The Nexus of Weather Extremes to Agriculture Production Indexes and the Future Risk in Ghana
Abstract
:1. Introduction
- ➢
- Examining the trends in extreme maximum rainfall and extreme high/low temperature
- ➢
- Assessing the variability and weather risk of extreme maximum/minimum
- ➢
- Analysis of the relationship of extreme weather to agriculture production indexes
- Effect of exceptionally high rainfall on agriculture production indexes
- Effect of extremely high temperature on agriculture production indexes
- Impact of low temperature on agriculture production indexes
2. Materials and Methods
2.1. Climate Change and Variability in Ghana
2.2. Seasonal Changes of Precipitation and Temperature
2.3. The trend of Climate Change in Ghana
2.4. The Generalized Extreme Value Distribution (GEVD)
2.5. Maximum Likelihood Estimation for GEVD
Model Checking for GEVD
2.6. Return Period or Level Estimates
2.7. Test for Stationarity and Seasonality
3. Methodology
4. Results and Discussion
4.1. Stationarity Test for the Weather Indicators
4.2. GEVD Model for Extreme Maximum Rainfall
4.3. GEVD Model for Extreme Maximum Temperature
4.4. GEVD Model for Extreme Minimum Temperature
4.5. Return Level
4.6. Structural Equation Modeling (SEM)-Regression Analysis
4.6.1. The relationship between Maximum Rainfall and Composite Agriculture Indexes
4.6.2. The Relationship between Maximum Temperature and Composite Agriculture Indexes
4.6.3. The Relationship between Minimum Temperature and Composite Agriculture Indexes
4.6.4. Paths Equations
5. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
References
- Da Cunha, D.A.; Coelho, A.B.; Féres, J.G. Irrigation as an adaptive strategy to climate change: An economic perspective on Brazilian agriculture. Environ. Dev. Econ. 2015, 20, 57–79. [Google Scholar] [CrossRef]
- Kurukulasuriya, P.; Mendelsohn, R.; Hassan, R.; Benhin, J.; Deressa, T.; Diop, M.; Eid, H.M.; Fosu, K.Y.; Gbetibouo, G.; Jain, S. Will African agriculture survive climate change? World Bank Econ. Rev. 2006, 20, 367–388. [Google Scholar] [CrossRef]
- Mendelsohn, R.; Dinar, A.; Williams, L. The distributional impact of climate change on rich and poor countries. Environ. Dev. Econ. 2006, 11, 159–178. [Google Scholar] [CrossRef]
- Di Falco, S. Adaptation to climate change in Sub-Saharan agriculture: Assessing the evidence and rethinking the drivers. Eur. Rev. Agric. Econ. 2014, 41, 405–430. [Google Scholar] [CrossRef]
- Ministry of Food and Agriculture. Medium Term Agriculture Sector Investment Plan (METASIP)—2011–2015; Ministry of Food and Agriculture: Accra, Ghana, 2010.
- MOFA. Agriculture in Ghana: Facts and Figures 2010; MOFA: Accra, Ghana, 2011.
- World Bank Group. Economics of Adaptation to Climate Change-Ghana; World Bank Group: Washington, DC, USA, 2010. [Google Scholar]
- Asante, F.A.; Amuakwa-Mensah, F. Climate change and variability in Ghana: Stocktaking. Climate 2014, 3, 78–99. [Google Scholar] [CrossRef]
- EPA (Environmental Protection Agency). Ghana’s Second National Communication to the UNFCCC; Environmental Protection Agency and Ministry of Environment, Science and Technology: Accra, Ghana, 2011.
