Climate Change Impacts on Streamflow Drought: A Case Study in Tseng-Wen Reservoir Catchment in Southern Taiwan
Abstract
:1. Introduction
2. Study Area and Data Set
Model Code | Model Name | Country | Resolution |
---|---|---|---|
GCM-1 | CGCM3.1(T63) | Canada | T63, L31 |
GCM-2 | CSIRO-Mk3.0 | Australia | T63, L18 |
GCM-3 | ECHAM5/MPI-OM | Germany | T63, L31 |
GCM-4 | GFDL-CM2.0 | USA | 2° × 2.5°, L24 |
GCM-5 | GFDL-CM2.1 | USA | 2° × 2.5°, L24 |
GCM-6 | MIROC3.2(hires) | Japan | T106, L56 |
3. Methodology
3.1. Spatial and Temporal Statistical Downscaling
3.2. Hydrological Model
3.3. Threshold Level Method for Drought Event Definition
4. Results
4.1. Precipitation and Temperature Downscaling
4.2. Calibration and Verification of the HBV-Based Model
4.3 Changes in Drought Characteristics
Calibration Period | Validation Period | ||||||
---|---|---|---|---|---|---|---|
Year | Vs/Vo | RMSE (mm) | CC | Year | Vs/Vo | RMSE (mm) | CC |
1975 | 0.93 | 23.89 | 0.46 | 1999 | 0.97 | 5.37 | 0.91 |
1976 | 0.97 | 20.43 | 0.74 | 2000 | 0.95 | 3.36 | 0.94 |
1977 | 1.00 | 25.55 | 0.60 | 2001 | 0.91 | 10.61 | 0.93 |
1978 | 0.86 | 15.87 | 0.70 | 2002 | 0.98 | 2.86 | 0.94 |
1979 | 0.95 | 8.36 | 0.90 | 2003 | 1.08 | 3.29 | 0.94 |
1980 | 0.65 | 6.91 | 0.84 | 2004 | 0.92 | 6.41 | 0.99 |
1981 | 0.92 | 9.11 | 0.97 | 2005 | 0.80 | 15.50 | 0.96 |
1982 | 0.88 | 4.61 | 0.97 | 2006 | 0.89 | 11.88 | 0.96 |
1983 | 0.99 | 5.20 | 0.94 | 2007 | 0.86 | 11.92 | 0.97 |
1984 | 0.58 | 5.98 | 0.96 | 2008 | 0.84 | 13.22 | 0.97 |
1985 | 0.54 | 10.63 | 0.92 | Total Period | 0.88 | 9.90 | 0.96 |
1986 | 0.59 | 9.06 | 0.64 | ||||
1987 | 0.93 | 14.92 | 0.72 | ||||
1988 | 0.60 | 7.30 | 0.98 | ||||
1989 | 0.77 | 15.18 | 0.92 | ||||
1990 | 0.72 | 7.97 | 0.98 | ||||
1991 | 0.87 | 3.71 | 0.96 | ||||
1992 | 0.96 | 6.92 | 0.97 | ||||
1993 | 0.98 | 2.87 | 0.96 | ||||
1994 | 0.94 | 5.73 | 0.94 | ||||
1995 | 0.96 | 2.48 | 0.97 | ||||
1996 | 0.82 | 15.09 | 0.98 | ||||
1997 | 0.97 | 4.06 | 0.95 | ||||
1998 | 1.01 | 5.96 | 0.92 | ||||
Total Period | 0.86 | 9.98 | 0.86 |
Drought Characteristics | Baseline | Future Period | Scenario | Ensemble of GCMs | GCM-1 | GCM-2 | GCM-3 | GCM-4 | GCM-5 | GCM-6 |
---|---|---|---|---|---|---|---|---|---|---|
Frequency (time/year) | 0.77 | 2010–2045 | A1B | 0.94 | 0.87 | 1.02 | 0.99 | 0.98 | 0.89 | 0.90 |
B1 | 0.96 | 0.89 | 0.99 | 0.95 | 0.99 | 0.96 | 0.95 | |||
2081–2100 | A1B | 0.97 | 0.88 | 1.04 | 0.99 | 0.98 | 0.93 | 1.00 | ||
B1 | 0.97 | 0.91 | 1.00 | 0.97 | 1.00 | 0.97 | 0.96 | |||
Duration (day) | 173.65 | 2010–2045 | A1B | 161.2 | 131.8 | 193.3 | 158.8 | 181.9 | 149.7 | 151.6 |
B1 | 161.6 | 132.9 | 197.2 | 160.7 | 181.3 | 147.3 | 150.4 | |||
2081–2100 | A1B | 160.4 | 128.7 | 193.4 | 151.9 | 180.0 | 145.2 | 163.0 | ||
B1 | 163.3 | 132.4 | 205.9 | 158.6 | 184.1 | 147.4 | 151.6 | |||
Magnitude (mm) | 148.44 | 2010–2045 | A1B | 139.7 | 105.3 | 178.5 | 137.2 | 164.6 | 125.7 | 126.7 |
B1 | 139.9 | 105.7 | 183.0 | 138.7 | 162.8 | 122.3 | 126.8 | |||
2081–2100 | A1B | 139.3 | 102.1 | 181.6 | 130.3 | 161.9 | 121.1 | 138.5 | ||
B1 | 142.9 | 105.5 | 195.5 | 137.7 | 166.0 | 125.0 | 127.9 |
4.4 Drought Frequency Analysis
5. Conclusions and Future Work
