Sustainable Agriculture for Climate Change Adaptation

A special issue of Climate (ISSN 2225-1154).

Deadline for manuscript submissions: closed (30 September 2019) | Viewed by 119382

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editors


E-Mail Website
Guest Editor
Agriculture and Environment Research Unit, University of Hertfordshire, Department of Biology and Environment Science, Hatfield, UK
Interests: environmental impacts of agriculture & land use; agri-environmental management; agriculture and climate change; fate and toxicity of agricultural chemicals; agricultural risk assessment and regulation. agri-environmental management; agricultural risk assessment and regulation
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Agriculture and Environment Research Unit, University of Hertfordshire, School of Life and Medical Sciences, Hatfield, UK
Interests: agricultural greenhouse gas emissions and their mitigation; carbon sequestration; integrated farm management and ecologically based methods of pest control; precision agriculture and farmland bio-diversity and conservation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Agriculture both contributes to climate change and is affected by climate change. In particular, agricultural practices and processes can result in significant amounts of methane and nitrous oxide, two powerful greenhouse gases, being released. According to the OECD, agriculture contributes a significant share of the greenhouse gas (GHG) emissions that are causing climate change: approximately 17% directly through agricultural activities and an additional 7% to 14% through land use changes. Agriculture is also likely to be severely affected by climate change. Flooding and droughts will be more common and productivity is expected to decrease in certain parts of the world. However, there is significant potential for efficiency savings and technical solutions exist but these must be done in a sustainable manner to ensure that the solution does not cause other socio-economic or environmental problems. They must also be tailored to individual regions and farming systems. This Special Issue aims to contribute to the state-of-art regarding climate friendly options for sustainable agriculture. Of interest are original manuscripts focusing on the impacts of climate change on agricultural production and the broad sustainability of adaptation techniques.

Prof. Dr. Kathy Lewis
Dr. Douglas Warner
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Climate is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • agriculture
  • climate change impacts on agriculture
  • sustainable farming
  • sustainable intensification
  • food security
  • agroecology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (16 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review, Other

2 pages, 176 KiB  
Editorial
Editorial for the Special Issue “Sustainable Agriculture for Climate Change Adaptation”
by Kathy Lewis and Douglas Warner
Climate 2020, 8(5), 60; https://doi.org/10.3390/cli8050060 - 29 Apr 2020
Viewed by 2586
Abstract
As we lie firmly entrenched within what many have termed the Anthropocene, the time of humans, human influence on the functioning of the planet has never been greater or in greater need of mitigation [...] Full article
(This article belongs to the Special Issue Sustainable Agriculture for Climate Change Adaptation)

Research

Jump to: Editorial, Review, Other

15 pages, 3211 KiB  
Article
Managing New Risks of and Opportunities for the Agricultural Development of West-African Floodplains: Hydroclimatic Conditions and Implications for Rice Production
by Aymar Yaovi Bossa, Jean Hounkpè, Yacouba Yira, Georges Serpantié, Bruno Lidon, Jean Louis Fusillier, Luc Olivier Sintondji, Jérôme Ebagnerin Tondoh and Bernd Diekkrüger
Climate 2020, 8(1), 11; https://doi.org/10.3390/cli8010011 - 10 Jan 2020
Cited by 6 | Viewed by 4007
Abstract
High rainfall events and flash flooding are becoming more frequent, leading to severe damage to crop production and water infrastructure in Burkina Faso, Western Africa. Special attention must therefore be given to the design of water control structures to ensure their flexibility and [...] Read more.
High rainfall events and flash flooding are becoming more frequent, leading to severe damage to crop production and water infrastructure in Burkina Faso, Western Africa. Special attention must therefore be given to the design of water control structures to ensure their flexibility and sustainability in discharging floods, while avoiding overdrainage during dry spells. This study assesses the hydroclimatic risks and implications of floodplain climate-smart rice production in southwestern Burkina Faso in order to make informed decisions regarding floodplain development. Statistical methods (Mann-Kendall test, Sen’s slope estimator, and frequency analysis) combined with rainfall-–runoff modeling (HBV model) were used to analyze the hydroclimatic conditions of the study area. Moreover, the spatial and temporal water availability for crop growth was assessed for an innovative and participatory water management technique. From 1970 to 2013, an increasing delay in the onset of the rainy season (with a decreasing pre-humid season duration) occurred, causing difficulties in predicting the onset due to the high temporal variability of rainfall in the studied region. As a result, a warming trend was observed for the past 40 years, raising questions about its negative impact on very intensive rice cultivation packages. Farmers have both positive and negative consensual perceptions of climatic hazards. The analysis of the hydrological condition of the basin through the successfully calibrated and validated hydrological HBV model indicated no significant increase in water discharge. The sowing of rice from the 10th to 30th June has been identified as optimal in order to benefit from higher surface water flows, which can be used to irrigate and meet crop water requirements during the critical flowering and grain filling phases of rice growth. Furthermore, the installation of cofferdams to increase water levels would be potentially beneficial, subject to them not hindering channel drainage during peak flow. Full article
(This article belongs to the Special Issue Sustainable Agriculture for Climate Change Adaptation)
Show Figures

