On-Farm Evaluation of the Potential Use of Greenhouse Gas Mitigation Techniques for Rice Cultivation: A Case Study in Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mitigation Technique Selection
2.2. Site Selection
2.3. Data Collection
2.4. Estimation of GHG Emissions
2.4.1. System Boundary and Functional Unit
2.4.2. Calculation of GHG Emissions
2.5. Economic Analysis
2.5.1. Estimation of the Costs of Each Technique
2.5.2. Average Abatement Cost (AAC)
2.6. Farmers’ Assessment and Analysis Tools
2.7. Estimating the Determinants of Mitigation Techniques and Socio-Economic Variables
3. Results and Discussion
3.1. Cost of Rice Production under BAU and Mitigation Techniques
3.2. GHG Emissions, Abatement Potential, and AAC Under BAU and Mitigation Techniques
3.3. Farmers’ Assessment on Mitigation Techniques and Barriers
3.4. Factors Determining Farmers’ Decisions
3.5. Prioritizing Incentive Measures for the Adoption of Mitigation Techniques
3.5.1. Planted Area
3.5.2. Land Size
3.5.3. Farmer Income
3.5.4. Farmer Liability
3.5.5. Number of Laborers in a Household
3.5.6. Cropping System Pattern
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Smith, P.; Martino, D.; Cai, Z. Agriculture. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 497–540. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC ). The Supplementary Report to IPCC Scientific Assessment; Houghton, J.T., Callander, B.A., Varney, S.K., Eds.; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Adviento-Borbe, M.A.A.; Haddix, M.L.; Binder, D.L.; Walters, D.T.; Dobermann, A. Soil greenhouse gas fluxes and global warming potential in four high-yielding maize systems. Glob. Chang. Biol. 2007, 13, 1972–1988. [Google Scholar] [CrossRef]
- Zou, J.; Huang, Y.; Zheng, X.; Wang, Y. Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China: Dependence on water regime. Atmos. Environ. 2007, 41, 8030–8042. [Google Scholar] [CrossRef]
- Shang, Q.; Yang, X.; Gao, C.; Wu, P.; Liu, J.; Xu, Y.; Shen, Q.; Zou, J.; Guo, S. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments. Glob. Chang. Biol. 2011, 17, 2196–2210. [Google Scholar] [CrossRef]
- Wang, W.; Dalal, R.; Reeves, S.; Butterbach-Bahl, K.; Kiese, R. Greenhouse gas fluxes from an Australian subtropical cropland under long-term contrasting management regimes. Glob. Chang. Biol. 2011, 17, 3089–3101. [Google Scholar] [CrossRef]
- Yao, Z.; Zheng, X.; Dong, H.; Wang, R.; Mei, B.; Zhu, J. A 3-year record of N2O and CH4 emissions from a sandy loam paddy during rice seasons as affected by different nitrogen application rates. Agric. Ecosyst. Environ. 2012, 152, 1–9. [Google Scholar] [CrossRef]
- Van Groenigen, K.J.; van Kessel, C.; Hungate, B.A. Increased greenhouse-gas intensity of rice production under future atmospheric conditions. Nat. Clim. Chang. 2013, 3, 288–291. [Google Scholar] [CrossRef]
- Yagi, K.; Tsuruta, H.; Minami, K. Possible options for mitigating methane emission from rice cultivation. Nutr. Cycl. Agroecosyst. 1997, 49, 213–220. [Google Scholar] [CrossRef]
- Towprayoon, S.; Smakgahn, K.; Poonkaew, S. Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields. Chemosphere 2005, 59, 1547–1556. [Google Scholar] [CrossRef] [PubMed]
- Nayak, D.; Saetnan, E.; Cheng, K.; Wang, W.; Koslowski, F.; Cheng, Y.-F.; Zhu, W.Y.; Wang, J.-K.; Liu, J.-X.; Moran, D.; et al. Management opportunities to mitigate greenhouse gas emission from Chinese agriculture. Agric. Ecosyst. Environ. 2015, 209, 108–124. [Google Scholar] [CrossRef]
- Cai, Z.; Yan, X.; Yan, G.; Xu, H.; Tsuruta, H.; Yagi, K.; Minami, K. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management. Plant Soil 1997, 196, 7–14. [Google Scholar] [CrossRef]
- Wassmann, R.; Neue, H.U.; Lantin, R.S.; Makarim, K.; Chareonsilp, N.; Buendia, L.V.; Rennenberg, H. Characterization of methane emissions from rice fields in Asia: II. Differences among irrigation, rainfed, and deepwater rice. Nutr. Cycl. Agroecosyst. 2000, 58, 13–22. [Google Scholar] [CrossRef]
