Influence of Atmospheric Circulation on the Baltic Sea Level Rise under the RCP8.5 Scenario over the 21st Century
Abstract
:1. Introduction
2. Data Sets
2.1. Sea Level Observations
2.2. Climatic Data
2.2.1. SLP Data
2.2.2. Atmospheric Indices
2.2.3. Surface Air Temperature
3. Methods
3.1. Method for Model Assessment
3.2. Method for Establishing the Statistical Link between Atmospheric Circulation and Sea Level
3.3. Method for Examining the Effect of Large-Scale Air Temperature Variation on the Mode of Atmospheric Circulation
4. Results
4.1. Assessment of the CMIP5 Models
4.2. Relation between Atmosphere Indices and Sea Level Variability
4.3. Projections of the Atmosphere Indices and CorrespondingRanges of Sea Level Change
4.4. The Effect of Large-Scale Multidecadal Temperature Variability on Modes of Atmospheric Circulation
5. Discussion
6. Conclusions
- Most of the models simulate the SLP climatology reasonably well, although some models (HadGEM2-ES, CCSM4, CanESM2, MPI-ESM-LR, and FIO-ESM) show more realistic simulations in terms of the root-mean-square error and spatial correlation than the models MIROC5, IPSL-CM5A-LR and CSIRO-Mk3.6.0 models.
- Sea level variations in Stockholm and Warnemünde are better explained by the BANOS index than by the NAO index. In addition, a test on the skill of the statistical model shows that long-term sea level variability can be well represented by establishing a linear connection between the BANOS index and the Stockholm tide gauge. Concerning that relation, the Brier Skill Score (BSS) value indicates that an almost perfect prediction (BSS~0.90) is possible by using the linear relation between the BANOS index and the Stockholm sea level for the 31-year smoothed time series. Although this connection is sharply reduced in the southern Baltic, the BSS still indicates a considerable link reaching up to 0.42. These results also mean that BANOS plays a better role in capturing slow sea level variations than the NAO, since BSS results are affected by long-term differences of the mean value between the calibration and validation periods.
- Projected contributions of atmospheric circulation to sea level rise did not show a clear picture. More specifically, some models—even simulations within the same ensemble—displayed opposite trends. On the one hand, this implies that the influence of the internal climatic variability of CMIP5 models on the projected Baltic Sea level trends is large. On the other hand, it is likely that the contribution of atmospheric circulation modes to sea level rise in the Baltic Sea will remain relatively small through the 21st century.
- Correlations of 21-year window gliding trends between spatially averaged surface temperature over the North Atlantic and the BANOS index did not imply any long-term relation of multidecadal trends between the atmospheric condition and large-scale mean temperature for the period 1850–2100. This suggests the conclusion that the mode of atmospheric circulation that has a strong connection to the Baltic Sea level is not influenced by anthropogenic forcing in terms of the effect of air temperature, as in the case of the NAO.
Acknowledgments
Conflicts of Interest
References
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.; Nunn, P.D.; et al. Sea level change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 1137–1216. [Google Scholar]
- Stammer, D.; Cazenave, A.; Ponte, R.M.; Tamisiea, M.E. Causes for contemporary regional sea level changes. Ann. Rev. Mar. Sci. 2013, 5, 21–46. [Google Scholar] [CrossRef] [PubMed]
- Slangen, A.B.; Carson, M.; Katsman, C.A.; van de Wal, R.S.W.; Köhl, A.; Vermeersen, L.L.A.; Stammer, D. Online Resource to: Projecting twenty-first century regional sea-level changes. Clim. Chang. 2014, 124, 317–332. [Google Scholar] [CrossRef]
- Carson, M.; Köhl, A.; Stammer, D.; Slangen, A.A.B.; Katsman, C.A.; van de Wal, R.S.W.; Church, J.; White, N. Coastal sea level changes, observed and projected during the 20th and 21st century. Clim. Chang. 2016, 134, 269–281. [Google Scholar] [CrossRef]
- Grinsted, A.; Jevrejeva, S.; Riva, R.E.M.; Dahl-Jensen, D. Sea level rise projections for northern Europe under RCP8. Clim. Res. 2015, 64, 15–23. [Google Scholar] [CrossRef]
- Yan, Z.; Tsimplis, M.N.; Woolf, D. Analysis of the relationship between the North Atlantic oscillation and sea-level changes in northwest Europe. Int. J. Climatol. 2004, 24, 743–758. [Google Scholar] [CrossRef]