Figure 1

20 pages, 4494 KiB  
Article
Opportunities for Green Energy through Emerging Crops: Biogas Valorization of Cannabis sativa L. Residues
by Carla Asquer, Emanuela Melis, Efisio Antonio Scano and Gianluca Carboni
Climate 2019, 7(12), 142; https://doi.org/10.3390/cli7120142 - 13 Dec 2019
Cited by 28 | Viewed by 5766
Abstract
The present work shows the experimental evidence carried out on a pilot scale and demonstrating the potential of Cannabis sativa L. by-products for biogas production through anaerobic digestion. While the current state-of-the-art tests on anaerobic digestion feasibility are carried out at the laboratory [...] Read more.
The present work shows the experimental evidence carried out on a pilot scale and demonstrating the potential of Cannabis sativa L. by-products for biogas production through anaerobic digestion. While the current state-of-the-art tests on anaerobic digestion feasibility are carried out at the laboratory scale, the here described tests were carried out at a pilot-to-large scale. An experimental campaign was carried out on hemp straw residues to assess the effective performance of this feedstock in biogas production by reproducing the real operating conditions of an industrial plant. An organic loading rate was applied according to two different amounts of hemp straw residues (3% wt/wt and 5% wt/wt). Also, specific bioenhancers were used to maximize biogas production. When an enzymatic treatment was not applied, a higher amount of hemp straw residues determined an increase of the median values of the gas production rate of biogas of 92.1%. This reached 116.6% when bioenhancers were applied. The increase of the specific gas production of biogas due to an increment of the organic loading rate (5% wt/wt) was +77.9% without enzymatic treatment and it was +129.8% when enzymes were used. The best management of the biodigester was found in the combination of higher values of hemp straw residues coupled with the enzymatic treatment, reaching 0.248 Nm3·kgvolatile solids−1 of specific biogas production. Comparisons were made between the biogas performance obtained within the present study and those found in the literature review coming from studies on a laboratory scale, as well as those related to the most common energy crops. The hemp straw performance was similar to those provided by previous studies on a laboratory scale. Values reported in the literature for other lignocellulosic crops are close to those of this work. Based on the findings, biogas production can be improved by using bioenhancers. Results suggest an integration of industrial hemp straw residues as complementary biomass for cleaner production and to contribute to the fight against climate change. Full article
(This article belongs to the Special Issue Sustainable Agriculture for Climate Change Adaptation)
Show Figures