- Lu, W.F.; Chen, W.; Duan, B.W.; Guo, W.M.; Lu, Y.; Lantin, R.S.; Wassmann, R.; Neue, H.U. Methane emissions and mitigation options in irrigated rice fields in southern China. Nutr. Cycl. Agroecosyst. 2000, 58, 65–73. [Google Scholar] [CrossRef]
- Yan, X.; Ohara, T.; Akimoto, H. Development of region-specific emission factors and estimation of methane emission from rice fields in the East, Southeast and South Asian countries. Glob. Chang. Biol. 2003, 9, 237–254. [Google Scholar] [CrossRef]
- Zou, J.; Huang, Y.; Jiang, J.; Zheng, X.; Sass, R.L. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application. Glob. Biogeochem. Cycl. 2005, 19, GB2021. [Google Scholar] [CrossRef]
- Zheng, X.H.; Wang, M.X.; Wang, Y.S.; Shen, R.X.; Shangguan, X.J.; Heyer, J.; Kögge, M.; Papen, H.; Jin, J.S.; Li, L.T. CH4 and N2O emissions from rice paddies in southeast China. Chin. J. Atmos. Sci. 1997, 21, 167–174. [Google Scholar]
- Zheng, X.; Wang, M.; Wang, Y.; Shen, R.; Gou, J.; Li, J.; Jin, J.; Li, L. Impacts of soil moisture on nitrous oxide emission from croplands: A case study on the rice-based agro-ecosystem in South-east China. Chemosphere Glob. Chang. Sci. 2000, 2, 207–224. [Google Scholar] [CrossRef]
- Cai, Z.C.; Xing, G.X.; Shen, G.Y.; Xu, H.; Yan, X.Y.; Tsuruta, H. Measurements of CH4 and N2O emissions from rice paddies in Fengqiu, China. Soil Sci. Plant Nutr. 1999, 45, 1–13. [Google Scholar] [CrossRef]
- Towprayoon, S. Greenhouse Gas Mitigation Options from Rice Field. 2004. Available online: https://unfccc.int/files/meetings/workshops/other_meetings/application/vnd.ms-powerpoint/towprayoon.ppt (accessed on 30 June 2014).
- Wassmann, R.; Lantin, R.S.; Neue, H.U.; Buendia, L.V.; Corton, T.M.; Lu, Y. Characterization of methane emissions from rice fields in Asia. III. Mitigation options and future research needs. Nutr. Cycl. Agroecosyst. 2000, 58, 23–36. [Google Scholar] [CrossRef]
- Sela-Adler, M.; Ronen, Z.; Herut, B.; Antler, G.; Vigderovich, H.; Eckert, W.; Sivan, O. Co-existence of Methanogenesis and Sulfate Reduction with Common Substrates in Sulfate-Rich Estuarine Sediments. Front. Microbiol. 2017, 8, 766. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, H.; Yan, X.; Yagi, K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: Meta-analysis. Glob. Chang. Biol. 2009, 16, 1837–1846. [Google Scholar] [CrossRef]
- Edmeades, D.C. Nitrification and Urease Inhibitors—A Review of the National and International Literature on Their Effects on Nitrate Leaching, Greenhouse Gas Emissions and Ammonia Volatilisation from Temperate Legume-Based Pastoral Systems; Technical Report 2004/22; Environment Waikato: Hamilton, New Zealand, 2004. [Google Scholar]
- Xiang, Y.; Jin, J.Y.; Ping, H.E.; Liang, M.Z. Recent advances on the technologies to increase fertilizer use efficiency. Agric. Sci. China 2008, 7, 469–479. [Google Scholar]
- Dobermann, A.; Cassman, K.G. Plant nutrient management for enhanced productivity in intensive grain production systems of the United States and Asia. Plant Soil 2002, 247, 153–175. [Google Scholar] [CrossRef]
- Bruulsema, T.W.; Witt, C.; Garcia, F.; Li, S.; Rao, T.N.; Chen, F.; Ivanova, S. A global framework for fertilizer BMPs. Better Crops 2008, 92, 13–15. [Google Scholar]
- Iheke, O.R.; Echebiri, R.N. Rural Land tenancy and Resource Use Efficiency of cassava farmer in South Eastern Nigeria. J. Food Fibre Prod. 2010, 3, 455–465. [Google Scholar]
- Arunrat, N.; Wang, C.; Pumijumnong, N.; Sereenonchai, S.; Cai, W. Farmers’ intention and decision to adapt to climate change: A case study in the Yom and Nan basins, Phichit province of Thailand. J. Clean. Prod. 2017, 143, 672–685. [Google Scholar] [CrossRef]
- Sani, S.; Chalchisa, T. Farmers’ Perception, Impact and Adaptation Strategies to Climate Change among Smallholder Farmers in Sub-Saharan Africa: A Systematic Review. J. Ressour. Dev. Manag. 2016, 26, 1–8. [Google Scholar]
