
Potential for sustainable agriculture | Generally supportive of sustainable practices | Potential to enhance soil health and biodiversity |
Adaptability | Often widely adaptable to various climates and soil types | May have niche adaptability to specific environments |
Pest and disease resistance | Often bred for resistance to common pests and diseases | Can tolerate specific pests and diseases |
Yield potential | Generally higher due to extensive breeding and optimization | Variable, often lower due to limited breeding and optimization |
Soil health | Can vary, but may require additional inputs for soil health | Generally beneficial due to nitrogen fixation properties |
Crop rotation benefits | Can provide benefits but may not be as pronounced | Often advantageous due to nitrogen-fixing capabilities |
Input requirements | Often require more inputs for optimal yield | May require fewer inputs such as fertilizers due to nitrogen fixation |
Cultural acceptance | Widely accepted and integrated into diets | Varied, may be less widely accepted |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odeku, O.A.; Ogunniyi, Q.A.; Ogbole, O.O.; Fettke, J. Forgotten Gems: Exploring the Untapped Benefits of Underutilized Legumes in Agriculture, Nutrition, and Environmental Sustainability. Plants 2024, 13, 1208. https://doi.org/10.3390/plants13091208
Odeku OA, Ogunniyi QA, Ogbole OO, Fettke J. Forgotten Gems: Exploring the Untapped Benefits of Underutilized Legumes in Agriculture, Nutrition, and Environmental Sustainability. Plants. 2024; 13(9):1208. https://doi.org/10.3390/plants13091208
Chicago/Turabian StyleOdeku, Oluwatoyin A., Queeneth A. Ogunniyi, Omonike O. Ogbole, and Joerg Fettke. 2024. "Forgotten Gems: Exploring the Untapped Benefits of Underutilized Legumes in Agriculture, Nutrition, and Environmental Sustainability" Plants 13, no. 9: 1208. https://doi.org/10.3390/plants13091208
APA StyleOdeku, O. A., Ogunniyi, Q. A., Ogbole, O. O., & Fettke, J. (2024). Forgotten Gems: Exploring the Untapped Benefits of Underutilized Legumes in Agriculture, Nutrition, and Environmental Sustainability. Plants, 13(9), 1208. https://doi.org/10.3390/plants13091208