Figure 1

30 pages, 17695 KiB  
Article
Assessing Future Spatio-Temporal Changes in Crop Suitability and Planting Season over West Africa: Using the Concept of Crop-Climate Departure
by Temitope S. Egbebiyi, Chris Lennard, Olivier Crespo, Phillip Mukwenha, Shakirudeen Lawal and Kwesi Quagraine
Climate 2019, 7(9), 102; https://doi.org/10.3390/cli7090102 - 24 Aug 2019
Cited by 20 | Viewed by 6888
Abstract
The changing climate is posing significant threats to agriculture, the most vulnerable sector, and the main source of livelihood in West Africa. This study assesses the impact of the climate-departure on the crop suitability and planting month over West Africa. We used 10 [...] Read more.
The changing climate is posing significant threats to agriculture, the most vulnerable sector, and the main source of livelihood in West Africa. This study assesses the impact of the climate-departure on the crop suitability and planting month over West Africa. We used 10 CMIP5 Global climate models bias-corrected simulations downscaled by the CORDEX regional climate model, RCA4 to drive the crop suitability model, Ecocrop. We applied the concept of the crop-climate departure (CCD) to evaluate future changes in the crop suitability and planting month for five crop types, cereals, legumes, fruits, root and tuber and horticulture over the historical and future months. Our result shows a reduction (negative linear correlation) and an expansion (positive linear correlation) in the suitable area and crop suitability index value in the Guinea-Savanna and Sahel (southern Sahel) zone, respectively. The horticulture crop was the most negatively affected with a decrease in the suitable area while cereals and legumes benefited from the expansion in suitable areas into the Sahel zone. In general, CCD would likely lead to a delay in the planting season by 2–4 months except for the orange and early planting dates by about 2–3 months for cassava. No projected changes in the planting month are observed for the plantain and pineapple which are annual crops. The study is relevant for a short and long-term adaptation option and planning for future changes in the crop suitability and planting month to improve food security in the region. Full article
(This article belongs to the Special Issue Sustainable Agriculture for Climate Change Adaptation)
Show Figures

Figure 1

18 pages, 4731 KiB  
Article
Defining Crop–Climate Departure in West Africa: Improved Understanding of the Timing of Future Changes in Crop Suitability
by Temitope S. Egbebiyi, Olivier Crespo and Chris Lennard
Climate 2019, 7(9), 101; https://doi.org/10.3390/cli7090101 - 21 Aug 2019
Cited by 18 | Viewed by 7434
Abstract
The future climate is projected to change rapidly with potentially severe consequences for global food security. This study aims to improve the understanding of future changes in the suitability of crop growth conditions. It proposes a definition of crop realization, of the climate [...] Read more.
The future climate is projected to change rapidly with potentially severe consequences for global food security. This study aims to improve the understanding of future changes in the suitability of crop growth conditions. It proposes a definition of crop realization, of the climate departure from recent historical variability, or crop–climate departure. Four statistically downscaled and bias-corrected Global Climate Models (GCMs): CCCMA, CNRM5, NOAA-GFDL, and MIROC5 performed simulations for the period 1960–2100 under the Representative Concentration Pathway RCP8.5 scenario to compute 20 year moving averages at 5-year increments. These were used to drive a crop suitability model, Ecocrop, for eight different crops across the three Food and Agriculture Organizations (FAO) AgroEcological Zones (AEZs) of West Africa (Guinea, Sahel, and Savanna). Simulations using historical climate data found that all crops except maize had a suitability index value (SIV) ≥0.50 outside the Sahel region, equivalent to conditions being suitable or strongly suitable. Simulations of future climate reveal that warming is projected to constrain crop growth suitability for cassava and pineapple in the Guinea zone. A potential for the northward expansion of maize is projected by the end of the century, suggesting a future opportunity for its growth in the southern Sahel zone. Crop growth conditions for mango and pearl millet remain suitable across all three AEZs. In general, crops in the Savanna AEZ are the most sensitive to the projected changes in climate. The changes in the crop–climate relationship suggests a future constraint in crop suitability, which could be detrimental to future food security in West Africa. Further studies to explore associated short- and long-term adaptation options are recommended. Full article
(This article belongs to the Special Issue Sustainable Agriculture for Climate Change Adaptation)
Show Figures

Figure 1

13 pages, 2221 KiB  
Article
Warming Winters Reduce Chill Accumulation for Peach Production in the Southeastern United States
by Lauren E. Parker and John T. Abatzoglou
Climate 2019, 7(8), 94; https://doi.org/10.3390/cli7080094 - 30 Jul 2019
Cited by 23 | Viewed by 7660
Abstract
Insufficient winter chill accumulation can detrimentally impact agriculture. Understanding the changing risk of insufficient chill accumulation can guide orchard management and cultivar selection for long-lived perennial crops including peaches. This study quantifies the influence of modeled anthropogenic climate change on observed chill accumulation [...] Read more.
Insufficient winter chill accumulation can detrimentally impact agriculture. Understanding the changing risk of insufficient chill accumulation can guide orchard management and cultivar selection for long-lived perennial crops including peaches. This study quantifies the influence of modeled anthropogenic climate change on observed chill accumulation since 1981 and projected chill accumulation through the mid-21st century, with a focus on principal peach-growing regions in the southeastern United States, and commonly grown peach cultivars with low, moderate, and high chill accumulation requirements. Anthropogenic climate change has reduced winter chill accumulation, increased the probability of winters with low chill accumulation, and increased the likelihood of winters with insufficient chill for commonly grown peach cultivars in the southeastern United States. Climate projections show a continuation of reduced chill accumulation and increased probability of winters with insufficient chill accumulation for cultivars with high chill requirements, with approximately 40% of years by mid-century having insufficient chill in Georgia. The results highlight the importance of inter-annual variability in agro-climate risk assessments and suggest that adaptive measures may be necessary in order to maintain current peach production practices in the region in the coming decades. Full article
(This article belongs to the Special Issue Sustainable Agriculture for Climate Change Adaptation)
Show Figures