- Jevrejeva, S.; Moore, J.C.; Woodworth, P.L.; Grinsted, A. Influence of large-scale atmospheric circulation on European sea level: Results based on the wavelet transform method. Tellus A 2005, 57, 183–193. [Google Scholar] [CrossRef]
- Hünicke, B.; Zorita, E. Influence of temperature and precipitation on decadal Baltic Sea level variations in the 20th century. Tellus A 2006, 58, 141–153. [Google Scholar] [CrossRef]
- Moeller, J.S.; Hansen, I.S. Hydrographic processes and changes in the Baltic Sea. Dana 1994, 10, 87–104. [Google Scholar]
- Leppäranta, M.; Myrberg, K. Physical Oceanography of the Baltic Sea; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2009. [Google Scholar]
- Hünicke, B.; Zorita, E.; Soomere, T.; Madsen, K.S.; Johansson, M.; Suursaar, Ü. Recent change—Sea level and wind waves. In Second Assessment of Climate Change for the Baltic Sea Basin; Springer: Cham, Germany; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2015; pp. 155–185. [Google Scholar]
- Andersson, H.C. Influence of long-term regional and large-scale atmospheric circulation on the Baltic sea level. Tellus A 2002, 54, 76–88. [Google Scholar] [CrossRef]
- Heyen, H.; Zorita, E.; von Storch, H. Statistical downscaling of monthly mean North Atlantic air-pressure to sea level anomalies in the Baltic Sea. Tellus A 1996, 48, 312–323. [Google Scholar] [CrossRef]
- Hünicke, B.; Luterbacher, J.; Pauling, A.; Zorita, E. Regional differences in winter sea level variations in the Baltic Sea for the past 200 year. Tellus A 2008, 60, 384–393. [Google Scholar] [CrossRef]
- Karabil, S.; Zorita, E.; Hünicke, B. Contribution of atmospheric circulation to recent off-shore sea-level variations in the Baltic Sea and the North Sea. Earth Syst. Dyn. Discuss. 2017. [Google Scholar] [CrossRef]
- Hünicke, B. Contribution of regional climate drivers to future winter sea-level changes in the Baltic Sea estimated by statistical methods and simulations of climate models. Int. J. Earth Sci. 2010, 99, 1721–1730. [Google Scholar] [CrossRef]
- Johansson, M.M.; Pellikka, H.; Kahma, K.K.; Ruosteenoja, K. Global sea level rise scenarios adapted to the Finnish coast. J. Mar. Syst. 2014, 129, 35–46. [Google Scholar] [CrossRef]
- Czaja, A.; Robertson, A.W.; Huck, T. The Role of Atlantic Ocean-Atmosphere Coupling in Affecting North Atlantic Oscillation Variability. In The North Atlantic Oscillation: Climatic Significance and Environmental Impact; American Geophysical Union: Washington, DC, USA, 2003; pp. 147–172. [Google Scholar]
- Rodwell, M.J.; Rowell, D.P.; Folland, C.K. Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature 1999, 398, 320–323. [Google Scholar] [CrossRef]
- Greatbatch, R.J. The North Atlantic Oscillation. Stoch. Environ. Res. Risk Assess. 2000, 14, 213–242. [Google Scholar] [CrossRef]
- Cattiaux, J.; Cassou, C. Opposite CMIP3/CMIP5 trends in the wintertime Northern Annular Mode explained by combined local sea ice and remote tropical influences. Geophys. Res. Lett. 2013, 40, 3682–3687. [Google Scholar] [CrossRef]
- BACC II Author Team (Ed.) Second Assessment of Climate Change for the Baltic Sea Basin; Springer: Cham, Germany; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2015. [Google Scholar]
- Novotny, K.; Liebsch, G.; Lehmann, A.; Dietrich, R. Variability of Sea Surface Heights in the Baltic Sea: An Intercomparison of Observations and Model Simulations. Mar. Geod. 2006, 29, 113–134. [Google Scholar] [CrossRef]
- Holgate, S.J.; Matthews, A.; Woodworth, P.L.; Rickards, L.J.; Tamisiea, M.E.; Bradshaw, E.; Foden, P.R.; Gordon, K.M.; Jevrejeva, S.; Pugh, J. New Data Systems and Products at the Permanent Service for Mean Sea Level. J. Coast. Res. 2013, 29, 493–504. [Google Scholar] [CrossRef]
- Ekman, M. The World’s Longest Sea Level Series and a Winter Oscillation Index for Northern Europe 1774–2000; Small Publications in Historical Geophysics; Summer Institute for Historical Geophysics: Åland Islands, Finland, 2003; Volume 12, p. 32. [Google Scholar]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Riahi, K.; Gruebler, A.; Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Chang. 2007, 74, 887–935. [Google Scholar] [CrossRef]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33–57. [Google Scholar] [CrossRef]
- Hurrell, J.W.; National Center for Atmospheric Research Staff. Last modified 06 April 2016. The Climate Data Guide: NCAR Sea Level Pressure. Available online: https://climatedataguide.ucar.edu/climate-data/ncar-sea-level-pressure (accessed on 10 May 2016).