- Krause, M.A.; Deuson, R.R.; Baker, T.G.; Preckel, P.V.; Lowenberg-DeBoer, J.; Reddy, K.C.; Maliki, K. Risk-Sharing Versus Low-cost Credit Systems for International Development. Am. J. Econ. 1990, 72, 911–922. [Google Scholar] [CrossRef]
- Tazeze, A.; Haji, J.; Ketema, M. Climate Change Adaptation Strategies of Smallholder Farmers: The Case of Babilie District, East Harerghe Zone of Oromia Regional State of Ethiopia. J. Econ. Sustain. Dev. 2012, 3, 1–13. [Google Scholar]
- Sasaki, H. Farmer Behaviour, Agricultural Management and Climate Change. Available online: http://www20.iadb.org/intal/catalogo/pe/2012/09774.pdf (accessed on 18 June 2016).
- Howden, S.M.; Soussana, J.F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H. Adapting Agriculture to Climate Change. Proc. Natl. Acad. Sci. USA 2007, 104, 19691–19696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarl, B.A. Analysis of climate change implications for agriculture and forestry: An interdisciplinary effort. Clim. Chang. 2010, 100, 119–124. [Google Scholar] [CrossRef]
- Grafakos, S.; Pacteau, C.; Delgado, M.; Landauer, M.; Lucon, O.; Driscoll, P.; Wilk, D.; Zambrano, C.; O’Donoghue, S.H.; Roberts, D. Integrating Mitigation and Adaptation as Win-Win Actions. In Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network. Summary for City Leaders, Chapter: 4, Publisher: Urban Climate Change Research Network (UCCRN); Rosenzweig, C.W., Solecki, P., Romero-Lankao, S., Mehrotra, S., Dhakal, T., Bowman, S., Ibrahim, A., Eds.; Columbia University: New York, NY, USA, 2015; Volume 6, pp. 1–24. [Google Scholar]
- Vanslembrouck, I.; Van Huylenbroeck, G.; Verbeke, W. Determinants of the Willingness of Belgian Farmers to Participate in Agri-environmental Measures. J. Agric. Econ. 2002, 53, 489–511. [Google Scholar] [CrossRef]
- Maddison, D. The Perception and Adaptation to Climate Change in Africa; CEEPA Discussion Paper No. 10; Centre for Environmental Economics and Policy in Africa; University of Pretoria: Pretoria, South Africa, 2006. [Google Scholar]
- Ahnstrom, J.; Francis, C.; Hockert, J.; Skelton, P.; Bergea, H.; Hallgren, L. Farmers and nature conservation: What is known about attitudes, context factors and actions affecting conservation? Renew. Agric. Food Syst. 2009, 24, 38–47. [Google Scholar] [CrossRef]
- OAE (Office of Agricultural Economics). Mitigation Abatement Cost of Greenhouse Gases from Rice Production; Ministry of Natural Resources and Environment: Bangkok, Thailand, 2012; 355p. (In Thai) [Google Scholar]
- Lattanzio, R.K. Life-Cycle Greenhouse Gas Assessment of Coal and Natural Gas in the Power Sector; Congressional Research Service: Washington, DC, USA, 2015. [Google Scholar]
- Gadde, B.; Bonnet, S.; Menke, C.; Garivait, S. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environ. Pollut. 2009, 157, 1554–1558. [Google Scholar] [CrossRef] [PubMed]
- Kanokkanjana, K.; Cheewaphongphan, P.; Garivait, S. Black Carbon Emission from Paddy Field Open Burning in Thailand. In Proceedings of the 2011 2nd International Conference on Environmental Science and Technology, IPCBEE (6), Singapore, 26–28 February 2011; IACSIT Press: Singapore, 2011. [Google Scholar]
- Niu, H.; Cheng, W.; Hu, W.; Pian, W. Characteristics of individual particles in a severe short-period haze episode induced by biomass burning in Beijing. Atmos. Pollut. Res. 2016, 7, 1072–1081. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Y.; Wang, Q.; Qian, X. A high-resolution inventory of air pollutant emissions from crop residue burning in China. Atmos. Chem. Phys. Discuss 2018. [Google Scholar] [CrossRef]
- IPCC. The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Arunrat, N.; Wang, C.; Pumijumnong, N. Alternative cropping systems for greenhouse gases mitigation in rice field: A case study in Phichit province of Thailand. J. Clean. Prod. 2016, 133, 657–671. [Google Scholar] [CrossRef]
- Ecoinvent Centre. Ecoinvent Database, version 3.2; Swiss Centre for Life Cycle Inventories: Duebendorf, Switzerland, 2005. Available online: http://www.ecoinvent.org/ (accessed on 25 August 2016).