Figure 1

17 pages, 1784 KiB  
Article
Climate Change-Induced Impacts on Smallholder Farmers in Selected Districts of Sidama, Southern Ethiopia
by Tafesse Matewos
Climate 2019, 7(5), 70; https://doi.org/10.3390/cli7050070 - 22 May 2019
Cited by 28 | Viewed by 8714
Abstract
Different factors control the types of adaptive strategies and likelihoods of experiencing climate change-induced impacts by smallholder farmers. By using a mixed research method, this study examines the types and determinants of climate change-induced impacts on smallholder rural farmers in drought-prone low lands [...] Read more.
Different factors control the types of adaptive strategies and likelihoods of experiencing climate change-induced impacts by smallholder farmers. By using a mixed research method, this study examines the types and determinants of climate change-induced impacts on smallholder rural farmers in drought-prone low lands of Sidama, Southern Ethiopia. Randomly selected (401) households were surveyed on climate change-induced impacts. Longitudinal climatic data were also collected from the Ethiopian National Meteorological Agency to assess the trend of rainfall (RF), temperature and drought incidents. The analyses of the data revealed that RF and temperature had shown decreasing and increasing trends, respectively, during the three decades under consideration (1983–2014). These changes in RF and temperature exposed farmers to climate-related epidemics, drought, harvest loss, and hunger. The logit model results revealed that different factors control the likelihood of exposure to climate change-induced impacts. The findings revealed that literacy level, involving women in family decisions and farmers’ involvement in adaptation planning, reduces the likelihood of exposure to climate change-induced hunger. Therefore, there is a need to work on human capital of the farmers through expanding education, strengthening women’s participation in family decision-making, and by improving public participation in climate change adaptation undertakings to minimize climate change-induced impacts. Full article
(This article belongs to the Special Issue Sustainable Agriculture for Climate Change Adaptation)
Show Figures

Figure 1

17 pages, 15848 KiB  
Article
Impact of Climate Change on Twenty-First Century Crop Yields in the U.S.
by Lillian Kay Petersen
Climate 2019, 7(3), 40; https://doi.org/10.3390/cli7030040 - 14 Mar 2019
Cited by 30 | Viewed by 13248
Abstract
Crop yields are strongly dependent on the average climate, extreme temperatures, and carbon dioxide concentrations, all of which are projected to increase in the coming century. In this study, a statistical model was created to predict US yields to 2100 for three crops [...] Read more.
Crop yields are strongly dependent on the average climate, extreme temperatures, and carbon dioxide concentrations, all of which are projected to increase in the coming century. In this study, a statistical model was created to predict US yields to 2100 for three crops using low and high-emissions future scenarios (RCP 4.5 and 8.5). The model is based on linear regressions between historical crop yields and daily weather observations since 1970 for every county in the US. Yields were found to be most strongly dependent on heat waves, summer average temperatures, and killing degree days; these relationships were hence used to predict future yields. The model shows that warming temperatures will significantly decrease corn and soybean yields, but will not have as strong of an influence on rice. Before accounting for CO2 fertilization, crops in the high-emissions scenario are predicted to produce 77%, 85%, and 96% of their expected yield without climate change for corn, soybeans, and rice, respectively. When a simple CO2 fertilization factor is included, corn, a C4 plant, increases slightly, while the yields of the C3 plants (soybeans and rice) are actually predicted to increase compared to today’s yields. This study exhibits the wide range of possible impacts of climate change on crop yields in the coming century, and emphasizes the need for field research on the combined effects of CO2 fertilization and heat extremes. Full article
(This article belongs to the Special Issue Sustainable Agriculture for Climate Change Adaptation)
Show Figures

