Precipitation Anomalies and Trends Estimated via Satellite Rainfall Products in the Cananeia–Iguape Coastal System, Southeast Region of Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Acquisition of Observed Data and Satellite Rainfall Product Data
2.3. Exploratory Statistics
2.4. Standardized Precipitation Index
2.5. Trend Analysis
3. Results
3.1. Validation of Satellite Rainfall Products
3.1.1. Annual Scale
3.1.2. Monthly Scale
3.2. Application of the SPI to Identify Rainfall Extremes
3.3. Trends and Ruptures in Historical Series of Rainfall
3.3.1. Annual Trends and Ruptures
3.3.2. Monthly Trends and Ruptures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gessner, U.; Naeimi, V.; Klein, I.; Kuenzer, C.; Klein, D.; Dech, S. The Relationship between Precipitation Anomalies and Satellite-Derived Vegetation Activity in Central Asia. Glob. Planet. Chang. 2013, 110, 74–87. [Google Scholar] [CrossRef]
- Duke, N.C.; Ball, M.C.; Ellison, J.C. Factors Influencing Biodiversity and Distributional Gradients in Mangroves. Biogeogr. Lett. 1998, 7, 27–47. [Google Scholar] [CrossRef]
- Alongi, D.M. The Impact of Climate Change on Mangrove Forests. Curr. Clim. Chang. Rep. 2015, 1, 30–39. [Google Scholar] [CrossRef]
- Osland, M.J.; Day, R.H.; From, A.S.; McCoy, M.L.; McLeod, J.L.; Kelleway, J.J. Life Stage Influences the Resistance and Resilience of Black Mangrove Forests to Winter Climate Extremes. Ecosphere 2015, 6, 1–15. [Google Scholar] [CrossRef]
- Osland, M.J.; Day, R.H.; Hall, C.T.; Brumfield, M.D.; Dugas, J.L.; Jones, W.R. Mangrove Expansion and Contraction at a Poleward Range Limit: Climate Extremes and Land-Ocean Temperature Gradients. Ecology 2017, 98, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Asbridge, E.; Lucas, R.; Accad, A.; Dowling, R. Mangrove Response to Environmental Changes Predicted under Varying Climates: Case Studies from Australia. Curr. For. Rep. 2015, 1, 178–194. [Google Scholar] [CrossRef]
- Feher, L.C.; Osland, M.J.; Griffith, K.T.; Grace, J.B.; Howard, R.J.; Stagg, C.L.; Enwright, N.M.; Krauss, K.W.; Gabler, C.A.; Day, R.H.; et al. Linear and Nonlinear Effects of Temperature and Precipitation on Ecosystem Properties in Tidal Saline Wetlands. Ecosphere 2017, 8, e01956. [Google Scholar] [CrossRef]
- Tsesmelis, D.E.; Leveidioti, I.; Karavitis, C.A.; Kalogeropoulos, K.; Vasilakou, C.G.; Tsatsaris, A.; Zervas, E. Spatiotemporal Application of the Standardized Precipitation Index (SPI) in the Eastern Mediterranean. Climate 2023, 11, 95. [Google Scholar] [CrossRef]
- dos Santos, A.L.M.; Gonçalves, W.A.; Rodrigues, D.T.; Andrade, L.d.M.B.; e Silva, C.M.S. Evaluation of Extreme Precipitation Indices in Brazil’s Semiarid Region from Satellite Data. Atmosphere 2022, 13, 1598. [Google Scholar] [CrossRef]
- Mann, H.B. Non-Parametric Test against Trend. Econometrika 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 5th ed.; Charles Griffin: London, UK, 1990. [Google Scholar]
- Sneyers, R. On the Statistical Analysis of Series of Observations; World Meteorological Organization: Geneva, Sweiterland, 1990; Volume 415. [Google Scholar]
- Pereira, G.; Silva, M.E.S.; Moraes, E.C.; Cardozo, F. da S. Evaluation of Precipitation Data Estimated by the TRMM Satellite for Brazil. Rev. Bras. De Recur. Hídricos 2013, 18, 139–148. [Google Scholar]
