Selecting and Downscaling a Set of Climate Models for Projecting Climatic Change for Impact Assessment in the Upper Indus Basin (UIB)
Abstract
:1. Introduction
- To devise a procedure for the identification/filtering of a limited number of climate model runs that can represent the full spectrum of future climate as projected by the entire pool of climate models, in term of both means and extremes;
- To devise procedures/methodologies for evaluating the skills of climate models in simulating the annual climatic cycle of the recent past;
- To select suitable climate model runs using the devised methodologies, based on their skills in simulating past climate, as well as on their ability to represent specific parts of the full spectrum of climate model projections; and
- To downscale and/or bias correct the selected GCMs (or GCM-RCM chains, using the selected GCMs as boundary conditions) through appropriate methods.
2. Study Area and Data Used
2.1. Study Area
2.2. Data Used
2.2.1. GCM Outputs
2.2.2. Extremes Indices
2.2.3. Observed Data
2.2.4. RCM Outputs
3. Methods
3.1. Selection and Shortlisting of GCMs/RCMs
3.1.1. Shortlisting Based on Changes in the Means
- the Dry-Cold corner, represented by the 10th percentile ΔP as well as 10th percentile value of ΔT;
- the Dry-Warm corner, represented by the 10th percentile ΔP but the 90th percentile value of ΔT;
- the Wet-Cold corner, represented by the 90th percentile ΔP and the 10th percentile value of ΔT;
- the Wet-Warm corner, represented by the 90th percentile values for both ΔP as well as ΔT; and finally
- the median projected future climate, represented by the 50th percentile values of both ΔP and ΔT
3.1.2. Ranking Based on Changes in Climate Extremes
3.1.3. Ranking Based on Skill in Reproducing the Reference Climate
3.2. Downscaling and Bias Correction
4. Results
4.1. Selection of Climate Models
4.1.1. Shortlisting of Models: Changes in Climatic Means
4.1.2. Ranking Based on Changes in Climatic Extremes
4.1.3. Ranking Based on Skill in Reproducing the Reference Climate
4.1.4. Limitations of the Model Selection Procedure
4.2. Bias Correction and Downscaling of Future Climate Scenarios
4.3. Projected Changes in Temperature and Precipitation
4.4. Limitations of the Downscaling and Bias Correction Approach Adopted
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
- The data sets for changes in mean/extremes were acquired from “KNMI Climate Explorer”, web application to analysis climate data statistically. It is part of the WMO Regional Climate Centre at KNMI, Netherland;
- CORDEX-South Asia experiment, RCMs data, hosted at Centre for Climate Change Research (CCCR) at the Indian Institute of Tropical Meteorology (IITM).
Conflicts of Interest
References
- Biemans, H.; Speelman, L.H.; Ludwig, F.; Moors, E.J.; Wiltshire, A.J.; Kumar, P.; Gerten, D.; Kabat, P. Future water resources for food production in five South Asian river basins and potential for adaptation—A modeling study. Sci. Total Environ. 2013, 468, S117–S131. [Google Scholar] [CrossRef] [PubMed]
- Pierce, D.W.; Barnett, T.P.; Santer, B.D.; Gleckler, P.J. Selecting global climate models for regional climate change studies. Proc. Natl. Acad. Sci. USA 2009, 106, 8441–8446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, A.G.; Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Chang. 2012, 2, 587–595. [Google Scholar] [CrossRef]
- Mishra, V. Climatic uncertainty in Himalayan water towers. J. Geophys. Res. Atmos. 2015, 120, 2689–2705. [Google Scholar] [CrossRef] [Green Version]
