Hyperspectral and Fluorescence Imaging Approaches for Nondestructive Detection of Rice Chlorophyll
Abstract
:1. Introduction
2. Plant Materials and Methods
2.1. Measurement of Hypespectral and Fluorescence Data
2.2. Invasive Measurement of Chlorophylls
2.3. Experimental Techniques and Protocols
2.4. Feature Extraction Methods
2.5. Modeling
2.5.1. Convolutional Neural Networks and Long Short-Term Memory
2.5.2. Model Analysis
2.6. Evaluation Indicators
3. Results
3.1. Feature Extraction Results
3.2. Validity of the Modeling Methods
3.2.1. Linear Regression
3.2.2. Regression Tree
3.2.3. XGBoost
3.2.4. CNN+LSTM
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Romero, F.M.; Gatica-Arias, A. CRISPR/Cas9: Development and Application in Rice Breeding. Rice Sci. 2019, 26, 265–281. [Google Scholar] [CrossRef]
- Hefferon, K.L. Nutritionally Enhanced Food Crops; Progress and Perspectives. Int. J. Mol. Sci. 2015, 16, 3895–3914. [Google Scholar] [CrossRef] [PubMed]
- Khalid, H.M.; Mahmod, I.F.; Barakbah, S.S.; Osman, N. Impact of Water Management on Fertilizer and Tillering Dynamics in Rice. Int. J. Agric. Biol. 2018, 20, 37–40. [Google Scholar]
- Ban, S.; Liu, W.; Tian, M.; Wang, Q.; Yuan, T.; Chang, Q.; Li, L. Rice Leaf Chlorophyll Content Estimation Using UAV-Based Spectral Images in Different Regions. Agronomy 2022, 12, 2832. [Google Scholar] [CrossRef]
- Molina, L.; Lapis, J.R.; Sreenivasulu, N.; Cuevas, R.P.O. Determination of Cadmium Concentration in Milled and Brown Rice Grains Using Graphite Furnace Atomic Absorption Spectrometry. Methods Mol. Biol. 2019, 1892, 265–275. [Google Scholar] [PubMed]
- Krasnovskii, A.A.; Bystrova, M.I. Studies on chlorophyll synthesis in homogenates of etiolated leaves by means of a fluorescence spectrophotometric method. Biokhimiia 1960, 25, 168–179. [Google Scholar] [PubMed]
- Tan, L.H.; Zhou, L.; Zhao, N.; He, Y.; Qiu, Z.J. Development of a low-cost portable device for pixel-wise leaf SPAD estimation and blade-level SPAD distribution visualization using color sensing. Comput. Electron. Agric. 2021, 190, 106487. [Google Scholar] [CrossRef]
- Lee, S.; Masclaux-Daubresse, C. Current Understanding of Leaf Senescence in Rice. Int. J. Mol. Sci. 2021, 22, 4515. [Google Scholar] [CrossRef] [PubMed]
- Kandpal, K.C.; Kumar, A. Migrating from Invasive to Noninvasive Techniques for Enhanced Leaf Chlorophyll Content Estimations Efficiency. Crit. Rev. Anal. Chem. 2023, 1–16. [Google Scholar] [CrossRef]
- Zhao, J.W.; Wang, K.L.; Ouyang, Q.; Chen, Q.S. Measurement of Chlorophyll Content and Distribution in Tea Plant’s Leaf Using Hyperspectral Imaging Technique. Spectrosc. Spectr. Anal. 2011, 31, 512–515. [Google Scholar]
- Jang, S.H.; Hwang, Y.K.; Lee, H.J.; Lee, J.S.; Kim, Y.H. Selecting Significant Wavelengths to Predict Chlorophyll Content of Grafted Cucumber Seedlings Using Hyperspectral Images. Korean J. Remote. Sens. 2018, 34, 681–692. [Google Scholar]