- Erazo, B.; Bourrel, L.; Frappart, F.; Chimborazo, O.; Labat, D.; Dominguez-Granda, L.; Matamoros, D.; Mejia, R. Validation of Satellite Estimates (Tropical Rainfall Measuring Mission, TRMM) for Rainfall Variability over the Pacific Slope and Coast of Ecuador. Water 2018, 10, 213. [Google Scholar] [CrossRef]
- Silva, G.K.d.; Marcos Júnior, A.D.; Lima, C.E.S.; Silva, M.V.M.d.; da Silveira, C.S.; da Silva, E.M.; de Lima, I.R. Analysis of the Spatio-Temporal Variability of the SPI: A Decaso Study for the Choró Sub-Basin, Ceará, Brazil. Rev. Bras. Meteorol. 2021, 36, 539–549. [Google Scholar] [CrossRef]
- Santos, B.C.d.; Sanches, R.G.; Moreira, R.M.; Bourscheidt, V.; de Souza, P.H. Análise Espaço-Temporal Da Precipitação Na Região Central Do Estado de São Paulo Utilizando Dados CHIRPS. Rev. Bras. Geogr. Física 2022, 15, 2582–2600. [Google Scholar] [CrossRef]
- Costa, J.; Pereira, G.; Siqueira, M.E.; Cardozo, F.; da Silva, V.V. Validation of Precipitation Data Chirps Estimated to Brazil. Rev. Bras. Climatol. 2019, 24, 243–288. [Google Scholar]
- Silva, C.B.; Silva, M.E.S.; Ambrizzi, T.; Tommaselli, J.T.G.; Patucci, N.N.; Mataveli, G.A.V.; Lima, B.S.; Correa, W.C. Precipitation in South America—Data Obtained from Automatic Stations and Orbita Systems. Rev. Bras. Climatol. 2019, 25, 54–79. [Google Scholar]
- Ouatiki, H.; Boudhar, A.; Tramblay, Y.; Jarlan, L.; Benabdelouhab, T.; Hanich, L.; El Meslouhi, M.R.; Chehbouni, A. Evaluation of TRMM 3B42 V7 Rainfall Product over the Oum Er Rbia Watershed in Morocco. Climate 2017, 5, 1. [Google Scholar] [CrossRef]
- Gummadi, S.; Dinku, T.; Shirsath, P.B.; Kadiyala, M.D.M. Evaluation of Multiple Satellite Precipitation Products for Rainfed Maize Production Systems over Vietnam. Sci. Rep. 2022, 12, 485. [Google Scholar] [CrossRef]
- Medina, F.D.; Zossi, B.S.; Bossolasco, A.; Elias, A.G. Performance of CHIRPS Dataset for Monthly and Annual Rainfall-Indices in Northern Argentina. Atmos. Res. 2023, 283, 106545. [Google Scholar] [CrossRef]
- Soares, A.S.D.; da Paz, A.R.; Piccilli, D.G.A. A Evaluation of TRMM Satellite Rainfall Estimates in the State of Paraíba. Rev. Bras. Recur. Hidr. 2016, 21, 288–299. [Google Scholar] [CrossRef]
- Silva, E.R.M.; Barbosa, I.C.C.; Silva, H.J.F.; Costa, L.G.S.; Rocha, E.J. Evaluating the Performance of Precipitation Estimate from CHIRPS Product for the Apeú River Basin, Castanhal-PA. Rev. Bras. Geogr. Física 2020, 13, 1094–1105. [Google Scholar] [CrossRef]
- de Moraes Cordeiro, A.L.; Blanco, C.J.C. Assessment of Satellite Products for Filling Rainfall Data Gaps in the Amazon Region. Nat. Resour. Model. 2021, 34, e12298. [Google Scholar] [CrossRef]
- Brasil Neto, R.M.; Santos, C.A.G.; Silva, J.F.C.B.d.C.; da Silva, R.M.; dos Santos, C.A.C.; Mishra, M. Evaluation of the TRMM Product for Monitoring Drought over Paraíba State, Northeastern Brazil: A Trend Analysis. Sci. Rep. 2021, 11, 1097. [Google Scholar] [CrossRef]
- Cunha-Lignon, M.; Kampel, M.; Menghini, R.; Schaeffer-Novelli, Y.; Cintrónβ, G.; Dahdouh-Guebas, F. Mangrove Forests Submitted to Depositional Processes and Salinity Variation Investigated Using Satellite Images and Vegetation Structure Surveys. Proc. Pol. J. Coast. Res. 2011, 64, 2011. [Google Scholar]
- Tessler, M.G.; Goya, S.C.; Yoshikawa, P.S.; Hurtado, S.N. In Erosion and Progradation of the Brazilian Costline; Muehe, D., Ed.; Ministério do Meio Ambiente: Brasilia, Brasil, 2006; p. 474. Available online: https://erosioncostera.furg.br/images/PDFs/livro_dieter_2006.pdf. (accessed on 12 August 2022).