- Lutz, A.F.; Immerzeel, W.W.; Kraaijenbrink, P.D.A.; Shrestha, A.B.; Bierkens, M.F.P. Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes. PLoS ONE 2016, 11, e0165630. [Google Scholar] [CrossRef] [PubMed]
- Palazzi, E.; Hardenberg, J.; von Provenzale, A. Precipitation in the Hindu-Kush Karakoram Himalaya: Observations and future scenarios. J. Geophys. Res. Atmos. 2013, 118, 85–100. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.J.; Koch, M. Correction and Informed Regionalization of Precipitation Data in a High Mountainous Region (Upper Indus Basin) and Its Effect on SWAT-Modelled Discharge. Water 2018, 10, 1557. [Google Scholar] [CrossRef]
- De-Souza, K.; Kituyi, E.; Harvey, B.; Leone, M.; Murali, K.S.; Ford, J.D. Vulnerability to climate change in three hot spots in Africa and Asia: Key issues for policy-relevant adaptation and resilience-building research. Reg. Environ. Chang. 2015, 15, 747–753. [Google Scholar] [CrossRef]
- Nepal, S.; Shrestha, A.B. Impact of climate change on the hydrological regime of the Indus, Ganges and Brahmaputra river basins: A review of the literature. Int. J. Water Resour. Dev. 2015, 31, 201–218. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Wake, C.P. Glaciochemical Investigations as a Tool for Determining the Spatial and Seasonal Variation of Snow Accumulation in the Central Karakoram, Northern Pakistan. Ann. Glaciol. 1989, 13, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Tahir, A.A.; Chevallier, P.; Arnaud, Y.; Ahmad, B. Snow cover dynamics and hydrological regime of the Hunza River basin, Karakoram Range, Northern Pakistan. Hydrol. Earth Syst. Sci. 2011, 15, 2275–2290. [Google Scholar] [CrossRef] [Green Version]
- Ali, K.F.; de Boer, D.H. Spatial patterns and variation of suspended sediment yield in the upper Indus River basin, northern Pakistan. J. Hydrol. 2007, 334, 368–387. [Google Scholar] [CrossRef]
- Archer, D. Contrasting hydrological regimes in the upper Indus Basin. J. Hydrol. 2003, 274, 198–210. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate Change Will Affect the Asian Water Towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Wijngaard, R.R.; Lutz, A.F.; Nepal, S.; Khanal, S.; Pradhananga, S.; Shrestha, A.B.; Immerzeel, W.W. Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins. PLoS ONE 2017, 12, e0190224. [Google Scholar] [CrossRef] [PubMed]
- Kilroy, G. A review of the biophysical impacts of climate change in three hotspot regions in Africa and Asia. Reg. Environ. Chang. 2015, 15, 771–782. [Google Scholar] [CrossRef] [Green Version]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Wayne, G.P. The Beginner’s Guide to Representative Concentration Pathways. Available online: https://www.skepticalscience.com/docs/RCP_Guide.pdf (accessed on 1 January 2018).
- Peters, G.P.; Andrew, R.M.; Boden, T.; Canadell, J.G.; Ciais, P.; Le Quéré, C.; Marland, G.; Raupach, M.R.; Wilson, C. The challenge to keep global warming below 2 °C. Nat. Clim. Chang. 2013, 3, 4–6. [Google Scholar] [CrossRef]
- Lutz, A.F.; ter Maat, H.W.; Biemans, H.; Shrestha, A.B.; Wester, P.; Immerzeel, W.W. Selecting representative climate models for climate change impact studies: An advanced envelope-based selection approach. Int. J. Climatol. 2016, 36, 3988–4005. [Google Scholar] [CrossRef]