Graphical abstract

24 pages, 2911 KiB  
Article
The Nexus of Weather Extremes to Agriculture Production Indexes and the Future Risk in Ghana
by Abdul-Aziz Ibn Musah, Jianguo Du, Thomas Bilaliib Udimal and Mohammed Abubakari Sadick
Climate 2018, 6(4), 86; https://doi.org/10.3390/cli6040086 - 31 Oct 2018
Cited by 11 | Viewed by 8801
Abstract
The agricultural industry employs a large workforce in Ghana and remains the primary source of food security and income. The consequences of extreme weather in this sector can be catastrophic. A consistent picture of meteorological risk and adaptation patterns can lead to useful [...] Read more.
The agricultural industry employs a large workforce in Ghana and remains the primary source of food security and income. The consequences of extreme weather in this sector can be catastrophic. A consistent picture of meteorological risk and adaptation patterns can lead to useful information, which can help local farmers make informed decisions to advance their livelihoods. We modelled historical data using extreme value theory and structural equation modelling. Subsequently, we studied extreme weather variability and its relationship to composite indicators of agricultural production and the long-term trend of weather risk. Minimum and maximum annual temperatures have negligible heterogeneity in their trends, while the annual maximum rainfall is homogenous in trend. Severe rainfall affects cereals and cocoa production, resulting in reduced yields. Cereals and cocoa grow well when there is even distribution of rainfall. The return levels for the next 20–100 years are gradually increasing with the long-term prediction of extreme weather. Also, heavy rains affect cereals and cocoa production negatively. All indicators of agriculture had a positive relationship with maximum extreme weather. Full article
(This article belongs to the Special Issue Sustainable Agriculture for Climate Change Adaptation)
Show Figures

Figure 1

14 pages, 1947 KiB  
Article
Possible Scenarios of Winter Wheat Yield Reduction of Dryland Qazvin Province, Iran, Based on Prediction of Temperature and Precipitation Till the End of the Century
by Behnam Mirgol and Meisam Nazari
Climate 2018, 6(4), 78; https://doi.org/10.3390/cli6040078 - 23 Sep 2018
Cited by 11 | Viewed by 4608
Abstract
The climate of the Earth is changing. The Earth’s temperature is projected to maintain its upward trend in the next few decades. Temperature and precipitation are two very important factors affecting crop yields, especially in arid and semi-arid regions. There is a need [...] Read more.
The climate of the Earth is changing. The Earth’s temperature is projected to maintain its upward trend in the next few decades. Temperature and precipitation are two very important factors affecting crop yields, especially in arid and semi-arid regions. There is a need for future climate predictions to protect vulnerable sectors like agriculture in drylands. In this study, the downscaling of two important climatic variables—temperature and precipitation—was done by the CanESM2 and HadCM3 models under five different scenarios for the semi-arid province of Qazvin, located in Iran. The most efficient scenario was selected to predict the dryland winter wheat yield of the province for the three periods: 2010–2039, 2040–2069, and 2070–2099. The results showed that the models are able to satisfactorily predict the daily mean temperature and annual precipitation for the three mentioned periods. Generally, the daily mean temperature and annual precipitation tended to decrease in these periods when compared to the current reference values. However, the scenarios rcp2.6 and B2, respectively, predicted that the precipitation will fall less or even increase in the period 2070–2099. The scenario rcp2.6 seemed to be the most efficient to predict the dryland winter wheat yield of the province for the next few decades. The grain yield is projected to drop considerably over the three periods, especially in the last period, mainly due to the reduction in precipitation in March. This leads us to devise some adaptive strategies to prevent the detrimental impacts of climate change on the dryland winter wheat yield of the province. Full article
(This article belongs to the Special Issue Sustainable Agriculture for Climate Change Adaptation)
Show Figures