- Hurrell, J.W.; National Center for Atmospheric Research Staff (Eds.) Last Modified 2 March 2016. The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (Station-Based). Available online: https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based (accessed on 2 March 2016).
- Hurrell, J.W.; Kushnir, Y.; Otterson, G.; Visbeck, M. An Overview of the North Atlantic Oscillation. In The North Atlantic Oscillation: Climatic Significance and Environmental Impact; American Geophysical Union: Washington, DC, USA, 2003; Volume 134, p. 263. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Wakelin, S.L.; Woodworth, P.L.; Flather, R.A.; Williams, J.A. Sea-level dependence on the NAO over the NW European Continental Shelf. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Von Storch, H.; Zwiers, F.W. Statistical Analysis in Climate Research. J. Am. Stat. Assoc. 1999, 95, 1375. [Google Scholar] [CrossRef]
- Fenech, A.; Comer, N.; Gough, B. Selecting a global climate model for understanding future projections of climate change. In Linking Climate Models to Policy and Decision-Making; UPEI Climate Lab, Prince Edward Island: Toronto, ON, Canada, 2002; pp. 133–145. [Google Scholar]
- Flato, G.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collins, W.J.; Forest, C.P.; Gleckler, E.; Guilyardi, C.; Jakob, V.; et al. Evaluation of Climate Models. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 741–866. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Sterlini, P.; Vries, H.; Katsman, C. Sea surface height variability in the North East Atlantic from satellite altimetry. Clim. Dyn. 2016, 47, 1285–1302. [Google Scholar] [CrossRef]
- Richter, A.; Groh, A.; Dietrich, R. Geodetic observation of sea-level change and crustal deformation in the Baltic Sea region. Phys. Chem. Earth 2011, 53, 43–53. [Google Scholar] [CrossRef]
- Lidberg, M.; Johansson, J.M.; Scherneck, H.G.; Milne, G.A. Recent results based on continuous GPS observations of the GIA process in Fennoscandia from BIFROST. J. Geodyn. 2010, 50, 8–18. [Google Scholar] [CrossRef]
- Peltier, W.R. Global Glacial Isostasy and the Surface of the Ice-age Earth: The ICE-5G (VM2) Model and GRACE. Annu. Rev. Earth Planet. Sci. 2004, 32, 111–149. [Google Scholar] [CrossRef]
Model Name | Institute ID | Atmospheric Grid | |
---|---|---|---|
Latitude | Longitude | ||
CanESM2 | CCCMA | 2.7906 | 2.8125 |
CCSM4 | NCAR | 0.9424 | 1.2500 |
CSIRO-Mk3.6.0 | CSIRO-QCCCE | 1.8653 | 1.8750 |
FIO-ESM | FIO | 2.7906 | 2.8125 |
HadGEM2-ES | MOHC | 1.2500 | 1.8750 |
IPSL-CM5A-LR | IPSL | 1.8947 | 3.7500 |
MIROC5 | MIROC | 1.4008 | 1.4063 |
MPI-ESM-LR | MPI-M | 1.8653 | 1.8750 |
Correlation | ||
---|---|---|
Index/Station | Stockholm | Warnemünde |
BANOS | 0.85 | 0.55 |
NAO | 0.55 | 0.17 * |
Sensitivity of Stations (mm/u) | ||
---|---|---|
Index/Station | Stockholm | Warnemünde |
BANOS | 73 | 23 |
NAO | 54 | 11 |