- Brasil Decreto No 90.347, de 23 de Outubro de 1984. Available online: https://www.planalto.gov.br/ccivil_03/atos/decretos/1984/d90347.html (accessed on 29 August 2023).
- São Paulo Decreto N°. 40.319, de 03 DE Julho de 1962. Available online: https://www.al.sp.gov.br/repositorio/legislacao/decreto/1962/decreto-40319-03.07.1962.html (accessed on 29 August 2023).
- Ross, J.L.S. The Morphogenesis of the Ribeira Do Iguape Basin and Environmental Systems. GEOUSP—Espaço E Tempo 2002, 12, 21–46. [Google Scholar] [CrossRef]
- Dias, R.L.; Oliveira, R.C. de Socioeconomic Characterization and Mapping of Land Use and Occupation on the South Coast of the State of São Paulo. Soc. Nat. 2015, 27, 111–123. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Sant’Anna Neto, J.L. Climate Rhythm and the Genesis of Rain in the Coastal Zone of the State of São Paulo-Brazil. Master’s Thesis, Universidade de São Paulo, São Paulo, Brazil, 1990. [Google Scholar]
- Galvani, E.; Gilma, N.; De Lima, B.; Alves, R.R. Variability and Trend of Precipitation on the South Coast of São Paulo. Rev. Geonorte 2012, 1, 1163–1176. [Google Scholar]
- Reboita, M.S.; Alonso Gan, M.; Porfírio, R.; Rocha, D.A.; Ambrizzi, E.T. Precipitation Regimes in South America: A Bibliography Review. Rev. Bras. Meteorol. 2010, 25, 185–204. [Google Scholar] [CrossRef]
- Mello, Y.R.d.; Lopes, F.C.A.; Roseghini, W.F.F. Climatic characteristics na rhythic analysis applied to extreme events of precipitation and temperature in the city of Paranaguá, Paraná. Rev. Bras. Climatol. 2017, 13, 313–336. [Google Scholar]
- Sant’Anna Neto, J.L. Atmospheric Dynamics and the Transitional Character of the Climate in the Coastal Zone of São Paulo. Rev. Dep. Geogr. 1994, 8, 35–49. [Google Scholar]
- Seluchi, M.E.; Chou, S.C. Synoptic Patterns Associated with Landslide Events in the Serra Do Mar, Brazil. Theor. Appl. Clim. 2009, 98, 67–77. [Google Scholar] [CrossRef]
- Reboita, M.S.; Ambrizzi, T.; Porfírio Da Rocha, R. Underrstanding Weather and Climate in South America. Terra E Didat. 2012, 8, 34–50. [Google Scholar] [CrossRef]
- Verdan, I.; Silva, M.E.S. South Atlantic Convergence Zone variability in relation to ENSO events from 2000 to 2021. Geogr. Dep. Univ. Sao Paulo 2022, 42, e193110. [Google Scholar] [CrossRef]
- Dehaghani, A.M.; Gohari, A.; Zareian, M.J.; Torabi Haghighi, A. A Comprehensive Evaluation of the Satellite Precipitation Products across Iran. J. Hydrol. Reg. Stud. 2023, 46, 101360. [Google Scholar] [CrossRef]
- Ye, X.; Guo, Y.; Wang, Z.; Liang, L.; Tian, J. Extensive Evaluation of Four Satellite Precipitation Products and Their Hydrologic Applications over the Yarlung Zangbo River. Remote Sens. 2022, 14, 3350. [Google Scholar] [CrossRef]
- Reichle, R.H.; Liu, Q.; Koster, R.D.; Draper, C.S.; Mahanama, S.P.P.; Partyka, G.S. Land Surface Precipitation in MERRA-2. J. Clim. 2017, 30, 1643–1664. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Adler, R.F. TRMM (Tmpa) Precipitation L3 1 Day 0.25 Degree × 0.25 Degree V7; Savtchenko, A., Ed.; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2016. [Google Scholar] [CrossRef]
- NASA (National Aeronautics and Space Administration); Goddard Earth Sciences Data and Information Services Center. Tropical Rainfall Measurement Mission (TRMM). Available online: http://disc.sci.gsfc.nasa.gov/SSW/#keywords=TRMM_3B42_daily%207 (accessed on 29 August 2023).