- Owusu, K.; Waylen, P.; Qiu, Y. Changing rainfall inputs in the Volta basin: Implications for water sharing in Ghana. GeoJournal 2008, 71, 201–210. [Google Scholar] [CrossRef]
- Bernstein, L.; Bosch, P.; Canziani, O.; Chen, Z.; Christ, R.; Davidson, O.; Hare, W.; Huq, S.; Karoly, D.; Kattsov, V.; et al. Fourth Assessment Report; Longer Report; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Al-Hassan, R.; Poulton, C. Agriculture and Social Protection in Ghana. 2009. Available online: http://opendocs.ids.ac.uk/opendocs/handle/123456789/2340 (accessed on 22 October 2018).
- Senaratne, A.; Scarborough, H. Coping with climatic variability by rain-fed farmers in dry Zone, Sri Lanka: Towards understanding adaptation to climate change. In AARES 2011: Australian Agricultural & Resource Economics Society 55th Annual Conference Handbook; AARES: Reston, VA, USA, 2011; pp. 1–22. [Google Scholar]
- FAO. The State of Food Insecurity in the World 2008: High Food Prices and Food Security–Threats and Opportunities 2008. Available online: http://www.fao.org/docrep/011/i0291e/i0291e00.htm (accessed on 22 October 2018).
- Garcia-Aristizabal, A.; Bucchignani, E.; Palazzi, E.; D’Onofrio, D.; Gasparini, P.; Marzocchi, W. Analysis of non-stationary climate-related extreme events considering climate change scenarios: An application for multi-hazard assessment in the Dar es Salaam region, Tanzania. Nat. Hazards 2015, 75, 289–320. [Google Scholar] [CrossRef]
- Jin, Z.; Zhuang, Q.; Wang, J.; Archontoulis, S.V.; Zobel, Z.; Kotamarthi, V.R. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO2. Glob. Chang. Biol. 2017, 23, 2687–2704. [Google Scholar] [CrossRef] [PubMed]
- Berezuk, A.G.; da Silva, C.A.; Lamoso, L.P.; Schneider, H. Climate and Production: The Case of the Administrative Region of Grande Dourados, Mato Grosso do Sul, Brazil. Climate 2017, 5, 49. [Google Scholar] [CrossRef]
- Adger, W.N.; Arnell, N.W.; Tompkins, E.L. Successful adaptation to climate change across scales. Glob. Environ. Chang. 2005, 15, 77–86. [Google Scholar] [CrossRef]
- Withanachchi, S.S.; Köpke, S.; Withanachchi, C.R.; Pathiranage, R.; Ploeger, A. Water resource management in dry zonal paddy cultivation in Mahaweli River Basin, Sri Lanka: An analysis of spatial and temporal climate change impacts and traditional knowledge. Climate 2014, 2, 329–354. [Google Scholar] [CrossRef]
- Coles, S. An Introduction to Statistical Modeling of Extreme Values; Springer: Berlin, Germany, 2001; ISBN 1-85233-459-2. [Google Scholar]
- Field, C.B.; Barros, V.; Stocker, T.F.; Qin, D.; Dokken, D.J.; Ebi, K.L.; Mastrandrea, M.D.; Mach, K.J.; Plattner, G.K.; Allen, S.K. A special report of working groups I and II of the intergovernmental panel on climate change. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; IPCC: Geneva, Switzerland, 2012. [Google Scholar]
- Mannshardt, E.; Craigmile, P.F.; Tingley, M.P. Statistical modeling of extreme value behavior in North American tree-ring density series. Clim. Chang. 2013, 117, 843–858. [Google Scholar] [CrossRef]
- Rahimpour, V.; Zeng, Y.; Mannaerts, C.M.; Su, Z. (Bob) Attributing seasonal variation of daily extreme precipitation events across The Netherlands. Weather Clim. Extrem. 2016, 14, 56–66. [Google Scholar] [CrossRef]