- Mora, C.; Frazier, A.G.; Longman, R.J.; Dacks, R.S.; Walton, M.M.; Tong, E.J.; Sanchez, J.J.; Kaiser, L.R.; Stender, Y.O.; Anderson, J.M.; et al. The projected timing of climate departure from recent variability. Nature 2013, 502, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Sanford, T.; Frumhoff, P.C.; Luers, A.; Gulledge, J. The climate policy narrative for a dangerously warming world. Nat. Clim. Chang. 2014, 4, 164–166. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Peterson, T.C. Climate change indices. WMO Bull. 2005, 54, 83–86. [Google Scholar]
- Sillmann, J.; Kharin, V.V.; Zhang, X.; Zwiers, F.W.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos. 2013, 118, 1716–1733. [Google Scholar] [CrossRef] [Green Version]
- Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. APHRODITE: Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Bull. Am. Meteorol. Soc. 2012, 93, 1401–1415. [Google Scholar] [CrossRef]
- Palazzi, E.; Filippi, L.; von Hardenberg, J. Insights into elevation-dependent warming in the Tibetan Plateau-Himalayas from CMIP5 model simulations. Clim. Dyn. 2017, 48, 3991–4008. [Google Scholar] [CrossRef]
- Dahri, Z.H.; Ludwig, F.; Moors, E.; Ahmad, B.; Khan, A.; Kabat, P. An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin. Sci. Total Environ. 2016, 548, 289–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, H.; Hou, S.; Kaspari, S.; Mayewski, P.A. Influence of regional precipitation patterns on stable isotopes in ice cores from the central Himalayas. Cryosphere 2014, 8, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, K. Glacier Change, Concentration, and Elevation Effects in the Karakoram Himalaya, Upper Indus Basin. Mt. Res. Dev. 2011, 31, 188–200. [Google Scholar] [CrossRef]
- Winiger, M.; Gumpert, M.; Yamout, H. Karakorum-Hindukush-western Himalaya: Assessing high-altitude water resources. Hydrol. Process. 2005, 19, 2329–2338. [Google Scholar] [CrossRef]
- Weiers, S. Zur Klimatologie des NW-Karakorum und Angrenzender Gebiete. Statistische Analysen Unter Einbeziehung von Wettersatellitenbildern und Eines Geographischen Informationssystems (GIS); Kommission bei F. Dümmler: Bonn, Germany, 1995. [Google Scholar]
- Dhar, O.N.; Rakhecha, P.R. The Effect of Elevation on Monsoon Rainfall Distribution in the Central Himalayas. In Monsoon Dynamics; Lighthill, M.J., Pearce, R.P., Eds.; Cambridge University Press: New York, NY, USA, 1981; pp. 253–260. [Google Scholar]
- Wilby, R.L.; Dawson, C.W.; Murphy, C.; O’Connor, P.; Hawkins, E. The Statistical DownScaling Model-Decision Centric (SDSM-DC): Conceptual basis and applications. Clim. Res. 2014, 61, 259–276. [Google Scholar] [CrossRef] [Green Version]
- Pielke, R.A.; Wilby, R.L. Regional climate downscaling: What’s the point? Eos Trans. Am. Geophys. Union 2012, 93, 52–53. [Google Scholar] [CrossRef]
- Stakhiv, E.Z. Pragmatic Approaches for Water Management Under Climate Change Uncertainty1. J. Am. Water Resour. Assoc. 2011, 47, 1183–1196. [Google Scholar] [CrossRef]
- Wilby, R.L.; Dessai, S. Robust adaptation to climate change. Weather 2010, 65, 180–185. [Google Scholar] [CrossRef] [Green Version]
- Sanjay, J.; Krishnan, R.; Shrestha, A.B.; Rajbhandari, R.; Ren, G.-Y. Downscaled climate change projections for the Hindu Kush Himalayan region using CORDEX South Asia regional climate models. Adv. Clim. Chang. Res. 2017, 8, 185–198. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos. 2013, 118, 2473–2493. [Google Scholar] [CrossRef] [Green Version]
- Perkins, S.E.; Pitman, A.J.; Holbrook, N.J.; McAneney, J. Evaluation of the AR4 Climate Models’ Simulated Daily Maximum Temperature, Minimum Temperature, and Precipitation over Australia Using Probability Density Functions. J. Clim. 2007, 20, 4356–4376. [Google Scholar] [CrossRef]