- Wang, J.; Petersen, W.A.; Wolff, D.B. Validation of Satellite-Based Precipitation Products from TRMM to GPM. Remote Sens. 2021, 13, 1745. [Google Scholar] [CrossRef]
- Climate Hazards Center InfraRed Precipitation with Station Data (CHIRPS). Available online: https://www.chc.ucsb.edu/data (accessed on 29 August 2023).
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira-Júnior, J.F.; da Silva Junior, C.A.; Teodoro, P.E.; Rossi, F.S.; Blanco, C.J.C.; Lima, M.; de Gois, G.; Correia Filho, W.L.F.; de Barros Santiago, D.; dos Santos Vanderley, M.H.G. Confronting CHIRPS Dataset and in Situ Stations in the Detection of Wet and Drought Conditions in the Brazilian Midwest. Int. J. Climatol. 2021, 41, 4478–4493. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.K.; et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Zandler, H.; Haag, I.; Samimi, C. Evaluation Needs and Temporal Performance Differences of Gridded Precipitation Products in Peripheral Mountain Regions. Sci. Rep. 2019, 9, 15118. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef]
- Sorooshian, A.; Alexandrov, M.D.; Bell, A.D.; Bennett, R.; Betito, G.; Burton, S.P.; Buzanowicz, M.E.; Cairns, B.; Chemyakin, E.V.; Chen, G.; et al. Spatially Coordinated Airborne Data and Complementary Products for Aerosol, Gas, Cloud, and Meteorological Studies: The NASA ACTIVATE Dataset. Earth Syst. Sci. Data 2023, 15, 3419–3472. [Google Scholar] [CrossRef]
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Ziese, M.; Rudolf, B. GPCC’s New Land Surface Precipitation Climatology Based on Quality-Controlled in Situ Data and Its Role in Quantifying the Global Water Cycle. Theor. Appl. Clim. 2014, 115, 15–40. [Google Scholar] [CrossRef]
- Sadeghi, M.; Nguyen, P.; Naeini, M.R.; Hsu, K.; Braithwaite, D.; Sorooshian, S. PERSIANN-CCS-CDR, a 3-Hourly 0.04° Global Precipitation Climate Data Record for Heavy Precipitation Studies. Sci. Data 2021, 8, 157. [Google Scholar] [CrossRef] [PubMed]
- Kumar, L.; Mutanga, O. Google Earth Engine Applications since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef]
- Shiff, S.; Helman, D.; Lensky, I.M. Worldwide Continuous Gap-Filled MODIS Land Surface Temperature Dataset. Sci. Data 2021, 8, 74. [Google Scholar] [CrossRef] [PubMed]
- Willmott, C.J.; Matsuura, K. Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Model Performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)? -Arguments against Avoiding RMSE in the Literature. Geosci. Model. Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Gebremicael, T.G.; Mohamed, Y.A.; Zaag, P.v.d.; Gebremedhin, A.; Gebremeskel, G.; Yazew, E.; Kifle, M. Evaluation of Multiple Satellite Rainfall Products over the Rugged Topography of the Tekeze-Atbara Basin in Ethiopia. Int. J. Remote Sens. 2019, 40, 4326–4345. [Google Scholar] [CrossRef]
- Willmott, C.J.; Ackleson, S.G.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’Donnell, J.; Rowe, C.M. Statistics for the Evaluation and Comparison of Models. J. Geophys. Res. 1985, 90, 8995. [Google Scholar] [CrossRef]
- Aghakouchak, A.; Mehran, A. Extended Contingency Table: Performance Metrics for Satellite Observations and Climate Model Simulations. Water Resour. Res. 2013, 49, 7144–7149. [Google Scholar] [CrossRef]