- Thiombiano, A.N.; El Adlouni, S.; St-hilaire, A.; Ouarda, T.B.M.J.; El-jabi, N. Nonstationary frequency analysis of extreme daily precipitation amounts in Southeastern Canada using a peaks-over-threshold approach. Theor. Appl. Climatol. 2016. [Google Scholar] [CrossRef]
- Minkah, R. An application of extreme value theory to the management of a hydroelectric dam. Springerplus 2016, 5, 96. [Google Scholar] [CrossRef] [PubMed]
- Ouarda, T.; El-Adlouni, S. Bayesian nonstationary frequency analysis of hydrological variables. JAWRA J. Am. 2011, 47, 496–505. [Google Scholar]
- Seidou, O.; Ramsay, A.; Nistor, I. Climate change impacts on extreme floods II: Improving flood future peaks simulation using non-stationary frequency analysis. Nat. Hazards 2012, 60, 715–726. [Google Scholar] [CrossRef]
- Katz, R.W. Statistics of extremes in climate change. Clim. Chang. 2010, 100, 71–76. [Google Scholar] [CrossRef]
- Lekina, A.; Chebana, F.; Ouarda, T.B.M.J. Weighted estimate of extreme quantile: An application to the estimation of high flood return periods. Stoch. Environ. Res. Risk Assess. 2014, 28, 147–165. [Google Scholar] [CrossRef]
- Panthou, G.; Vischel, T.; Lebel, T. Recent trends in the regime of extreme rainfall in the Central Sahel. Int. J. Climatol. 2014, 34, 3998–4006. [Google Scholar] [CrossRef] [Green Version]
- Zahiri, E.P.; Bamba, I.; Famien, A.M.; Koffi, A.K.; Ochou, A.D. Mesoscale extreme rainfall events in West Africa: The cases of Niamey (Niger) and the Upper Ouémé Valley (Benin). Weather Clim. Extrem. 2016, 13, 15–34. [Google Scholar] [CrossRef]
- Yabi, I.; Afouda, F. Extreme rainfall years in Benin (West Africa). Quat. Int. 2012, 262, 39–43. [Google Scholar] [CrossRef]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, P.G.; Thornton, P.K. The potential impacts of climate change on maize production in Africa and Latin America in 2055. Glob. Environ. Chang. 2003, 13, 51–59. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; ISBN 9291691437. [Google Scholar]
- Warner, K.; Afifi, T. Where the rain falls: Evidence from 8 countries on how vulnerable households use migration to manage the risk of rainfall variability and food insecurity. Clim. Dev. 2014, 6, 1–17. [Google Scholar] [CrossRef]
- Adamgbe, E.M.; Ujoh, F. Effect of variability in rainfall characteristics on maize yield in Gboko, Nigeria. J. Environ. Prot. (Irvine, Calif.) 2013, 4, 881. [Google Scholar] [CrossRef]
- Ogunrayi, O.A.; Akinseye, F.M.; Goldberg, V.; Bernhofer, C. Descriptive analysis of rainfall and temperature trends over Akure, Nigeria. J. Geogr. Reg. Plan. 2016, 9, 195–202. [Google Scholar]
- Nair, K.P.P. The Agronomy and Economy of Important Tree Crops of the Developing World; Elsevier: Amsterdam, The Netherlands, 2010; ISBN 0123846781. [Google Scholar]
- Anim-Kwapong, G.J.; Frimpong, E.B. Vulnerability and Adaptation Assessment Under the Netherlands Climate Change Studies Assistance Programme Phase 2 (NCCSAP2). Cocoa Res. Inst. Ghana 2005, 2, 1–30. [Google Scholar]
- Rao, G.P. Climate Change Adaptation Strategies in Agriculture and Allied Sectors; Scientific Publishers: Valencia, CA, USA, 2011; ISBN 9386347474. [Google Scholar]
- Ali, F.M. Effects of rainfall on yield of cocoa in Ghana. Exp. Agric. 1969, 5, 209–213. [Google Scholar] [CrossRef]
- Stanturf, J.A.; Warren, M.L.; Charnley, S.; Polasky, S.C.; Goodrick, S.L.; Armah, F.; Nyako, Y.A. Ghana Climate Change Vulnerability and Adaptation Assessment; United States Agency for International Development: Washington, DC, USA, 2011.