- The National Technical Committee on Product Carbon Footprinting. The National Guideline on Product Carbon Footprint, 3rd ed.; Amarin Publishing: Bangkok, Thailand, 2011. [Google Scholar]
- IPCC. Agriculture, forestry and other land use. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2006; Volume 4. [Google Scholar]
- Maciel, V.G.; Zortea, R.B.; Silva da, W.M.; Cybis, L.F.A.; Einloft, S.; Seferin, M. Life Cycle Inventory for the agricultural stages of soybean production in the state of Rio Grande do Sul, Brazil. J. Clean. Prod. 2015, 93, 65–74. [Google Scholar] [CrossRef]
- EPA. Emission Factors for Greenhouse Gas Inventories; United States Environmental Protection Agency: Washington, DC, USA, 2014. Available online: https://www.epa.gov/sites/production/files/2015-07/documents/emission-factors_2014.pdf (accessed on 17 February 2016).
- Lal, R. Carbon emission from farm operations. Environ. Int. 2004, 30, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Webb, N.P.; Stokes, C.J.; Marshall, N.A. Integrating biophysical and socio-economic evaluations to improve the efficacy of adaptation assessments for agriculture. Glob. Environ. Chang. 2013, 23, 1164–1177. [Google Scholar] [CrossRef]
- Likert, R. A technique for the measurement of attitudes. Arch. Psychol. 1931, 22, 1–55. [Google Scholar]
- Marshall, N.A. Understanding social resilience to climate variability in primary enterprises and industries. Glob. Environ. Chang. 2010, 20, 36–43. [Google Scholar] [CrossRef]
- Dobermann, A.C.; Witt, D.; Dawe, S.; Abdulrachman, H.C.; Gines, R.; Nagarajan, S.; Satawathananont, T.T.; Son, P.S.; Tan, G.H.; Wang, N.V.; et al. Adviento Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Res. 2002, 74, 37–66. [Google Scholar] [CrossRef]
- Wang, G.H.; Dobermann, C.; Witt, Q.; Sun, Q.Z.; Fu, R.X. Performance of site-specific nutrient management for irrigated rice in Southeast China. Agron. J. 2001, 93, 869–878. [Google Scholar] [CrossRef]
- Zhu, H.J.; Tian, Z.H. Analysis on the rice farmer’s willingness to use low-carbon technologies measures: Based on the survey of the rice-producing areas in Southern China. J. Agric. Econ. 2013, 215, 62–71. [Google Scholar]
- McCown, R.L. New thinking about farmer decision makers. In The Farmer’s Decision; Hatfield, J.L., Ed.; Soil and Water Conservation Society: Ankeny, Lowa, 2005; pp. 11–44. [Google Scholar]
- Morton, L.W. Citizen involvement. In Pathways for Getting to Better Water Quality: The Citizen Effect; Morton, L.W., Brown, S.S., Eds.; Springer: New York, NY, USA, 2011. [Google Scholar]
- Jones, A.K.; Jones, D.; Edwards-Jones, G.; Cross, P. Informing decision making in agricultural greenhouse gas mitigation policy: A Best–Worst Scaling survey of expert and farmer opinion in the sheep industry. Environ. Sci. Policy 2013, 29, 46–56. [Google Scholar] [CrossRef]
- Abebaw, D.; Belay, K. Factors influencing adoption of high yielding maize varieties in South-western Ethiopia. An application of logit. Q. J. Int. Agric. 2001, 40, 149–167. [Google Scholar]
- Nowak, P. Why farmers adopt production technology. J. Soil Water Conserv. 1992, 47, 14–16. [Google Scholar]
- Richard, T.; Shively, E.G. Technical Change and Productive Efficiency: Irrigated Rice in the Philippines. Asian Econ. J. 2007, 21, 155–168. [Google Scholar]
Criteria | Definition |
---|---|