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tallaksen, L.M.; van Lanen, H.A.J. Hydrological Drought: Processes and Estimation Methods for Streamflow and Groundwater; Elsevier B.V.: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Yu, P.S.; Yang, T.C.; Kuo, C.C. Evaluating long-term trends in annual and seasonal precipitation in Taiwan. Water Resour. Manag. 2006, 20, 1007–1023. [Google Scholar] [CrossRef]
- Chen, S.T.; Kuo, C.C.; Yu, P.S. Historical trends and variability of meteorological droughts in Taiwan. Hydrol. Sci. J. 2009, 54, 430–441. [Google Scholar] [CrossRef]
- Yevjevich, V. An Objective Approach to Definition and Investigations of Continental Hydrologic Droughts; Hydrology Paper No. 23; Colorado State University: Fort Collins, CO, USA, 1967. [Google Scholar]
- Burke, E.J.; Perry, R.H.J.; Brown, S.J. An extreme value analysis of UK drought and projections of change in the future. J. Hydrol. 2010, 388, 131–143. [Google Scholar] [CrossRef]
- Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Review linking climate change modeling to impacts studies: Recent advances in downscaling techniques for hydrological modeling. Int. J. Climatol. 2007, 27, 1547–1578. [Google Scholar]
- Wilby, R.L.; Wigley, T.M.L. Downscaling general circulation model output: A review of methods and limitations. Progress Phys. Geogr. 1997, 21, 530–548. [Google Scholar] [CrossRef]
- Chen, S.T.; Yu, P.S.; Tang, Y.H. Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. J. Hydrol. 2010, 385, 13–22. [Google Scholar]
- Chu, J.L.; Kang, H.; Tam, C.Y.; Park, C.K.; Chen, C.T. Seasonal forecast for local precipitation over northern Taiwan using statistical downscaling. J. Geophys. Res. 2008, 113, D12118. [Google Scholar]
- Lin, S.H.; Liu, C.M.; Huang, W.C.; Lin, S.S.; Yen, T.H.; Wang, H.R.; Kuo, J.T.; Lee, Y.C. Developing a yearly warning index to assess the climatic impact on the water resources of Taiwan, a complex–terrain island. J. Hydrol. 2010, 390, 13–22. [Google Scholar] [CrossRef]
- Yu, P.S.; Yang, T.C. Fuzzy multi-objective function for rainfall-runoff model calibration. J. Hydrol. 2000, 238, 1–14. [Google Scholar] [CrossRef]
- Yu, P.S.; Yang, T.C.; Wu, C.K. Impact of climate change on water resources in southern Taiwan. J. Hydrol. 2002, 260, 161–175. [Google Scholar] [CrossRef]
- Bergström, S. Development and Application of a Conceptual Runoff Model for Scandinavian Catchments; SMHI Norrköping: Norrköping, Sweden, 1976. [Google Scholar]
- Bergström, S. The HBV Model—Its Structure and Applications; SMHI Norrköping: Norrköping, Sweden, 1992. [Google Scholar]
- Bathia, P.K.; Bergström, S.; Persson, M. Application of the Distributed HBV-6 Model to the Upper Narmada Basin in India; SMHI Norrköping: Norrköping, Sweden, 1984. [Google Scholar]
- Häggström, M.; Lindström, G.; Cobos, C.; Martinez, J.R.; Merlos, L.; Alonzo, R.D.; Castillo, G.; Sirias, C.; Miranda, D.; Granados, J.I.; et al. Application of the HBV Model for Flood Forecasting in Six Central American Rivers; SMHI Norrköping: Norrköping, Sweden, 1990. [Google Scholar]
- Bergström, S.; Carlsson, B.; Gardelin, M.; Lindström, G.; Pettersson, A.; Rummukainen, M. Climate change impacts on runoff in Sweden—Assessments by global climate models, dynamical downscaling and hydrological modeling. Clim. Res. 2001, 16, 101–112. [Google Scholar] [CrossRef]