- Sánchez, E.; Romera, R.; Gaertner, M.A.; Gallardo, C.; Castro, M. A weighting proposal for an ensemble of regional climate models over Europe driven by 1961–2000 ERA40 based on monthly precipitation probability density functions. Atmos. Sci. Lett. 2009, 10, 241–248. [Google Scholar] [CrossRef]
- Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 2012, 456, 12–29. [Google Scholar] [CrossRef]
- Knutti, R.; Masson, D.; Gettelman, A. Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett. 2013, 40, 1194–1199. [Google Scholar] [CrossRef]
- Jun, M.; Knutti, R.; Nychka, D.W. Local eigenvalue analysis of CMIP3 climate model errors. Tellus A Dyn. Meteorol. Oceanogr. 2008, 60, 992–1000. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Coppola, E.; Solmon, F.; Mariotti, L.; Sylla, M.B.; Bi, X.; Elguindi, N.; Diro, G.T.; Nair, V.; Giuliani, G.; et al. RegCM4: Model description and preliminary tests over multiple CORDEX domains. Clim. Res. 2012, 52, 7–29. [Google Scholar] [CrossRef]
- Samuelsson, P.; Jones, C.G.; Will´En, U.; Ullerstig, A.; Gollvik, S.; Hansson, U.; Jansson, E.; Kjellstro, M.C.; Nikulin, G.; Wyser, K. The Rossby Centre Regional Climate model RCA3: Model description and performance. Tellus A Dyn. Meteorol. Oceanogr. 2011, 63, 4–23. [Google Scholar] [CrossRef]
- Wilby, R.L.; Hay, L.E.; Gutowski, W.J.; Arritt, R.W.; Takle, E.S.; Pan, Z.T.; Leavesley, G.H.; Clark, M.P. Hydrological responses to dynamically and statistically downscaled climate model output. Geophys. Res. Lett. 2000, 27, 1199–1202. [Google Scholar] [CrossRef] [Green Version]
- Wood, A.W.; Leung, L.R.; Sridhar, V.; Lettenmaier, D.P. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim. Chang. 2004, 62, 189–216. [Google Scholar] [CrossRef]
- Randall, D.A.; Wood, R.A.; Bony, S.; Colman, R.; Fichefet, T.; Fyfe, J.; Kattsov, V.; Pitman, A.; Shukla, J.; Srinivasan, J.; et al. Climate Models and Their Evaluation. In Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Piani, C.; Weedon, G.P.; Best, M.; Gomes, S.M.; Viterbo, P.; Hagemann, S.; Haerter, J.O. Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J. Hydrol. 2010, 395, 199–215. [Google Scholar] [CrossRef]
- Hagemann, S.; Chen, C.; Haerter, J.O.; Heinke, J.; Gerten, D.; Piani, C. Impact of a sta25 tistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. J. Hydrometeorol. 2016, 12, 556–578. [Google Scholar] [CrossRef]
- Chen, C.; Haerter, J.O.; Hagemann, S.; Piani, C. On the contribution of statistical bias correction to the uncertainty in the projected hydrological cycle, Geophys. Res. Lett. 2011, 38, L20403. [Google Scholar] [CrossRef]
- Rojas, R.; Feyen, L.; Dosio, A.; Bavera, D. Improving pan-European hydrological simulation of extreme events through statistical bias correction of RCM-driven climate simulations. Hydrol. Earth Syst. Sci. 2011, 15, 2599–2620. [Google Scholar] [CrossRef] [Green Version]
- Haddeland, I.; Heinke, J.; Voß, F.; Eisner, S.; Chen, C.; Hagemann, S.; Ludwig, F. Effects of climate model radiation, humidity and wind estimates on hydrological simulations. Hydrol. Earth Syst. Sci. 2012, 16, 305–318. [Google Scholar] [CrossRef] [Green Version]
- Trzaska, S.; Schnarr, E.; A Review of Downscaling Methods for Climate Change Projections. United States Agency for International Development (USAID) under the African and Latin American Resilience to Climate Change (ARCC) Project by Tetra Tech ARD, Burlington, Vermont, USA. 2014, pp. 1–42. Available online: http://www.ciesin.org/documents/Downscaling_CLEARED_000.pdf (accessed on 1 January 2018).