- Cao, Y.L.; Jiang, K.L.; Wu, J.X.; Yu, F.H.; Du, W.; Xu, T.Y. Inversion modeling of japonica rice canopy chlorophyll content with UAV hyperspectral remote sensing. Plos ONE 2020, 15, e0238530. [Google Scholar] [CrossRef]
- Feng, H.; Chen, G.X.; Xiong, L.Z.; Liu, Q.; Yang, W.N. Accurate Digitization of the Chlorophyll Distribution of Individual Rice Leaves Using Hyperspectral Imaging and an Integrated Image Analysis Pipeline. Front. Plant Sci. 2017, 8, 1238. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Merzlyak, M.N. Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll. J. Plant Physiol. 1996, 148, 494–500. [Google Scholar] [CrossRef]
- Liu, H.H.; Lei, X.Q.; Liang, H.; Wang, X. Multi-Model Rice Canopy Chlorophyll Content Inversion Based on UAV Hyperspectral Images. Sustainability 2023, 15, 7038. [Google Scholar] [CrossRef]
- Yang, Y.; Nan, R.; Mi, T.; Song, Y.; Shi, F.; Liu, X.; Wang, Y.; Sun, F.; Xi, Y.; Zhang, C. Rapid and Nondestructive Evaluation of Wheat Chlorophyll under Drought Stress Using Hyperspectral Imaging. Int. J. Mol. Sci. 2023, 24, 5825. [Google Scholar] [CrossRef] [PubMed]
- Ruszczak, B.; Wijata, A.M.; Nalepa, J. Unbiasing the Estimation of Chlorophyll from Hyperspectral Images: A Benchmark Dataset, Validation Procedure and Baseline Results. Remote. Sens. 2022, 14, 5526. [Google Scholar] [CrossRef]
- Baker, N.R. Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef]
- Malenovsky, Z.; Mishra, K.B.; Zemek, F.; Rascher, U.; Nedbal, L. Scientific and technical challenges in remote sensing of plant canopy reflectance and fluorescence. J. Exp. Bot. 2009, 60, 2987–3004. [Google Scholar] [CrossRef]
- Mishra, A.; Matous, K.; Mishra, K.B.; Nedbal, L. Towards Discrimination of Plant Species by Machine Vision: Advanced Statistical Analysis of Chlorophyll Fluorescence Transients. J. Fluoresc. 2009, 19, 905–913. [Google Scholar] [CrossRef]
- Mattila, H.; Valli, P.; Pahikkala, T.; Teuhola, J.; Nevalainen, O.S.; Tyystjärvi, E. Comparison of chlorophyll fluorescence curves and texture analysis for automatic plant identification. Precis. Agric. 2013, 14, 621–636. [Google Scholar] [CrossRef]
- Codrea, M.C.; Hakala-Yatkin, M.; Kårlund-Marttila, A.; Nedbal, L.; Aittokallio, T.; Nevalainen, O.S.; Tyystjärvi, E. Mahalanobis distance screening of Arabidopsis mutants with chlorophyll fluorescence. Photosynth. Res. 2010, 105, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Tyystjärvi, E.; Nørremark, M.; Mattila, H.; Keränen, M.; Hakala-Yatkin, M.; Ottosen, C.O.; Rosenqvist, E. Automatic identification of crop and weed species with chlorophyll fluorescence induction curves. Precis. Agric. 2011, 12, 546–563. [Google Scholar] [CrossRef]
- Yang, J.; Shi, S.; Gong, W.; Du, L.; Zhu, B.; Ma, Y.Y.; Sun, J. Laser induced fluorescence spectrum characteristics of paddy under nitrogen stress. Spectrosc. Spectr. Anal. 2016, 36, 537–540. [Google Scholar]