- Menzel, L.; Bürger, G. Climate change scenarios and runoff response in the Mulde catchment (Southern Elbe, Germany). J. Hydrol. 2002, 267, 53–64. [Google Scholar] [CrossRef]
- Dibike, Y.B.; Coulibaly, P. Hydrologic impact of climate change in the Saguenay watershed: Comparison of downscaling methods and hydrologic models. J. Hydrol. 2005, 307, 145–163. [Google Scholar] [CrossRef]
- Yu, P.S.; Wang, Y.C. Impact of climate change on hydrological processes over a basin scale in northern Taiwan. Hydrol. Process. 2009, 23, 3556–3568. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007—The Physical science Basis; Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Caron, L.P.; Jones, C.G. Analysing present, past and future tropical cyclone activity as inferred from an ensemble of coupled global climate models. Tellus 2008, 60A, 80–96. [Google Scholar]
- Min, S.K.; Park, E.H.; Kwon, W.T. Future projections of East Asian climate change from multi—AOGCM ensembles of IPCC SRES scenario simulations. J. Meteorol. Soc. Jpn. 2004, 82, 1187–1211. [Google Scholar] [CrossRef]
- Kitoh, A.; Uchiyama, T. Changes in onset and withdrawal of the East Asian summer rainy season by multi-model global warming experiments. J. Meteorol. Soc. Jpn. 2006, 84, 247–258. [Google Scholar] [CrossRef]
- Kim, M.K.; Kang, I.S.; Park, C.K.; Kim, K.M. Superensemble prediction of regional precipitation over Korea. Int. J. Climatol. 2004, 24, 777–790. [Google Scholar] [CrossRef]
- Feddersen, H.; Andersen, U. A method for statistical downscaling of seasonal ensemble predictions. Tellus 2005, 57A, 398–408. [Google Scholar] [CrossRef]
- Richardson, C.W. Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour. Res. 1981, 17, 182–190. [Google Scholar] [CrossRef]
- Selker, J.S.; Haith, D.A. Development and testing of single-parameter precipitation distributions. Water Resour. Res. 1990, 26, 2733–2740. [Google Scholar] [CrossRef]
- Tung, C.P.; Haith, D.A. Global-warming effects on New York streamflows. J. Water Resour. Plan. Manag. 1995, 121, 216–225. [Google Scholar] [CrossRef]
- Coe, R.; Stern, R.D. Fitting models to rainfall data. J. Appl. Meteorol. 1982, 21, 1024–1031. [Google Scholar]
- Woolhiser, D.A.; Roldan, J. Stochastic daily precipitation models: 2. A comparison of distribution of amounts. Water Resour. Res. 1982, 18, 1461–1468. [Google Scholar]
- Schubert, S. A weather generator based on the European “Grosswetterlagen”. Clim. Res. 1994, 4, 191–202. [Google Scholar] [CrossRef]
- Corte-Real, J.; Xu, H.; Qian, B. A weather generator for obtaining daily precipitation scenarios based on circulation patterns. Clim. Res. 1999, 13, 61–75. [Google Scholar] [CrossRef]
- Woolhiser, D.A.; Pegram, G.G.S. Maximum likelihood estimation of Fourier coefficients to describe seasonal variation of parameters in stochastic daily precipitation models. J. Appl. Meteorol. 1979, 18, 34–42. [Google Scholar]
- Woolhiser, D.A.; Roldan, J. Seasonal and regional variability of parameters for stochastic daily precipitation models. Water Resour. Res. 1986, 22, 965–978. [Google Scholar] [CrossRef]
- Hamon, W.R. Estimating potential evapotranspiration. J. Hydraul. Div. Proc. Am. Soc. Civil Eng. 1961, 871, 107–120. [Google Scholar]