- Ehret, U.; Zehe, E.; Wulfmeyer, V.; Warrach-Sagi, K.; Liebert, J. “HESS Opinions” Should we apply bias correction to global and regional climate model data? Hydrol. Earth Syst. Sci. 2012, 16, 3391–3404. [Google Scholar] [CrossRef]
- Vannitsem, S. Bias correction and post-processing under climate change. Nonlinear Process. Geophys. 2011, 18, 911–924. [Google Scholar] [CrossRef] [Green Version]
- Maraun, D.; Shepherd, T.G.; Widmann, M.; Zappa, G.; Walton, D.; Gutiérrez, J.M.; Hagemann, S.; Richter, I.; Soares, P.M.; Hall, A.; Mearns, L.O. Towards process-informed bias correction of climate change simulations. Nat. Clim. Chang. 2017, 7, 764. [Google Scholar] [CrossRef]
- Maraun, D. Bias correcting climate change simulations-a critical review. Curr. Clim. Chang. Rep. 2016, 2, 211–220. [Google Scholar] [CrossRef]
RCP | Radiative Forcing | CO2 Equiv. (ppm) | Temperature Increase (°C) | Pathway | CO2 Growth Rate (%) |
---|---|---|---|---|---|
RCP8.5 | 8.5 Wm−2 in 2100 | 1370 | 4.9 | Rising | ≈2.5 |
RCP6.0 | 6 Wm−2 post 2100 | 850 | 3.0 | Stabilization without overshoot | ≈1 |
RCP4.5 | 4.5 Wm−2 post 2100 | 650 | 2.4 | Stabilization without overshoot | ≈1.5 |
RCP2.6 (RCP3PD) | 3 Wm−2 before 2100, declining to 2.6 Wm−2 by 2100 | 490 | 1.5 | Peak and decline | ≈1.6 |
Source: [18,19,20] |
Climate Variable | ETCCDI Index | Description of the ETCCDI Index |
---|---|---|
Precipitation | R99pTOT | Precipitation due to extremely wet days (>99th percentile) |
CDD | Consecutive dry days: maximum length of dry spell (P < 1 mm) | |
Air Temperature | WSDI | Warm spell duration index: count of days in a span of at least 6 days where TX > 90th percentile |
CSDI | Cold spell duration index: count of days in a span of at least 6 days where TN < 10th percentile |
Projection | Model | Δ R99pTOT (%) | Δ CDD (%) | Δ WSDI (%) | Δ CSDI (%) | ΔP (%) (%) | ΔT (°C) |
---|---|---|---|---|---|---|---|
RCP 4.5 | |||||||
Wet-Warm | CanESM2 | 29.0 | −7.2 | 814 | −96.2 | 13.0 | 3.6 |
HadGEM2-ES | 28.6 | 12.5 | 1002 | −98.7 | 3.7 | 3.6 | |
MIROC5 | 76.4 | −8.8 | 938 | −96.3 | 12.1 | 4.0 | |
MIROC-ESM-CHEM | 19.8 | 2.2 | 611 | −89.9 | 6.7 | 3.8 | |
Wet-Cold | bcc-csm1-1-m | 45.3 | −1.0 | 298 | −87.6 | 5.0 | 2.2 |
GFDL-ESM2M | 42.4 | −4.9 | 202 | −61.6 | 4.9 | 1.8 | |