- Xavier, A.C.F.; Rudke, A.P.; Serrão, E.A.d.O.; Terassi, P.M.d.B.; Pontes, P.R.M. Evaluation of Satellite-Derived Products for the Daily Average and Extreme Rainfall in the Mearim River Drainage Basin (Maranhão, Brazil). Remote Sens. 2021, 13, 4393. [Google Scholar] [CrossRef]
- Reyes, L.J.C.; Rangel, H.Á.; Herazo, L.C.S. Adjustment of the Standardized Precipitation Index (SPI) for the Evaluation of Drought in the Arroyo Pechelín Basin, Colombia, under Zero Monthly Precipitation Conditions. Atmosphere 2022, 13, 236. [Google Scholar] [CrossRef]
- Gozzo, L.F.; Palma, D.S.; Custódio, M.d.S.; Drumond, A. Climate Patterns Associated to Drought Events in Eastern São Paulo. Rev. Bras. Climatol. 2021, 28, 321–341. [Google Scholar]
- Ul Moazzam, M.F.; Rahman, G.; Munawar, S.; Tariq, A.; Safdar, Q.; Lee, B.G. Trends of Rainfall Variability and Drought Monitoring Using Standardized Precipitation Index in a Scarcely Gauged Basin of Northern Pakistan. Water 2022, 14, 1132. [Google Scholar] [CrossRef]
- Gois, G.d.; de José Francisco, O.-J.; Paiva, R.F.d.P.d.S.; Freitas, W.K.; Terassi, P.M.d.B.; Sobral, B.S. Pluviomect variability, drought indicators and the application of the Spi index to the middle Vale of Paraíba do Sul region-Rio de Janeiro. Rev. Bras. Climatol. 2020, 27, 122–157. [Google Scholar]
- Siqueira, B.; Nery, J.T. Analysis of the Standardized Precipitation Index for the State of São Paulo. Rev. Bras. Geogr. Física 2017, 10, 1775–1783. [Google Scholar] [CrossRef]
- Terassi, P.M.d.B.; Oliveira-Júnior, J.F.d.; de Góis, G.; Galvani, E. Standardized Precipitation Index Variability in the Northern Region of Paraná State Associated with the El Niño Southern Oscillation. Rev. Bras. Meteorol. 2018, 33, 11–25. [Google Scholar] [CrossRef]
- Almeida, L.P.d.; Pampuch, L.A.; Moraes Drumond, A.R.d.; Gozzo, L.F.; Negri, R.G. Multivariate Analysis of the SPI in the State of São Paulo. Rev. Bras. Climatol. 2023, 32, 337–362. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Mckee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 17–22. [Google Scholar]
- Sneyers, R. Sur L’analyse Statistique Des Séries D’observations; Secrétariat de l’Organisation Météorologique Mondiale: Genève, Switerzerland, 1975. [Google Scholar]
- Pettitt, A.N. A Non-Parametric Approach to the Change-Point Problem. J. R. Stat. Soc. Ser. C Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Alexandersson, H.; Moberg, A. Homogenization of Swedish Temperature Data. Part i: Homogeneity Test for Linear Trends. Int. J. Climatol. 1997, 17, 25–34. [Google Scholar] [CrossRef]
- Buishand, T.A. Some Methods for Testing the Homogeneity of Rainfall. J. Hydrol. 1982, 58, 11–27. [Google Scholar] [CrossRef]
- Kocsis, T.; Kovács-Székely, I.; Anda, A. Homogeneity Tests and Non-Parametric Analyses of Tendencies in Precipitation Time Series in Keszthely, Western Hungary. Theor. Appl. Clim. 2020, 139, 849–859. [Google Scholar] [CrossRef]
- Akinsanola, A.A.; Ogunjobi, K.O. Recent Homogeneity Analysis and Long-Term Spatio-Temporal Rainfall Trends in Nigeria. Theor. Appl. Clim. 2017, 128, 275–289. [Google Scholar] [CrossRef]
- R Development Core Team A Language and Environment for Statistical Computing. Available online: http://www.r-project.org (accessed on 29 August 2023).