- Tate, E.L.; Gustard, A. Drought definition: A hydrological perspective. In Drought and Drought Mitigation in Europe; Vogt, J.V., Somma, F., Eds.; Kluwer Academic Publishers: Derdrecht, The Netherlands, 2000; pp. 23–48. [Google Scholar]
- Kjeldsen, T.R.; Lundorf, A.; Rosbjerg, D. Use of a two-component exponential distribution in partial duration modeling of hydrological droughts in Zimbabwean rivers. Hydrol. Sci. J. 2000, 45, 285–298. [Google Scholar] [CrossRef]
- Shiau, J.T.; Shen, H.W. Recurrence analysis of hydrological droughts of differing severity. J. Water Resour. Plan. Manag. 2001, 127, 30–40. [Google Scholar] [CrossRef]
- Hisdal, H.; Stahl, K.; Tallaksen, L.M.; Demuth, S. Have streamflow droughts in Europe become more severe and frequent. Int. J. Climatol. 2001, 21, 317–333. [Google Scholar] [CrossRef]
- Shiau, J.T. Return period of bivariate distributed extreme hydrological events. Stoch. Environ. Res. Risk Assess. 2003, 17, 42–57. [Google Scholar] [CrossRef]
- Fleig, A.K.; Tallaksen, L.M.; Hisdal, H.; Demuth, S. A global evaluation of streamflow drought characteristics. Hydrol. Earth Syst. Sci. 2006, 10, 535–552. [Google Scholar] [CrossRef]
- Shukla, S.; Wood, A.W. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett. 2008, 35, L02405. [Google Scholar] [CrossRef]
- Tallaksen, L.M. Streamflow drought frequency analysis. In Drought and Drought Mitigation in Europe; Vogt, J.V., Somma, F., Eds.; Kluwer Academic Publishers: Derdrecht, The Netherlands, 2000; pp. 103–117. [Google Scholar]
- Chu, J.L.; Yu, P.S. A study of the impact of climate change on local precipitation using statistical downscaling. J. Geophys. Res. 2010, 115, D10105. [Google Scholar]
- Gerrity, J.P. A note on Gandin and Murphy’s equitable skill score. Mon. Weather Rev. 1992, 120, 2709–2712. [Google Scholar]
- World Meteorological Organization. Standardized Verification System (SVS) for Long-Range Forecasts (LRF); World Meteorological Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Duan, Q.; Sorooshian, S.; Gupta, V.K. Optimal use of the SCE-UA global optimisation method for calibrating watershed models. J. Hydrol. 1994, 158, 265–284. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, P.-S.; Yang, T.-C.; Kuo, C.-M.; Tseng, H.-W.; Chen, S.-T. Climate Change Impacts on Streamflow Drought: A Case Study in Tseng-Wen Reservoir Catchment in Southern Taiwan. Climate 2015, 3, 42-62. https://doi.org/10.3390/cli3010042
Yu P-S, Yang T-C, Kuo C-M, Tseng H-W, Chen S-T. Climate Change Impacts on Streamflow Drought: A Case Study in Tseng-Wen Reservoir Catchment in Southern Taiwan. Climate. 2015; 3(1):42-62. https://doi.org/10.3390/cli3010042
Chicago/Turabian StyleYu, Pao-Shan, Tao-Chang Yang, Chen-Min Kuo, Hung-Wei Tseng, and Shien-Tsung Chen. 2015. "Climate Change Impacts on Streamflow Drought: A Case Study in Tseng-Wen Reservoir Catchment in Southern Taiwan" Climate 3, no. 1: 42-62. https://doi.org/10.3390/cli3010042
APA StyleYu, P. -S., Yang, T. -C., Kuo, C. -M., Tseng, H. -W., & Chen, S. -T. (2015). Climate Change Impacts on Streamflow Drought: A Case Study in Tseng-Wen Reservoir Catchment in Southern Taiwan. Climate, 3(1), 42-62. https://doi.org/10.3390/cli3010042