IPSL-CM5B-LR | 32.2 | −11.7 | 293 | −81.6 | 5.2 | 2.0 | |
MRI-CGCM3 | 59.6 | −7.5 | 471 | −89.8 | 9.0 | 2.2 | |
Dry-Warm | ACCESS1-0 | 46.4 | 0.9 | 656 | −92.1 | 3.47 | 3.5 |
CMCC-CMS | 61.9 | 7.1 | 454 | −89.8 | −3.35 | 3.6 | |
IPSL-CM5A-MR | 54.5 | 12.0 | 604 | −90.2 | 1.28 | 3.9 | |
MIROC-ESM | 26.8 | 1.8 | 718 | −97.0 | 2.41 | 4.2 | |
Dry-Cold | CCSM4 | 4.8 | −0.8 | 323 | −92.0 | 4.54 | 2.4 |
GFDL-ESM2G | 16.2 | −0.1 | 373 | −70.9 | 2.14 | 2.2 | |
inmcm4 | 2.0 | 4.3 | 216 | −48.9 | −5.29 | 4.2 | |
MPI-ESM-LR | 42.3 | 17.7 | 406 | −89.1 | −5.76 | 2.8 | |
RCP 8.5 | |||||||
Wet-Warm | CanESM2 | 101.7 | −12.3 | 1181 | −97.3 | 18.5 | 6.7 |
GFDL-CM3 | 9.7 | −5.0 | 1426 | −100.0 | 9.0 | 8.6 | |
MIROC5 | 257.2 | −13.4 | 1640 | −98.5 | 35.1 | 6.2 | |
MIROC-ESM-CHEM | 28.5 | 14.5 | 1314 | −100.0 | 6.6 | 7.6 | |
Wet-Cold | GFDL-ESM2G | 95.9 | −1.0 | 668 | −99.0 | 12.6 | 4.7 |
GFDL-ESM2M | 72.9 | −3.1 | 1696 | −95.5 | 13.5 | 4.2 | |
CNRM-CM5 | 68.6 | −3.5 | 638 | −96.1 | 14.1 | 4.1 | |
MRI-CGCM3 | 195.5 | −12.6 | 1309 | −98.4 | 24.1 | 4.6 | |
Dry-Warm | IPSL-CM5A-LR | 94.5 | 23.3 | 1022 | −97.6 | −12.01 | 7.0 |
IPSL-CM5A-MR | 194.6 | 9.3 | 1358 | −99.1 | −2.95 | 7.1 | |
MIROC-ESM | 9.5 | 4.4 | 1521 | −100.0 | 0.06 | 7.3 | |
CMCC-CMS | 143.9 | 18.8 | 985 | −99.9 | −2.26 | 6.0 | |
Dry-Cold | MPI-ESM-LR | 136.0 | 29.1 | 1067 | −98.2 | −4.49 | 5.2 |
CCSM4 | 48.3 | 7.0 | 871 | −99.5 | 0.86 | 4.6 | |
inmcm4 | 61.3 | 4.7 | 849 | −85.9 | 1.48 | 4.1 | |
NorESM1-M | 107.1 | 3.5 | 1010 | −98.6 | 6.01 | 4.6 |
Projection | Climate Model | a | b | c | d | e | f | g | h | Final Skill Score (a*b*c*d*e*f*g*h*10) | Final Rank |
---|---|---|---|---|---|---|---|---|---|---|---|
Weighted Rank Δ R99pTOT (%) | Weighted Rank Δ CDD (%) | Weighted Rank Δ WSDI (%) | Weighted Rank Δ CSDI (%) | Weighted Rank Δ T (°C) | Weighted Rank Δ P (%) | Skill Score for Temperature (SkTmp) | Skill Score for Precipitation (SkPerc) | ||||
Wet-Warm | CanESM2 | 0.38 | 0.85 | 0.97 | 0.63 | 0.79 | 0.36 | 0.57 | 2 | ||
HadGEM2-ES | 0.37 | 1.00 | 0.94 | 0.39 | 0.73 | 0.29 | 0.29 | 3 | |||
MIROC5 | 1.00 | 0.94 | 0.95 | 0.72 | 0.81 | 0.38 | 1.93 | 1 | |||
MIROC-ESM-CHEM | 0.26 | 0.61 | 1.00 | 0.71 | 0.71 | 0.25 | 0.20 | 4 | |||