- Ma, Y.; Tang, G.; Long, D.; Yong, B.; Zhong, L.; Wan, W.; Hong, Y. Similarity and Error Intercomparison of the GPM and Its Predecessor-TRMM Multisatellite Precipitation Analysis Using the Best Available Hourly Gauge Network over the Tibetan Plateau. Remote Sens. 2016, 8, 569. [Google Scholar] [CrossRef]
- Martins, L.L.; Sobierajski, G.D.R.; Blain, G.C. Increases in the Frequency of Meteorological Droughts in the São Paulo State, Brazil, under Climate Change Conditions. Derbyana 2023, 44, 1–13. [Google Scholar] [CrossRef]
- Cavalcante, R.B.L.; Ferreira, D.B.d.S.; Pontes, P.R.M.; Tedeschi, R.G.; da Costa, C.P.W.; de Souza, E.B. Evaluation of Extreme Rainfall Indices from CHIRPS Precipitation Estimates over the Brazilian Amazonia. Atmos. Res. 2020, 238, 10489. [Google Scholar] [CrossRef]
- Abreu, M.; Souza, A.; Lins, T.M.P.; Oliveira-Junior, J.F.; Oliveira, S.S.; Fernandes, W.; Almeida, L.T.d.; Torsen, E. Comparison and Validation of Trmm Satellite Precipitation Estimates and Data Observed in Mato Grosso Sul State, Brazil. Rev. Bras. Climatol. 2020, 27, 566–589. [Google Scholar]
- NOAA (National Oceanic and Atmospheric Administration) El Niño-Southern Oscillation (ENOS). Available online: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 29 August 2023).
- Terassi, P.M.d.B.; Galvani, E. Identification of Homogeneous Rainfall Regions in the Eastern Watersheds of the State of Paraná, Brazil. Climate 2017, 5, 53. [Google Scholar] [CrossRef]
- Monteiro, C.A.F. Climate Dynamics and Rain in the State of São Paulo: Geographic Study in the Form of an Atlas; Climatology Laboratory, Institute of Geography: São Paulo, Brazil, 1973. [Google Scholar]
- Alongi, D.M. Climate Change and Mangroves. In Mangroves: Biodiversity, Livelihoods and Conservation; Springer Nature: Singapore, 2022; pp. 175–198. ISBN 9789811905193. [Google Scholar]
- Dufek, A.S.; Ambrizzi, T. Precipitation Variability in São Paulo State, Brazil. Theor. Appl. Clim. 2008, 93, 167–178. [Google Scholar] [CrossRef]
- Haylock, M.R.; Peterson, T.C.; Alves, L.M.; Ambrizzi, T.; Anunciação, Y.M.T.; Baez, J.; Barros, V.R.; Berlato, M.A.; Bidegain, M.; Coronel, G.; et al. Trends in Total and Extreme South American Rainfall in 1960-2000 and Links with Sea Surface Temperature. J. Clim. 2006, 19, 1490–1512. [Google Scholar] [CrossRef]
- Regoto, P.; Dereczynski, C.; Chou, S.C.; Bazzanela, A.C. Observed Changes in Air Temperature and Precipitation Extremes over Brazil. Int. J. Climatol. 2021, 41, 5125–5142. [Google Scholar] [CrossRef]
- Salviano, M.F.; Groppo, J.D.; Pellegrino, G.Q. Trend Analysis in Precipitation and Temperature Data in Brazil. Rev. Bras. Meteorol. 2016, 31, 64–73. [Google Scholar] [CrossRef]