- Shen, C.; Feng, Z.; Zhou, D. Analysing the effect of paddy rice variety on fluorescence characteristics for nitrogen application monitoring. R. Soc. Open Sci. 2018, 5, 180485. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.; Fan, R.; Zhan, C.; Wu, Y.; Lin, Y.; Li, K.; Qing, R.; Xu, L. The Rapid Non-Destructive Differentiation of Different Varieties of Rice by Fluorescence Hyperspectral Technology Combined with Machine Learning. Molecules 2024, 29, 682. [Google Scholar] [CrossRef]
- Yang, J.; Sun, J.; Du, L.; Chen, B.; Zhang, Z.; Shi, S.; Gong, W. Monitoring of Paddy Rice Varieties Based on the Combination of the Laser-Induced Fluorescence and Multivariate Analysis. Food Anal. Methods 2017, 10, 2398–2403. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, L.; Hu, H.; Zheng, K.; Jin, Q. Monitoring Leaf Chlorophyll Fluorescence with Spectral Reflectance in Rice (Oryza sativa L.). Procedia Eng. 2011, 15, 4403–4408. [Google Scholar] [CrossRef]
- Charilaou, P.; Battat, R. Machine learning models and over-fitting considerations. World J. Gastroenterol. 2022, 28, 605–607. [Google Scholar] [CrossRef]
- Wei, X.; He, J.; Zheng, S.; Ye, D. Modeling for SSC and firmness detection of persimmon based on NIR hyperspectral imaging by sample partitioning and variables selection. Infrared Phys. Technol. 2020, 105, 103099. [Google Scholar] [CrossRef]
- Huang, H.; Hu, X.; Tian, J.; Jiang, X.; Luo, H.; Huang, D. Rapid detection of the reducing sugar and amino acid nitrogen contents of Daqu based on hyperspectral imaging. J. Food Compos. Anal. 2021, 101, 103970. [Google Scholar] [CrossRef]
- Yang, X.; Lu, X.; Shi, J.; Li, J.; Ju, W. Inversion of Rice Leaf Chlorophyll Content Based on Sentinel-2 Satellite Data. Spectrosc. Spectr. Anal. 2022, 42, 866–872. [Google Scholar]
- Schmid, M.; Rath, D.; Diebold, U. Why and How Savitzky-Golay Filters Should Be Replaced. ACS Meas. Sci. Au 2022, 2, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Nambu, I.; Maruyama, Y.; Wada, Y. Sliding-Window Normalization to Improve the Performance of Machine-Learning Models for Real-Time Motion Prediction Using Electromyography. Sensors 2022, 22, 5005. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, J.; Ma, C.; Qiu, G.; Ren, J.; Zeng, F.; Lu, E. An Effective Prediction Approach for Moisture Content of Tea Leaves Based on Discrete Wavelet Transforms and Bootstrap Soft Shrinkage Algorithm. Appl. Sci. 2020, 10, 4839. [Google Scholar] [CrossRef]
- Beattie, J.R.; Esmonde-White, F.W.L. Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra. Appl. Spectrosc. 2021, 75, 361–375. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, R.; Shafiq, M.O. Explainable Convolutional Neural Networks: A Taxonomy, Review, and Future Directions. ACM Comput. Surv. 2023, 55, 1–37. [Google Scholar] [CrossRef]
- Huang, S.Y.; An, W.J.; Zhang, D.S.; Zhou, N.R. Image classification and adversarial robustness analysis based on hybrid convolutional neural network. Opt. Commun. 2023, 533, 129287. [Google Scholar] [CrossRef]