Figure 1

15 pages, 2766 KiB  
Article
The Value of Tactical Adaptation to El Niño–Southern Oscillation for East Australian Wheat
by Bangyou Zheng, Scott Chapman and Karine Chenu
Climate 2018, 6(3), 77; https://doi.org/10.3390/cli6030077 - 11 Sep 2018
Cited by 14 | Viewed by 6817
Abstract
El Niño–Southern Oscillation strongly influences rainfall and temperature patterns in Eastern Australia, with major impacts on frost, heat, and drought stresses, and potential consequences for wheat production. Wheat phenology is a key factor to adapt to the risk of frost, heat, and drought [...] Read more.
El Niño–Southern Oscillation strongly influences rainfall and temperature patterns in Eastern Australia, with major impacts on frost, heat, and drought stresses, and potential consequences for wheat production. Wheat phenology is a key factor to adapt to the risk of frost, heat, and drought stresses in the Australian wheatbelt. This study explores broad and specific options to adapt wheat cropping systems to El Niño–Southern Oscillation, and more specifically, to the Southern Oscillation Index (SOI) phases ahead of the season (i.e., April forecast) in Eastern Australia, when wheat producers make their most crucial management decisions. Crop model simulations were performed for commercially-grown wheat varieties, as well as for virtual genotypes representing possible combinations of phenology alleles that are currently present in the Australian wheat germplasm pool. Different adaptation strategies were tested at the site level, across Eastern Australia, for a wide range of sowing dates and nitrogen applications over long-term historical weather records (1900–2016). The results highlight that a fixed adaptation system, with genotype maturities, sowing time, and nitrogen application adapted to each location would greatly increase wheat productivity compared to sowing a mid-maturity genotype, mid-season, using current practices for nitrogen applications. Tactical adaptation of both genotype and management to the different SOI phases and to different levels of initial Plant Available Water (‘PAW & SOI adaptation’) resulted in further yield improvement. Site long-term increases in yield and gross margin were up to 1.15 t·ha−1 and AU$ 223.0 ha−1 for fixed adaptation (0.78 t·ha−1 and AU$ 153 ha−1 on average across the whole region), and up to an extra 0.26 t·ha−1 and AU$ 63.9 ha−1 for tactical adaptation. For the whole eastern region, these results correspond to an annual AU$ 440 M increase for the fixed adaptation, and an extra AU$ 188 M for the PAW & SOI tactical adaptation. The benefits of PAW & SOI tactical adaptation could be useful for growers to adjust farm management practices according to pre-sowing seasonal conditions and the seasonal climate forecast. Full article
(This article belongs to the Special Issue Sustainable Agriculture for Climate Change Adaptation)
Show Figures

Figure 1

36 pages, 7556 KiB  
Article
Farmers’ Net Income Distribution and Regional Vulnerability to Climate Change: An Empirical Study of Bangladesh
by Md. Shah ALAMGIR, Jun FURUYA, Shintaro KOBAYASHI, Mostafiz Rubaiya BINTE and Md. Abdus SALAM
Climate 2018, 6(3), 65; https://doi.org/10.3390/cli6030065 - 23 Jul 2018
Cited by 23 | Viewed by 9848
Abstract
Widespread poverty is the most serious threat and social problem that Bangladesh faces. Regional vulnerability to climate change threatens to escalate the magnitude of poverty. It is essential that poverty projections be estimated while bearing in mind the effects of climate change. The [...] Read more.
Widespread poverty is the most serious threat and social problem that Bangladesh faces. Regional vulnerability to climate change threatens to escalate the magnitude of poverty. It is essential that poverty projections be estimated while bearing in mind the effects of climate change. The main purpose of this paper is to perform an agrarian sub-national regional analysis of climate change vulnerability in Bangladesh under various climate change scenarios and evaluate its potential impact on poverty. This study is relevant to socio-economic research on climate change vulnerability and agriculture risk management and has the potential to contribute new insights to the complex interactions between household income and climate change risks to agricultural communities in Bangladesh and South Asia. This study uses analysis of variance, cluster analysis, decomposition of variance and log-normal distribution to estimate the parameters of income variability that can be used to ascertain vulnerability levels and help us to understand the poverty levels that climate change could potentially generate. It is found that the levels and sources of income vary greatly among regions of Bangladesh. The variance decomposition of income showed that agricultural income in Mymensingh and Rangpur is the main cause of the total income difference among all sources of income. Moreover, a large variance in agricultural income among regions is induced by the gross income from rice production. Additionally, even in the long run the gradual, constant reduction of rice yield due to climate change in Bangladesh is not a severe problem for farmers. However, extreme events such as floods, flash floods, droughts, sea level rise and greenhouse gas emissions, based on Representative concentration pathways (RCPs), could increase the poverty rates in Mymensingh, Rajshahi, Barisal and Khulna—regions that would be greatly affected by unexpected yield losses due to extreme climatic events. Therefore, research into and development of adaptation measures to climate change in regions where farmers are largely dependent on agricultural income are important. Full article
(This article belongs to the Special Issue Sustainable Agriculture for Climate Change Adaptation)
Show Figures