- Amundson, J.L.; Mader, T.L.; Rasby, R.J.; Hu, Q.S. Environmental effects on pregnancy rate in beef cattle 1. J. Anim. Sci. 2006, 84, 3415–3420. [Google Scholar] [CrossRef] [PubMed]
- Sprott, L.R.; Selk, P.G.E.; Adams, D.C. Factors affecting decisions on when to calve beef females. Prof. Anim. Sci. 2001, 17, 238–246. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Boote, K.J.; Kimball, B.A.; Ziska, L.H.; Izaurralde, R.C.; Ort, D.; Thomson, A.M.; Wolfe, D. Climate impacts on agriculture: Implications for crop production. Agron. J. 2011, 103, 351–370. [Google Scholar] [CrossRef]
- Gobin, A. Weather related risks in Belgian arable agriculture. Agric. Syst. 2018, 159, 225–236. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43. [Google Scholar] [CrossRef] [PubMed]
- Adger, W.N.; Huq, S.; Brown, K.; Conway, D.; Hulme, M. Adaptation to climate change in the developing world. Prog. Dev. Stud. 2003, 3, 179–195. [Google Scholar] [CrossRef] [Green Version]
- Schlenker, W.; Lobell, D.B. Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 2010, 5, 14010. [Google Scholar] [CrossRef] [Green Version]
- United Nations Framework Convention on Climate Change (UNFCCC). Climate Change: Impacts, Vulnerabilities and Adaptation in Developing Countries 2007. Available online: https://www.preventionweb.net/publications/view/2759 (accessed on 22 October 2018).
- Wealth, C. Economics for a Crowded Planet; Allen Lane: London, UK, 2008. [Google Scholar]
- Organization, W.H. Protecting the health of vulnerable people from the umanitarian consequences of climate change and climate related disasters. In Proceedings of the 6th session of the Ad Hoc Working Group on Long-Term Cooperative Action under the Convention (AWG-LCA 6), Bonn, Germany, 1–12 June 2009; pp. 1–12. [Google Scholar]
- NCCPF (National Climate Change Policy Framework); Policy, C.; Goals, M.D.; African, W. Government of Ghana Ghana Goes for Green Growth Discussion Document—Summary Climate Change in Ghana. 2015. Available online: https://cdkn.org/wp-content/uploads/2011/04/NCCPF-Summary-FINAL.pdf (accessed on 22 October 2018).
- Intergovernmental Panel on Climate Change. IPCC Climate Change 2007: The physical science basis. Agenda 2007, 6, 333. [Google Scholar]
- Kearney, M. Hot rocks and much-too-hot rocks: Seasonal patterns of retreat-site selection by a nocturnal ectotherm. J. Therm. Biol. 2002, 27, 205–218. [Google Scholar] [CrossRef]
- Agyemang-Bonsu, W.K.; Minia, Z.; Dontwi, J.; Dontwi, I.K.; Buabeng, S.N.; Baffoe-Bonnie, B.; Frimpong, E.B. Ghana Climate Change Impacts, Vulnerability and Adaptation Assessments; Environmental Protection Agency: Accra, Ghana, 2008.
- World Bank Group. The Costs to Developing Countries of Adapting to Climate Change—New Methods and Estimates; World Bank Group: Washington, DC, USA, 2010; p. 20433. [Google Scholar]
- Cameron, C. Climate Change Financing and Aid Effectiveness: Ghana Case Study. 2011. Available online: http://www.eldis.org/document/A61721 (accessed on 22 October 2018).
- Christensen, J.H.; Kanikicharla, K.K.; Marshall, G.; Turner, J. Climate Phenomena and Their Relevance for Future Regional Climate Change. 2013. Available online: https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter14_FINAL.pdf (accessed on 22 October 2018).