- Terassi, P.M.d.B.; da Silva Oscar-Júnior, A.C.; Galvani, E.; de Oliveira-Júnior, J.F.; Sobral, B.S.; Biffi, V.H.R.; de Gois, G. Daily Rainfall Intensity and Temporal Trends in Eastern Paraná State—Brazil. Urban. Clim. 2022, 42, 101090. [Google Scholar] [CrossRef]
- Correa, M.G.G.; Galvani, E. The Impact of El Niño-Southern Oscillation on the Rainfall Temporal Variability in the Piquiri Watershed, Paraná State, Brazil. Rev. Do Inst. Geol. 2020, 41, 21–33. [Google Scholar] [CrossRef]
- Arikan, B.B.; Kahya, E. Homogeneity Revisited: Analysis of Updated Precipitation Series in Turkey. Theor. Appl. Clim. 2019, 135, 211–220. [Google Scholar] [CrossRef]
- Penereiro, J.C.; Meschiatti, M.C. Trends in the Annual Rainfall and Temperatures Series in Brazil. Eng. Sanit. E Ambient. 2018, 23, 319–331. [Google Scholar] [CrossRef]
- Nascimento Júnior, L.; Lima Sant, J.; Neto, A. Contribution to Precipitation Studies in Paraná State: The Pacific Decadal Oscillation-PDO. Raega O. Espaço Em Análise 2015, 35, 314–343. [Google Scholar]
- Nery, J.T.; Carfan, A.C. Re-Analysis of Pluvial Precipitation in Southern Brazil. Atmósfera 2014, 27, 103–115. [Google Scholar] [CrossRef]
- Martínez, M.D.; Serra, C.; Burgueño, A.; Lana, X. Time Trends of Daily Maximum and Minimum Temperatures in Catalonia (Ne Spain) for the Period 1975-2004. Int. J. Climatol. 2010, 30, 267–290. [Google Scholar] [CrossRef]
- Göktürk, O.M.; Bozkurt, D.; Şen, Ö.L.; Karaca, M. Quality Control and Homogeneity of Turkish Precipitation Data. Hydrol. Process 2008, 22, 3210–3218. [Google Scholar] [CrossRef]
- Lima, N.; Cunha-Lignon, M.; Martins, A.; Armani, G.; Galvani, E. Impacts of Extreme Weather Event in Southeast Brazilian Mangrove Forest. Atmosphere 2023, 14, 1195. [Google Scholar] [CrossRef]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and Distribution of Mangrove Forests of the World Using Earth Observation Satellite Data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Alongi, D.M. Present State and Future of the World’s Mangrove Forests. Environ. Conserv. 2002, 29, 331–349. [Google Scholar] [CrossRef]
ID | Latitude | Longitude | Elevation (m) | Period | Failure (%) | Institution | City |
---|---|---|---|---|---|---|---|
ID1 | 25°1′13″ S | 47°55′30″ W | 1 | 2009–2019 | 0 | CIIAGRO | Cananéia |
ID2 | 24°36′39″ S | 47°53′0″ W | 34 | 2009–2019 | 4.1 | CIIAGRO | Pariquera-Açu |
ID3 | 24°40′18″ S | 47°32′43″ W | 6 | 2009–2019 | 8.3 | INMET | Iguape |
ID4 | 24°43′0″ S | 47°53′0″ W | 30 | 2009–2019 | 3.4 | DAEE | Pariquera-Açu |
ID5 | 24°42′0″ S | 47°34′0″ W | 3 | 2009–2019 | 1.3 | DAEE | Iguape |