Figure 1

17 pages, 1451 KiB  
Article
On-Farm Evaluation of the Potential Use of Greenhouse Gas Mitigation Techniques for Rice Cultivation: A Case Study in Thailand
by Noppol Arunrat, Sukanya Sereenonchai and Nathsuda Pumijumnong
Climate 2018, 6(2), 36; https://doi.org/10.3390/cli6020036 - 2 May 2018
Cited by 12 | Viewed by 4700
Abstract
Environmental and socio-economic evaluations that imply techniques for mitigating greenhouse gas (GHG) emissions from rice cultivation are a challenging and controversial issue. This study was designed to investigate the potential use of mitigation techniques for rice cultivation. Mid-season drainage (MD), using ammonium sulfate [...] Read more.
Environmental and socio-economic evaluations that imply techniques for mitigating greenhouse gas (GHG) emissions from rice cultivation are a challenging and controversial issue. This study was designed to investigate the potential use of mitigation techniques for rice cultivation. Mid-season drainage (MD), using ammonium sulfate instead of urea (AS), and site-specific nutrient management (SSNM) were chosen as mitigation techniques. Data were collected using field surveys and structured questionnaires at the same 156 farms, covering four crop years. The GHG emissions were evaluated based on the concept of the life cycle assessment of the GHG emissions of products. The farmers’ assessments of mitigation techniques, with multiple criteria evaluation, were obtained by face-to-face interviews. Opinions on all mitigation techniques were requested two times covering four years with the same 156 farm owners. The multinomial logistic regression model was used to examine the factors influencing the farmers’ decisions. The results show that SSNM was evaluated as the highest abatement potential (363.52 kgCO2eq ha−1), the negative value of abatement cost (−2565 THB ha−1), and the negative value of the average abatement cost (−14 THB kgCO2eq−1). Among the different techniques, SSNM was perceived as the most suitable one, followed by MD and AS. Highly significant factors influencing decision making consisted of planted area, land size, farmer liability, farmer perception of yield, and GHG emissions. Subsidies or cost-sharing measures to convince farmers to adopt new techniques can enhance their practices, and more support for the development of water systems can increase their availability. Full article
(This article belongs to the Special Issue Sustainable Agriculture for Climate Change Adaptation)
Show Figures

Figure 1

Review

Jump to: Editorial, Research, Other

20 pages, 919 KiB  
Review
Geographic Information and Communication Technologies for Supporting Smallholder Agriculture and Climate Resilience
by Billy Tusker Haworth, Eloise Biggs, John Duncan, Nathan Wales, Bryan Boruff and Eleanor Bruce
Climate 2018, 6(4), 97; https://doi.org/10.3390/cli6040097 - 10 Dec 2018
Cited by 23 | Viewed by 8349
Abstract
Multiple factors constrain smallholder agriculture and farmers’ adaptive capacities under changing climates, including access to information to support context appropriate farm decision-making. Current approaches to geographic information dissemination to smallholders, such as the rural extension model, are limited, yet advancements in internet and [...] Read more.
Multiple factors constrain smallholder agriculture and farmers’ adaptive capacities under changing climates, including access to information to support context appropriate farm decision-making. Current approaches to geographic information dissemination to smallholders, such as the rural extension model, are limited, yet advancements in internet and communication technologies (ICTs) could help augment these processes through the provision of agricultural geographic information (AGI) directly to farmers. We analysed recent ICT initiatives for communicating climate and agriculture-related information to smallholders for improved livelihoods and climate change adaptation. Through the critical analysis of initiatives, we identified opportunities for the success of future AGI developments. We systematically examined 27 AGI initiatives reported in academic and grey literature (e.g., organisational databases). Important factors identified for the success of initiatives include affordability, language(s), community partnerships, user collaboration, high quality and locally-relevant information through low-tech platforms, organisational trust, clear business models, and adaptability. We propose initiatives should be better-targeted to deliver AGI to regions in most need of climate adaptation assistance, including SE Asia, the Pacific, and the Caribbean. Further assessment of the most effective technological approaches is needed. Initiatives should be independently assessed for evaluation of their uptake and success, and local communities should be better-incorporated into the development of AGI initiatives. Full article
(This article belongs to the Special Issue Sustainable Agriculture for Climate Change Adaptation)
Show Figures