- Challinor, A.J.; Watson, J.; Lobell, D.B.; Howden, S.M.; Smith, D.R.; Chhetri, N. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Chang. 2014, 4, 287. [Google Scholar] [CrossRef]
- Codjoe, S.N.A.; Owusu, G. Climate change/variability and food systems: Evidence from the Afram Plains, Ghana. Reg. Environ. Chang. 2011, 11, 753–765. [Google Scholar] [CrossRef]
- Ghana Statistical Service. Ghana Multiple Indicator Cluster Survey with an Enhanced Malaria Module and Biomarker. 2011; Final Report. Available online: https://www.popline.org/node/577148 (accessed on 22 October 2018).
- Rosenzweig, C.; Iglesius, A.; Epstein, P.R.; Chivian, E. Climate Change and Extreme Weather Events—Implications for Food Production, Plant Diseases, and Pests. 2001. Available online: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1023&context=nasapub (accessed on 22 October 2018).
- Huang, C.; Lin, J.-G. Modified maximum spacings method for generalized extreme value distribution and applications in real data analysis. Metrika 2014, 77, 867–894. [Google Scholar] [CrossRef]
- Karmakar, M.; Shukla, G.K. Managing Extreme Risk in Some Major Stock Markets: An Extreme Value Approach. Int. Rev. Econ. Financ. 2015, 35, 1–25. [Google Scholar] [CrossRef]
- Switzer, L.N.; Wang, J.; Lee, S. Extreme risk and small investor behavior in developed markets. J. Asset Manag. 2017, 18, 457–475. [Google Scholar] [CrossRef]
- Davison, A.C.; Padoan, S.A.; Ribatet, M. Statistical Modeling of Spatial Extremes. Stat. Sci. 2012, 27, 161–186. [Google Scholar] [CrossRef]
- Bader, B. Automated, Efficient, and Practical Extreme Value Analysis with Environmental Applications. 2016. Available online: https://arxiv.org/pdf/1611.08261.pdf (accessed on 22 October 2018).
- Chinhamu, K.; Huang, C.K.; Huang, C.S.; Hammujuddy, J. Empirical analyses of extreme value models for the South African mining index. S. Afr. J. Econ. 2015, 83, 41–55. [Google Scholar] [CrossRef]
- Yee, T.W. Vector Generalized Linear and Additive Models: With an Implementation in R; Springer: Berlin, Germany, 2015; ISBN 9781493928187. [Google Scholar]
- Statistics, J. Distribution Fitting 2. Pearson-Fisher, Kolmogorov-Smirnov, Anderson- Darling, Wilks-Shapiro, Cramer-von-Misses and Jarque-Bera Statistics. Bull. UASVM Hortic. 2009, 66, 691–697. [Google Scholar]
- Hair, J.F.; Sarstedt, M.; Ringle, C.M.; Mena, J.A. An assessment of the use of partial least squares structural equation modeling in marketing research. J. Acad. Mark. Sci. 2012, 40, 414–433. [Google Scholar] [CrossRef]
- Pohlert, T. Non-parametric trend tests and change-point detection. CC BY-ND 2016, 4. Available online: http://cran.stat.upd.edu.ph/web/packages/trend/vignettes/trend.pdf (accessed on 29 October 2018).