- Lyu, S.F.; Liu, J.Q. Convolutional Recurrent Neural Networks for Text Classification. J. Database Manag. 2021, 32, 65–82. [Google Scholar] [CrossRef]
- Xu, L.; Chen, Y.; Feng, A.; Shi, X.; Feng, Y.; Yang, Y.; Wang, Y.; Wu, Z.; Zou, Z.; Ma, W.; et al. Study on detection method of microplastics in farmland soil based on hyperspectral imaging technology. Environ. Res. 2023, 232, 116389. [Google Scholar] [CrossRef]
- Chen, S.; Ge, L. Exploring the attention mechanism in LSTM-based Hong Kong stock price movement prediction. Quant. Financ. 2019, 19, 1507–1515. [Google Scholar] [CrossRef]
- Long, Q.; Bagirov, A.; Taheri, S.; Sultanova, N.; Wu, X. Methods and Applications of Clusterwise Linear Regression: A Survey and Comparison. ACM Trans. Knowl. Discov. Data 2022, 17, 1–54. [Google Scholar] [CrossRef]
- Cho, H.; Lee, E.K. Tree-Structured Regression Model Using a Projection Pursuit Approach. Appl. Sci. 2021, 11, 9885. [Google Scholar] [CrossRef]
- Bentéjac, C.; Csörgő, A.; Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 2021, 54, 1937–1967. [Google Scholar] [CrossRef]
- Sricharoonratana, M.; Thompson, A.K.; Teerachaichayut, S. Use of near infrared hyperspectral imaging as a nondestructive method of determining and classifying shelf life of cakes. LWT 2021, 136, 110369. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, M.; Zhu, R.; Ma, R. Adulteration discrimination and analysis of fresh and frozen-thawed minced adulterated mutton using hyperspectral images combined with recurrence plot and convolutional neural network. Meat Sci. 2022, 192, 108900. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.C. Consumer finance: Challenges for operational research. J. Oper. Res. Soc. 2010, 61, 41–52. [Google Scholar] [CrossRef]
- Sharma, S.; Sumesh, K.C.; Sirisomboon, P. Rapid ripening stage classification and dry matter prediction of durian pulp using a pushbroom near infrared hyperspectral imaging system. Measurement 2022, 189, 110464. [Google Scholar] [CrossRef]
- Zhao, W.Z.; Du, S.H. Spectral-Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach. IEEE Trans. Geosci. Remote. Sens. 2016, 54, 4544–4554. [Google Scholar] [CrossRef]
- Shin, Y.; Kim, T.; Hong, S.; Lee, S.; Lee, E.; Hong, S.; Lee, C.; Kim, T.; Park, M.S.; Park, J.; et al. Prediction of Chlorophyll-aConcentrations in the Nakdong River Using Machine Learning Methods. Water 2020, 12, 1822. [Google Scholar] [CrossRef]
- Sonobe, R.; Hirono, Y.; Oi, A. Non-Destructive Detection of Tea Leaf Chlorophyll Content Using Hyperspectral Reflectance and Machine Learning Algorithms. Plants 2020, 9, 368. [Google Scholar] [CrossRef] [PubMed]
- De Amorim, F.D.L.; Rick, J.; Lohmann, G.; Wiltshire, K.H. Evaluation of Machine Learning Predictions of a Highly Resolved Time Series of Chlorophyll-a Concentration. Appl. Sci. 2021, 11, 7208. [Google Scholar] [CrossRef]