Model | Realization | Trend ± 1 SE (u/year) xe² | Trend ± 1 SE (mm/year) | ||
---|---|---|---|---|---|
BANOS | NAO | BANOS | NAO | ||
HadGEM2-ES | r1i1p1 | 0.18 ± 0.55 | −0.67 ± 0.56 | 0.13 ± 0.40 | −0.36 ± 0.30 |
r2i1p1 | 0.65 ± 0.51 | 0.20 ± 0.58 | 0.48 ± 0.38 | 0.11 ± 0.31 | |
r3i1p1 | −0.36 ± 0.52 | −0.38 ± 0.57 | −0.26 ± 0.38 | −0.20 ± 0.31 | |
CCSM4 | r1i1p1 | 1.60 ± 0.55 * | 1.05 ± 0.54 | 1.17 ± 0.40 * | 0.57 ± 0.29 |
r2i1p1 | 0.08 ± 0.55 | −0.49 ± 0.52 | 0.06 ± 0.40 | −0.27 ± 0.28 | |
r3i1p1 | 1.17 ± 0.51 * | 0.36 ± 0.54 | 0.86 ± 0.38 * | 0.20 ± 0.29 | |
CanESM2 | r1i1p1 | 0.42 ± 0.58 | −0.22 ± 0.58 | 0.30 ± 0.42 | −0.12 ± 0.32 |
r2i1p1 | −0.37 ± 0.57 | −1.22 ± 0.53 * | −0.27 ± 0.41 | −0.66 ± 0.29 * | |
r3i1p1 | 0.29 ± 0.57 | −0.54 ± 0.56 | 0.21 ± 0.42 | −0.29 ± 0.30 | |
MPI-ESM-LR | r1i1p1 | −0.35 ± 0.56 | −0.18 ± 0.56 | −0.25 ± 0.41 | −0.10 ± 0.30 |
r2i1p1 | 0.52 ± 0.52 | 1.35 ± 0.54 * | 0.38 ± 0.38 | 0.73 ± 0.29 * | |
r3i1p1 | 0.89 ± 0.53 | 1.09 ± 0.56 | 0.65 ± 0.38 | 0.59 ± 0.30 | |
FIO-ESM | r1i1p1 | 1.45 ± 0.50 * | 0.86 ± 0.49 | 1.06 ± 0.37 * | 0.46 ± 0.26 |
r2i1p1 | 1.22 ± 0.52 * | 0.93 ± 0.51 | 0.89 ± 0.38 * | 0.51 ± 0.28 | |
r3i1p1 | 0.42 ± 0.53 | −0.05 ± 0.53 | 0.31 ± 0.39 | −0.03 ± 0.29 | |
MIROC5 | r1i1p1 | −0.24 ± 0.55 | −0.08 ± 0.53 | −0.18 ± 0.40 | −0.05 ± 0.29 |
r2i1p1 | −0.18 ± 0.55 | −0.25 ± 0.57 | −0.13 ± 0.40 | −0.13 ± 0.31 | |
r3i1p1 | −0.43 ± 0.51 | −0.97 ± 0.54 | −0.31 ± 0.37 | −0.52 ± 0.29 | |
IPSL-CM5A-LR | r1i1p1 | 1.42 ± 0.50 * | 1.32 ± 0.50 * | 1.04 ± 0.37 * | 0.71 ± 0.27 * |
r2i1p1 | −0.15 ± 0.50 | −0.13 ± 0.52 | −0.11 ± 0.37 | −0.07 ± 0.28 | |
r3i1p1 | −0.22 ± 0.54 | −0.13 ± 0.55 | −0.16 ± 0.40 | −0.07 ± 0.30 |
Model | Correlations of 21-Year Gliding Trends | ||
---|---|---|---|
r1i1p1 | r2i1p1 | r3i1p1 | |
HadGEM2-ES | −0.12 | 0.18 * | 0.04 |
CCSM4 | −0.14 * | −0.07 | −0.08 |
CanESM2 | 0.05 | −0.12 | −0.16 * |
MPI-ESM-LR | 0.13 * | −0.05 | −0.07 |
FIO-ESM | 0.01 | −0.09 | −0.03 |
MIROC5 | −0.25 * | −0.26 * | −0.24 * |
IPSL-CM5A-LR | 0.12 | −0.03 | 0.10 |
CSIRO-Mk3.6.0 | −0.05 | 0.20 * | 0.30 * |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karabil, S. Influence of Atmospheric Circulation on the Baltic Sea Level Rise under the RCP8.5 Scenario over the 21st Century. Climate 2017, 5, 71. https://doi.org/10.3390/cli5030071
Karabil S. Influence of Atmospheric Circulation on the Baltic Sea Level Rise under the RCP8.5 Scenario over the 21st Century. Climate. 2017; 5(3):71. https://doi.org/10.3390/cli5030071
Chicago/Turabian StyleKarabil, Sitar. 2017. "Influence of Atmospheric Circulation on the Baltic Sea Level Rise under the RCP8.5 Scenario over the 21st Century" Climate 5, no. 3: 71. https://doi.org/10.3390/cli5030071
APA StyleKarabil, S. (2017). Influence of Atmospheric Circulation on the Baltic Sea Level Rise under the RCP8.5 Scenario over the 21st Century. Climate, 5(3), 71. https://doi.org/10.3390/cli5030071