- Castillo, E.; Hadi, A.; Balakrishnan, N.; Sarabia, J. Extreme Value and Related Models with Applications in Engineering and Science; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Byrne, B.M. Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming; Routledge: London, UK, 2016; ISBN 131763313X. [Google Scholar]
- Vinzi, V.E.; Trinchera, L.; Amato, S. PLS path modeling: From foundations to recent developments and open issues for model assessment and improvement. In Handbook of Partial Least Squares; Springer: Berlin, Germany, 2010; pp. 47–82. [Google Scholar]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. Partial least squares: The better approach to structural equation modeling? Long Range Plan. 2012, 45, 312–319. [Google Scholar] [CrossRef]
- Richter, N.F.; Sinkovics, R.R.; Ringle, C.M.; Schlaegel, C. A critical look at the use of SEM in international business research. Int. Mark. Rev. 2016, 33, 376–404. [Google Scholar] [CrossRef] [Green Version]
- Lowry, P.B.; Gaskin, J. Partial least squares (PLS) structural equation modeling (SEM) for building and testing behavioral causal theory: When to choose it and how to use it. IEEE Trans. Prof. Commun. 2014, 57, 123–146. [Google Scholar] [CrossRef]
- Field, C.B.; Barros, V.; Stocker, T.F.; Qin, D.; Dokken, D.J.; Ebi, K.L.; Mastrandrea, M.D.; Mach, K.J.; Plattner, G.-K.; Allen, S.K.; et al. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012. [Google Scholar]
- Montagnon, C.; Leroy, T.; Eskes, A. Amélioration variétale de# Coffea canephora#. 2: Les programmes de sélection et leurs résultats. Plant. Rech. Dév. 1998, 5, 89–98. [Google Scholar]
- Madan, M.L.; Prakash, B.S. Reproductive endocrinology and biotechnology applications among buffaloes. Soc. Reprod. Fertil. Suppl. 2007, 64, 261–281. [Google Scholar] [CrossRef] [PubMed]
- Gilad, E.; Meidan, R.; Berman, A.; Graber, Y.; Wolfenson, D. Effect of heat stress on tonic and GnRH-induced gonadotrophin secretion in relation to concentration of oestradiol in plasma of cyclic cows. J. Reprod. Fertil. 1993, 99, 315–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wise, M.E.; Armstrong, D.V.; Huber, J.T.; Hunter, R.; Wiersma, F. Hormonal Alterations in the Lactating Dairy Cow in Response to Thermal Stress1. J. Dairy Sci. 1988, 71, 2480–2485. [Google Scholar] [CrossRef]
- Dupuis, I.; Dumas, C. Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiol. 1990, 94, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.P.; Johnson, R.R. High Temperature Stress and Pollen Viability of Maize 1. Crop Sci. 1980, 20, 796–800. [Google Scholar] [CrossRef]
- Schoper, J.B.; Lambert, R.J.; Vasilas, B.L.; Westgate, M.E. Plant factors controlling seed set in maize: The influence of silk, pollen, and ear-leaf water status and tassel heat treatment at pollination. Plant Physiol. 1987, 83, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Rowhani, P.; Lobell, D.B.; Linderman, M.; Ramankutty, N. Climate variability and crop production in Tanzania. Agric. For. Meteorol. 2011, 151, 449–460. [Google Scholar] [CrossRef]
- Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Growing Cocoa—The International Cocoa Organization. Available online: https://www.icco.org/about-cocoa/growing-cocoa.html (accessed on 5 August 2018).