- Narmilan, A.; Gonzalez, F.; Salgadoe, A.S.A.; Kumarasiri, U.; Weerasinghe, H.A.S.; Kulasekara, B.R. Predicting Canopy Chlorophyll Content in Sugarcane Crops Using Machine Learning Algorithms and Spectral Vegetation Indices Derived from UAV Multispectral Imagery. Remote. Sens. 2022, 14, 1140. [Google Scholar] [CrossRef]
- Tang, X.D.; Huang, M.T. Simulation of Chlorophyll a Concentration in Donghu Lake Assisted by Environmental Factors Based on Optimized SVM and Data Assimilation. Water 2022, 14, 2353. [Google Scholar] [CrossRef]
Record | Sample Number | Minimum Value (g/cm2) | Maximum Values (g/cm2) | Average Value (g/cm2) | (Statistics) Standard Deviation (g/cm2) | |
---|---|---|---|---|---|---|
hyperspectral | Training set | 60 | 32.4 | 47.8 | 38.9 | 1.95 |
Test set | 30 | 33.6 | 48.2 | 39.1 | 1.62 | |
Fluorescence spectroscopy | Training set | 60 | 32.4 | 47.8 | 38.9 | 1.95 |
Test set | 30 | 33.6 | 48.2 | 39.1 | 1.62 |
Feature Extraction Method | The Number of Characteristic Variables | RMSE Train | RMSE Test | RPD |
---|---|---|---|---|
Chief | 21 | 0.71 | 0.85 | 1.76 |
CARS | 37 | 0.65 | 0.79 | 1.97 |
IVSO | 46 | 0.60 | 0.71 | 2.04 |
IVISSA | 76 | 0.82 | 0.97 | 1.84 |
MASSES | 58 | 0.79 | 0.82 | 1.93 |
EIS | 64 | 0.73 | 0.89 | 1.75 |
Feature Extraction Method | The Number of Characteristic Variables | RMSE Train | RMSE Test | RPD |
---|---|---|---|---|
Chief | 11 | 0.62 | 0.69 | 2.11 |
CARS | 14 | 0.61 | 0.71 | 1.87 |
IVSO | 19 | 0.74 | 0.80 | 1.37 |
IVISSA | 38 | 0.54 | 0.83 | 1.61 |
MASSES | 24 | 0.66 | 0.76 | 1.53 |
EIS | 27 | 0.68 | 0.77 | 1.75 |
Feature Extraction Method | The Number of Characteristic Variables | RMSE Train | RMSE Test | RPD |
---|---|---|---|---|
Chief | 21 | 0.68 | 0.73 | 1.83 |
CARS | 37 | 0.63 | 0.70 | 2.03 |
IVSO | 46 | 0.65 | 0.73 | 1.88 |
IVISSA | 76 | 0.77 | 0.86 | 1.95 |
MASSES | 58 | 0.71 | 0.81 | 2.1 |
EIS | 64 | 0.67 | 0.76 | 1.90 |
Feature Extraction Method | The Number of Characteristic Variables | RMSE Train | RMSE Test | RPD |
---|---|---|---|---|
Chief | 11 | 0.65 | 0.70 | 2.06 |
CARS | 14 | 0.64 | 0.67 | 2.02 |
IVSO | 19 | 0.60 | 0.68 | 2.12 |
IVISSA | 38 | 0.72 | 0.76 | 1.97 |
MASSES | 24 | 0.68 | 0.74 | 1.93 |
EIS | 27 | 0.64 | 0.71 | 2.04 |
Feature Extraction Method | The Number of Characteristic Variables | RMSE Train | RMSE Test | RPD |
---|---|---|---|---|
Chief | 21 | 0.60 | 0.68 | 2.07 |
CARS | 37 | 0.56 | 0.67 | 2.25 |
IVSO | 46 | 0.54 | 0.63 | 2.27 |
IVISSA | 76 | 0.57 | 0.69 | 2.17 |
MASSES | 58 | 0.60 | 0.67 | 2.00 |
EIS | 64 | 0.67 | 0.73 | 1.78 |
Feature Extraction Method | The Number of Characteristic Variables | RMSE Train | RMSE Test | RPD |
---|---|---|---|---|
Chief | 11 | 0.57 | 0.63 | 2.11 |
CARS | 14 | 0.53 | 0.59 | 2.28 |
IVSO | 19 | 0.50 | 0.56 | 2.34 |
IVISSA | 38 | 0.52 | 0.60 | 2.08 |
MASSES | 24 | 0.55 | 0.62 | 2.03 |
EIS | 27 | 0.61 | 0.69 | 1.98 |