Effective | Evaluates whether or not the mitigation technique reduces GHG emissions |
Flexible | Evaluates whether or not the ability of the mitigation technique to enhance opportunity for other cropping systems and places |
Economically efficient | Evaluates whether or not implementing the mitigation technique reduces production cost and increases household income |
Easy to implement | Evaluations whether a mitigation technique is easy to implement by farmers with technical and managerial ease |
Ability to trial | Evaluates whether a mitigation technique can be easily trialed or tested before full implementation |
Institutional compatibility | Evaluates whether a mitigation technique is consistent with the current management framework, laws, regulations and will be promoted and supported by the government in the near future |
Variable | Description |
---|---|
Planted area | Dummy, 1 if the farm is located in a rain fed area; 0 irrigated area |
Experience | Continuous, rice cultivation experience of farmer (years) |
Land owner | Dummy, 1 if the farmer is a land owner; 0 otherwise |
Land size | Continuous, size of plantation (ha) |
Farmer income | Continuous, farmer income from in-farm and off-farm (THB year−1 household−1) |
Farmer liability | Continuous, farmer liability from formal and informal financial institutions (THB household−1) |
Number of labor | Continuous, number of laborers in the household (persons) |
Membership of environment group | Dummy, 1 if the farmer is the member of an environmental group or institution; 0 otherwise |
Perception on yield | Dummy, 1 if the farmer’s perception is that the mitigation technique will increase the rice yield; 0 otherwise |
Perception on GHG emissions | Dummy, 1 if the farmer thinks that the mitigation technique can reduce GHG emissions; 0 otherwise |
Perception on measures | Dummy, 1 if the farmer’s perception is that the mitigation technique will be supported by government agencies; 0 otherwise |
Attendance in training | Dummy, 1 if the farmer had attended the training about the impact of climate change impact on the environment; 0 otherwise |
Double cropping system | Dummy, 1 if the farmer practices as usual the double cropping system; 0 otherwise |
Triple cropping system | Dummy, 1 if the farmer practices as usual the triple cropping system; 0 otherwise |
GHG Emissions under BAU (kgCO2eq ha−1) | GHG Emissions under Mitigation Technique (kgCO2eq ha−1) | Abatement Potential (kgCO2eq ha−1) | Abatement Cost (THB ha−1) | AAC (THB kgCO2eq−1) | |
---|---|---|---|---|---|
MD technique | |||||
1st rice | |||||
Irrigated | 3549 | 3411 | 138 | 7372 | 53 |
Rain-fed | 3214 | 3089 | 125 | 8975 | 71 |
2nd rice | |||||
Irrigated | 2767 | 2590 | 176 | 7960 | 45 |
Rain-fed | 2185 | 2046 | 139 | 9663 | 69 |
AS technique | |||||
1st rice | |||||
Irrigated | 3549 | 3403 | 146 | 3405 | 23 |
Rain-fed | 3214 | 3062 | 151 | 3002 | 19 |
2nd rice | |||||
Irrigated | 2767 | 2618 | 148 | 3641 | 24 |
Rain-fed | 2185 | 2022 | 163 | 3499 | 21 |
SSNM technique | |||||
1st rice | |||||
Irrigated | 3549 | 3276 | 273 | −4718 | −17 |
Rain-fed | 3214 | 2888 | 326 | −3747 | −11 |
2nd rice | |||||
Irrigated | 2767 | 2269 | 497 | −6600 | −13 |
Rain-fed | 2185 | 1828 | 357 | −5738 | −15 |
Assessment Criteria | Mitigation Techniques | ||
---|---|---|---|
MD | AS | SSNM | |
Effectiveness | 542 | 393 | 588 |