Location | Climate Type | Forecast Changes |
---|---|---|
Accra | Coastal Savanna Zone | From 52% decreases to 44% increases in wet season rainfall by the year 2080. |
Kumasi | Deciduous Forest Zone | From 48% decreases to 45% increases in wet season rainfall by the year 2080. Based on their A2 scenario, which generally shows the largest greenhouse gas (GHG) impact, predicts the weakest increase in wet season rainfall, 1.13%. |
Tarkwa | Rain Forest Zone | From 45% decreases to 31% increases in wet season rainfall. |
Techiman | Forest-Savanna Transition Zone | From 46% decreases to 36% increases in wet season rainfall. The A2 scenario, which generally shows the largest GHG impact, predicts the largest decrease in wet season rainfall, −2.94%. |
Tamale | Guinea Savanna Zone | From 36% decreases to 32% increases in wet season rainfall consistent trend toward decreased rainfall. |
Walembelle | Northern Guinea Savanna Zone | From 25% decreases to 24% increases in wet season rainfall |
Bawku | Sudan Savanna Zone | Range from 28% decreases to 30% increases in wet season rainfall. |
Location | Climate Type | Temperature Projections | |
---|---|---|---|
Wet Season | Dry Season | ||
Accra | Coastal Savanna Zone | 1.68 ± 0.38 °C by 2050 2.54 ± 0.75 °C by 2080 | 1.74 ± 0.60 °C by 2050 2.71 ± 0.91 °C by 2080 |
Kumasi | Deciduous Forest Zone | 1.71 ± 0.39 °C by 2050 2.60 ± 0.77 °C by 2080 | 1.81 ± 0.68 °C by 2050 2.83 ± 1.04 °C by 2080. |
Tarkwa | Rain Forest Zone | 1.69 ± 0.37 °C by 2050 2.56 ± 0.75 °C by 2080 | 1.76 ± 0.67 °C by 2050 2.76 ± 1.01 °C by 2080. |
Techiman | Forest-Savanna Transition Zone | 1.77 ± 0.43 °C by 2050 2.71 ± 0.85 °C by 2080 | 1.95 ± 0.79 °C by 2050 3.05 ± 1.20 °C by 2080. |
Tamale | Guinea Savanna Zone | 1.84 ± 0.46 °C by 2050 2.83 ± 0.91 °C by 2080 | 2.05 ± 0.75 °C by 2050 3.18 ± 1.18 °C by 2080. |
Walembelle | Northern Guinea Savanna Zone | 1.92 ± 0.52 °C by 2050 2.96 ± 0.98 °C by 2080 | 2.10 ± 0.71 °C by 2050 3.27 ± 1.11 °C by 2080. |
Bawku | Sudan Savanna Zone | 1.92 ± 0.53 °C by 2050 2.97 ± 0.98 °C by 2080 | 2.11 ± 0.68 °C by 2050 3.25 ± 1.08 °C by 2080 |
Time Period | Climatic Variations |
---|---|
January–July 1976 | Scorching weather conditions |
1983–1984 | Drought: A yearlong of bushfires |
October–December 1989 | Scorching weather conditions |
1991 | Lots of rains throughout the year |
1995 | About 40 days of intensive rains |
2004 | Noticeable are frigid winds during March–April (Easter) and November–January was very cold weather |
2005 | Cold periods resulting in animal deaths |
August 2006 | One week of intensive rains, and |
2007 | Lots of rains in August and September. |
Augmented Dickey-Fuller Stationarity Test | ||||||
Test Variable | Test’s Critical Values | Test Statistics | p-Value | |||
1% | 5% | 10% | ||||
Annual maxi. Rainfall | −3.958 | −3.410 | −3.127 | −16.350 | 0.0000 | |
Annual maxi. Temperature | −10.007 | −3.431 | −2.862 | −2.567 | 0.0000 | |
Annual mini. Temperature | −12.482 | −3.431 | −2.862 | −2.567 | 0.0000 | |
Seasonal Mann-Kendall Trend Test | ||||||
Series | Statistics | p-value | tau | Slope 95% CI | ||
z (trend) | z (Het) | p (trend) | p (Het) | |||
Maxi. Rainfall | 0.434 | 22.376 | 0.664 | 0.0216 | 0.0019 | 0.0044 [−0.0194,0.0308] |
Maxi. Temperature | 21.842 | 4.779 | <0.001 | 0.9410 | 0.1320 | 0.0318 [0.0286,0.0346] |
Mini. Temperature | 25.123 | 23.894 | <0.001 | 0.1320 | 0.1520 | 0.0231 [0.0212,0.0250] |