ID6 | 24°56′0″ S | 47°57′0″ W | 7 | 2009–2019 | 6.2 | DAEE | Cananéia |
ID7 | 24°32′0″ S | 47°32′00″ W | 30 | 2009–2019 | 3.4 | DAEE | Iguape |
Product | Temporal Resolution | Spatial Resolution | Coverage | Starting Data |
---|---|---|---|---|
TRMM | 3 h | 0.25° | 50° N–50° S, 0°–360° E | 1998–2018 |
CHIRPS | daily | 0.05° | 50° N–50° S, 0°–360° E | 1981 |
PERSIANN CDR | daily | 0.50° × 0.625° | Global | 1983 |
MERRA-2 | daily | 0.25° | Global | 1980 |
Mann–Kendall | Pettitt | SNHT | Buishand’s | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ID | TAU | P.VA | ZMK | Sen’s Slope | K | P.VA | t | T0 | P.VA | t | Q | P.VA | t |
1 | −0.117 | 0.286 | −1.00 | −8.227 | 164 | 0.256 | 2017 | 11.771 | 0.005 * | 2017 | 7.278 | 0.098+ | 2017 |
2 | −0.090 | 0.412 | −0.650 | −3.428 | 150 | 0.407 | 2017 | 8.445 | 0.091+ | 2018 | 6.141 | 0.235 | 2017 |
3 | −0.207 | 0.058+ | −1.67 | −7.086 | 158 | 0.316 | 1998 | 7.304 | 0.122 | 2017 | 7.048 | 0.110 | 1998 |
4 | −0.010 | 0.937 | −0.043 | −0.518 | 146 | 0.461 | 2017 | 7.598 | 0.103 | 2018 | 5.739 | 0.297 | 2017 |
5 | −0.207 | 0.058+ | −1.67 | −7.086 | 158 | 0.313 | 1998 | 7.304 | 0.122 | 2017 | 7.048 | 0.110 | 1998 |
6 | −0.010 | 0.937 | −0.09 | −1.106 | 152 | 0.382 | 2017 | 8.927 | 0.034 * | 2017 | 6.338 | 0.202 | 2017 |
7 | −0.310 | 0.004 ** | −2.71 | −10.683 | 246 | 0.008 ** | 1998 | 10.306 | 0.061+ | 1998 | 10.253 | 0.004+ | 1998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baratto, J.; de Bodas Terassi, P.M.; de Beserra de Lima, N.G.; Galvani, E. Precipitation Anomalies and Trends Estimated via Satellite Rainfall Products in the Cananeia–Iguape Coastal System, Southeast Region of Brazil. Climate 2024, 12, 22. https://doi.org/10.3390/cli12020022
Baratto J, de Bodas Terassi PM, de Beserra de Lima NG, Galvani E. Precipitation Anomalies and Trends Estimated via Satellite Rainfall Products in the Cananeia–Iguape Coastal System, Southeast Region of Brazil. Climate. 2024; 12(2):22. https://doi.org/10.3390/cli12020022
Chicago/Turabian StyleBaratto, Jakeline, Paulo Miguel de Bodas Terassi, Nádia Gilma de Beserra de Lima, and Emerson Galvani. 2024. "Precipitation Anomalies and Trends Estimated via Satellite Rainfall Products in the Cananeia–Iguape Coastal System, Southeast Region of Brazil" Climate 12, no. 2: 22. https://doi.org/10.3390/cli12020022
APA StyleBaratto, J., de Bodas Terassi, P. M., de Beserra de Lima, N. G., & Galvani, E. (2024). Precipitation Anomalies and Trends Estimated via Satellite Rainfall Products in the Cananeia–Iguape Coastal System, Southeast Region of Brazil. Climate, 12(2), 22. https://doi.org/10.3390/cli12020022