Feature Extraction Method | The Number of Characteristic Variables | RMSE Train | RMSE Test | RPD |
---|---|---|---|---|
Chief | 21 | 0.47 | 0.52 | 2.06 |
CARS | 37 | 0.41 | 0.46 | 2.23 |
IVSO | 46 | 0.36 | 0.40 | 2.42 |
IVISSA | 76 | 0.32 | 0.38 | 2.53 |
MASSES | 58 | 0.44 | 0.47 | 2.19 |
EIS | 64 | 0.37 | 0.43 | 2.13 |
Feature Extraction Method | The Number of Characteristic Variables | RMSE Train | RMSE Test | RPD |
---|---|---|---|---|
Chief | 11 | 0.46 | 0.53 | 2.09 |
CARS | 14 | 0.40 | 0.47 | 2.25 |
IVSO | 19 | 0.33 | 0.38 | 2.47 |
IVISSA | 38 | 0.30 | 0.34 | 2.56 |
MASSES | 24 | 0.38 | 0.41 | 2.27 |
EIS | 27 | 0.34 | 0.39 | 2.18 |
Feature Extraction Method | The Number of Characteristic Variables | RMSE Train | RMSE Test | RPD |
---|---|---|---|---|
IVSO Boss | 19 | 0.39 | 0.43 | 1.96 |
IVSO-CARS | 22 | 0.37 | 0.40 | 2.09 |
IVSO-IVISSA | 37 | 0.26 | 0.29 | 2.64 |
IVSO-MASS | 27 | 0.32 | 0.38 | 2.13 |
IVSO-UVE | 32 | 0.29 | 0.34 | 2.28 |
Data Categories | Cross- Validation | Average RMSE-Train | Average RMSE-Test |
---|---|---|---|
Linear Regression | ✕ | 0.18 | 0.74 |
Linear Regression | ✓ | 0.16 | 0.87 |
Random Forest | ✕ | 0.47 | 0.52 |
Random Forest | ✓ | 0.47 | 0.51 |
XGBoost | ✕ | 0.33 | 0.36 |
XGBoost | ✓ | 0.34 | 0.38 |
LSTM+CNN | ✕ | 0.26 | 0.29 |
LSTM+CNN | ✓ | 0.25 | 0.27 |
Literature | Method | RMSE | RPD | Data |
---|---|---|---|---|
Shin, Y. [50] | XGBoost | 3.93 | - | Chlorophyll-a concentrations in the Nakdong River |
LSTM | 4.69 | - | ||
Random Forest | 3.12 | - | ||
Sonobe, R. [51] | SVM | - | 0.81 | Tea leaf chlorophyll |
Random Forest | - | 1.12 | ||
De Amorim, F.D.L. [52] | Random Forest | 0.35 | - | Chlorophyll-a concentration |
Narmilan, A. [53] | XGBoost | 0.14 | - | Canopy chlorophyll content in sugarcane crops |
Tang, X.D. [54] | SVM | 10.07 | - | Chlorophyll A concentration inDonghu Lake |
Our study | CNN+LSTM | 0.26 | 2.64 | Rice chlorophyll |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Li, F.; Wang, X.; Yin, H.; Zhang, W.; Du, J.; Pu, H. Hyperspectral and Fluorescence Imaging Approaches for Nondestructive Detection of Rice Chlorophyll. Plants 2024, 13, 1270. https://doi.org/10.3390/plants13091270
Zhou J, Li F, Wang X, Yin H, Zhang W, Du J, Pu H. Hyperspectral and Fluorescence Imaging Approaches for Nondestructive Detection of Rice Chlorophyll. Plants. 2024; 13(9):1270. https://doi.org/10.3390/plants13091270
Chicago/Turabian StyleZhou, Ju, Feiyi Li, Xinwu Wang, Heng Yin, Wenjing Zhang, Jiaoyang Du, and Haibo Pu. 2024. "Hyperspectral and Fluorescence Imaging Approaches for Nondestructive Detection of Rice Chlorophyll" Plants 13, no. 9: 1270. https://doi.org/10.3390/plants13091270
APA StyleZhou, J., Li, F., Wang, X., Yin, H., Zhang, W., Du, J., & Pu, H. (2024). Hyperspectral and Fluorescence Imaging Approaches for Nondestructive Detection of Rice Chlorophyll. Plants, 13(9), 1270. https://doi.org/10.3390/plants13091270