GEV | Maximum Rainfall | ||
---|---|---|---|
Location | Scale | Shape | |
Estimates | = 149.03 | = 23.98 | = 0.0024 |
Std error | 3.758 | 2.718 | 0.1002 |
95% CI (normal app) | (141.67,156.39) | (18.65,29.31) | (−0.193,0.198) |
Estimated Return Levels | 95% Lower | Estimate | 95% Upper |
5-year return level | 173.14 | 185.06 | 196.98 |
10-year return level | 186.59 | 203.13 | 219.68 |
20-year return level | 196.99 | 220.50 | 244.03 |
50-year return level | 206.49 | 243.04 | 279.57 |
100-year return level | 210.72 | 259.95 | 309.05 |
GEVD | Maximum Temperature | ||
---|---|---|---|
Location | Scale | Shape | |
Estimates | = 42.08 | = 0.826 | = −0.292 |
Std error | 0.128 | 0.0912 | 0.0942 |
95% CI (normal app) | (41.664,42.202) | (0.686,1.098) | (0.046,0.359) |
Estimated Return Levels | 95% lower | Estimate | 95% upper |
5-year return level | 42.82 | 43.08 | 43.35 |
10-year return level | 43.16 | 43.44 | 43.72 |
20-year return level | 43.39 | 43.72 | 44.04 |
50-year return level | 43.59 | 44.00 | 44.41 |
100-year return level | 43.67 | 44.17 | 44.67 |
GEV | Minimum Temperature | ||
---|---|---|---|
Location | Scale | Shape | |
Estimates | = 6.408 | = 5.261 | = −0.632 |
Std error | 0.817 | 0.758 | 0.148 |
95% CI(normal app) | (4.806,8.011) | (3.774,6.747) | (−0.922,−0.342) |
Estimated Return Levels | 95% lower | Estimate | 95% upper |
5-year return level | 10.355 | 11.506 | 12.657 |
10-year return level | 11.882 | 12.723 | 13.564 |
20-year return level | 12.761 | 13.456 | 14.151 |
50-year return level | 13.233 | 14.022 | 14.812 |
100-year return level | 13.333 | 14.274 | 15.216 |
Predictor | Outcome | Path Coefficient | p-Values |
---|---|---|---|
Maximum Rainfall | Livestock Production Index | −0.184 | 0.144 |
Crop production index | −0.189 | 0.133 | |
Cereal Production index | −0.266 * | 0.031 | |
Cocoa production | −0.461 *** | <0.001 | |
Food Production Index | −0.190 | 0.131 | |
Maximum Temperature | Livestock Production Index | 0.305 * | 0.015 |
Crop production index | 0.263 * | 0.037 | |
Cereal Production index | 0.276 * | 0.025 | |
Cocoa production | 0.424 * | 0.023 | |
Food Production Index | 0.268 * | 0.033 | |
Minimum Temperature | Livestock Production Index | 0.457 *** | <0.001 |
Crop production index | 0.482 *** | <0.001 | |
Cereal Production index | 0.415 *** | <0.001 | |
Cocoa production | −0.211 * | 0.038 | |
Food Production Index | 0.484 *** | <0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibn Musah, A.-A.; Du, J.; Bilaliib Udimal, T.; Abubakari Sadick, M. The Nexus of Weather Extremes to Agriculture Production Indexes and the Future Risk in Ghana. Climate 2018, 6, 86. https://doi.org/10.3390/cli6040086
Ibn Musah A-A, Du J, Bilaliib Udimal T, Abubakari Sadick M. The Nexus of Weather Extremes to Agriculture Production Indexes and the Future Risk in Ghana. Climate. 2018; 6(4):86. https://doi.org/10.3390/cli6040086
Chicago/Turabian StyleIbn Musah, Abdul-Aziz, Jianguo Du, Thomas Bilaliib Udimal, and Mohammed Abubakari Sadick. 2018. "The Nexus of Weather Extremes to Agriculture Production Indexes and the Future Risk in Ghana" Climate 6, no. 4: 86. https://doi.org/10.3390/cli6040086
APA StyleIbn Musah, A. -A., Du, J., Bilaliib Udimal, T., & Abubakari Sadick, M. (2018). The Nexus of Weather Extremes to Agriculture Production Indexes and the Future Risk in Ghana. Climate, 6(4), 86. https://doi.org/10.3390/cli6040086