Figure 1

Other

8 pages, 231 KiB  
Perspective
Climate-Smart Agriculture and Non-Agricultural Livelihood Transformation
by Jon Hellin and Eleanor Fisher
Climate 2019, 7(4), 48; https://doi.org/10.3390/cli7040048 - 31 Mar 2019
Cited by 35 | Viewed by 8568
Abstract
Agricultural researchers have developed a number of agricultural technologies and practices, known collectively as climate-smart agriculture (CSA), as part of climate change adaptation and mitigation efforts. Development practitioners invest in scaling these to have a wider impact. We use the example of the [...] Read more.
Agricultural researchers have developed a number of agricultural technologies and practices, known collectively as climate-smart agriculture (CSA), as part of climate change adaptation and mitigation efforts. Development practitioners invest in scaling these to have a wider impact. We use the example of the Western Highlands in Guatemala to illustrate how a focus on the number of farmers adopting CSA can foster a tendency to homogenize farmers, instead of recognizing differentiation within farming populations. Poverty is endemic in the Western Highlands, and inequitable land distribution means that farmers have, on average, access to 0.06 ha per person. For many farmers, agriculture per se does not represent a pathway out of poverty, and they are increasingly reliant on non-agricultural income sources. Ineffective targeting of CSA, hence, ignores small-scale farming households’ different capacities for livelihood transformation, which are linked to the opportunities and constraints afforded by different livelihood pathways, agricultural and non-agricultural. Climate-smart interventions will often require a broader and more radical agenda that includes supporting farm households’ ability to build non-agricultural-based livelihoods. Climate risk management options that include livelihood transformation of both agricultural and non-agricultural livelihoods will require concerted cross-disciplinary research and development that encompasses a broader set of disciplines than has tended to be the case to date within the context of CSA. Full article
(This article belongs to the Special Issue Sustainable Agriculture for Climate Change Adaptation)
17 pages, 1607 KiB  
Perspective
New Breeding Techniques for Greenhouse Gas (GHG) Mitigation: Plants May Express Nitrous Oxide Reductase
by Jordan J. Demone, Shen Wan, Maryam Nourimand, Asbjörn Erik Hansen, Qing-yao Shu and Illimar Altosaar
Climate 2018, 6(4), 80; https://doi.org/10.3390/cli6040080 - 27 Sep 2018
Cited by 5 | Viewed by 6589
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas (GHG). Although it comprises only 0.03% of total GHGs produced, N2O makes a marked contribution to global warming. Much of the N2O in the atmosphere issues from incomplete bacterial [...] Read more.
Nitrous oxide (N2O) is a potent greenhouse gas (GHG). Although it comprises only 0.03% of total GHGs produced, N2O makes a marked contribution to global warming. Much of the N2O in the atmosphere issues from incomplete bacterial denitrification processes acting on high levels of nitrogen (N) in the soil due to fertilizer usage. Using less fertilizer is the obvious solution for denitrification mitigation, but there is a significant drawback (especially where not enough N is available for the crop via N deposition, irrigation water, mineral soil N, or mineralization of organic matter): some crops require high-N fertilizer to produce the yields necessary to help feed the world’s increasing population. Alternatives for denitrification have considerable caveats. The long-standing promise of genetic modification for N fixation may be expanded now to enhance dissimilatory denitrification via genetic engineering. Biotechnology may solve what is thought to be a pivotal environmental challenge of the 21st century, reducing GHGs. Current approaches towards N2O mitigation are examined here, revealing an innovative solution for producing staple crops that can ‘crack’ N2O. The transfer of the bacterial nitrous oxide reductase gene (nosZ) into plants may herald the development of plants that express the nitrous oxide reductase enzyme (N2OR). This tactic would parallel the precedents of using the molecular toolkit innately offered by the soil microflora to reduce the environmental footprint of agriculture. Full article
(This article belongs to the Special Issue Sustainable Agriculture for Climate Change Adaptation)
Show Figures

Figure 1

Back to TopTop