Flexibility | 317 | 446 | 565 |
Economic efficiency | 376 | 201 | 603 |
Farmer implementability | 496 | 233 | 468 |
Ability to trial | 510 | 420 | 464 |
Institutional compatibility | 495 | 233 | 570 |
Total score | 2736 | 1926 | 3258 |
Criteria/Rank | Mitigation Techniques | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MD | AS | SSNM | ||||||||||
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |
Effectiveness | 0 | 2.6 | 47.4 | 50.0 | 10.9 | 32.1 | 51.3 | 5.8 | 0 | 0 | 23.1 | 76.9 |
Flexibility | 4.5 | 87.8 | 7.7 | 0 | 3.8 | 38.5 | 25.6 | 32.1 | 0 | 2.6 | 39.1 | 58.3 |
Economic efficiency | 17.9 | 41.0 | 23.1 | 17.9 | 71.2 | 28.8 | 0 | 0 | 0 | 0 | 13.5 | 86.5 |
Farmer implementability | 9.0 | 5.8 | 43.6 | 41.7 | 50.6 | 49.4 | 0 | 0 | 0 | 4.5 | 82.1 | 13.5 |
Ability to trial | 1.3 | 10.9 | 47.4 | 40.4 | 2.6 | 36.5 | 50.0 | 10.9 | 4.5 | 16.7 | 17.9 | 60.9 |
Institutional compatibility | 0 | 26.3 | 30.1 | 43.6 | 34.0 | 54.5 | 11.5 | 0 | 0 | 0 | 34.6 | 65.4 |
Variable | Mitigation Technique | ||
---|---|---|---|
MD | AS | SSNM | |
Planted area | −0.246 ** (0.0732) | −1.082 *** (0.153) | 0.381 *** (0.022) |
Experience | 0.00384 (0.00492) | 0.00376 (0.00348) | 0.00743 (0.00315) |
Land owner | 0.00485 (0.0105) | 0.0255 * (0.00503) | 0.0466 * (0.0062) |
Land size | −1.208 *** (0.0632) | −0.00478 (0.00255) | 0.050 * (0.0260) |
Farmer income | 0.164 ** (0.00478) | 0.403 ** (0.00455) | 0.365 ** (0.00173) |
Farmer liability | −0.411 * (0.00251) | −0.548 *** (0.000751) | 0.332 *** (0.000177) |
Number of labor | 0.0301 (0.0137) | 0.00428 (0.00199) | 0.0676 (0.00295) |
Membership of environment group | 0.0446 (0.00662) | 0.0507 (0.00227) | 0.215 ** (0.00351) |
Perception on yield | −0.0643 * (0.0338) | 0.0661 (0.0255) | 0.332 *** (0.00708) |
Perception on GHG emissions | −0.0162 (0.0582) | −0.314 ** (0.0122) | −0.209 *** (0.00314) |
Perception on measures | 0.00944 (0.0132) | 0.0407 (0.00671) | 0.00194 (0.0118) |
Attendance in training | 0.0552 (0.00831) | 0.0253 (0.0448) | 0.0158 ** (0.00257) |
Double cropping system | 0.0308 (0.000744) | −0.206 ** (0.00678) | 0.0321 (0.0186) |
Triple cropping system | −0.0269 (0.00731) | 0.0316 (0.0733) | −0.00736 (0.00228) |
Constant | 122461.72 ** (13562.15) | 140939.82 ** (18953.05) | −159005.10 *** (10535.43) |
Observations | 156 | 156 | 156 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arunrat, N.; Sereenonchai, S.; Pumijumnong, N. On-Farm Evaluation of the Potential Use of Greenhouse Gas Mitigation Techniques for Rice Cultivation: A Case Study in Thailand. Climate 2018, 6, 36. https://doi.org/10.3390/cli6020036
Arunrat N, Sereenonchai S, Pumijumnong N. On-Farm Evaluation of the Potential Use of Greenhouse Gas Mitigation Techniques for Rice Cultivation: A Case Study in Thailand. Climate. 2018; 6(2):36. https://doi.org/10.3390/cli6020036
Chicago/Turabian StyleArunrat, Noppol, Sukanya Sereenonchai, and Nathsuda Pumijumnong. 2018. "On-Farm Evaluation of the Potential Use of Greenhouse Gas Mitigation Techniques for Rice Cultivation: A Case Study in Thailand" Climate 6, no. 2: 36. https://doi.org/10.3390/cli6020036
APA StyleArunrat, N., Sereenonchai, S., & Pumijumnong, N. (2018). On-Farm Evaluation of the Potential Use of Greenhouse Gas Mitigation Techniques for Rice Cultivation: A Case Study in Thailand. Climate, 6(2), 36. https://doi.org/10.3390/cli6020036