Wet-Cold | bcc-csm1-1-m | 0.74 | 0.93 | 0.77 | 0.53 | 0.71 | 0.40 | 0.80 | 3 | ||
GFDL-ESM2M | 0.71 | 0.75 | 0.97 | 0.52 | 0.79 | 0.41 | 0.88 | 2 | |||
IPSL-CM5B-LR | 0.54 | 1.00 | 0.94 | 0.55 | 0.71 | 0.14 | 0.28 | 4 | |||
MRI-CGCM3 | 1.00 | 0.90 | 0.82 | 0.96 | 0.78 | 0.35 | 1.91 | 1 | |||
Dry-Warm | ACCESS1-0 | 0.07 | 0.91 | 0.93 | 0.78 | 0.77 | 0.35 | 0.14 | 2 | ||
CMCC-CMS | 0.59 | 0.75 | 0.97 | 0.81 | 0.70 | 0.31 | 0.75 | 4 | |||
IPSL-CM5A-MR | 1.00 | 1.00 | 0.97 | 0.59 | 0.79 | 0.33 | 1.52 | 1 | |||
MIROC-ESM | 0.15 | 0.81 | 0.87 | 0.92 | 0.74 | 0.22 | 0.16 | 3 | |||
Dry-Cold | CCSM4 | 0.05 | 1.00 | 0.64 | 0.34 | 0.79 | 0.26 | 0.02 | 3 | ||
GFDL-ESM2G | 0.00 | 0.77 | 0.58 | 0.56 | 0.75 | 0.32 | 0.00 | 4 | |||
inmcm4 | 0.24 | 0.53 | 0.89 | 0.76 | 0.66 | 0.35 | 0.20 | 2 | |||
MPI-ESM-LR | 0.98 | 0.97 | 0.75 | 0.72 | 0.75 | 0.32 | 1.23 | 1 | |||
Mean | NorESM1-M | 0.94 | 0.58 | 0.79 | 0.43 | 1.83 | 1 | ||||
bcc-csm1-1-m | 0.76 | 0.70 | 0.76 | 0.44 | 1.76 | 2 | |||||
GFDL-ESM2G | 0.87 | 0.85 | 0.75 | 0.32 | 1.77 | 2 | |||||
CMCC-CMS | 0.56 | 0.20 | 0.70 | 0.31 | 0.24 | 4 |
Projection | Climate Model | a | b | c | d | e | f | g | h | Final Skill Score (a*b*c*d*e*f*g*h*10) | Final Rank |
---|---|---|---|---|---|---|---|---|---|---|---|
Weighted Rank Δ R99pTOT (%) | Weighted Rank Δ CDD (%) | Weighted Rank Δ WSDI (%) | Weighted Rank Δ CSDI (%) | Weighted Rank Δ T (°C) | Weighted Rank Δ P (%) | Skill Score for Temperature (SkTmp) | Skill Score for Precipitation (SkPerc) | ||||
Wet-Warm | CanESM2 | 0.40 | 0.72 | 0.93 | 1.00 | 0.79 | 0.36 | 0.76 | 1 | ||
GFDL-CM3 | 0.04 | 0.87 | 0.80 | 0.48 | 0.71 | 0.39 | 0.04 | 3 | |||
MIROC5 | 1.00 | 1.00 | 0.86 | 0.10 | 0.81 | 0.38 | 0.27 | 2 | |||
MIROC-ESM-CHEM | 0.11 | 0.80 | 0.94 | 0.36 | 0.71 | 0.25 | 0.05 | 3 | |||
Wet-Cold | GFDL-ESM2G | 0.49 | 0.97 | 0.89 | 0.68 | 0.75 | 0.32 | 0.69 | 4 | ||
GFDL-ESM2M | 0.50 | 1.00 | 1.00 | 0.73 | 0.79 | 0.34 | 0.97 | 2 | |||
CNRM-CM5 | 0.35 | 1.00 | 0.98 | 0.76 | 0.81 | 0.41 | 0.87 | 3 | |||
MRI-CGCM3 | 1.00 | 0.98 | 0.90 | 0.70 | 0.78 | 0.35 | 1.65 | 1 | |||
Dry-Warm | IPSL-CM5A-LR | 1.00 | 0.67 | 0.98 | 0.41 | 0.79 | 0.33 | 0.71 | 2 | ||
IPSL-CM5A-MR | 0.40 | 0.89 | 1.00 | 0.84 | 0.78 | 0.34 | 0.79 | 1 | |||
MIROC-ESM | 0.19 | 1.00 | 0.98 | 0.60 | 0.74 | 0.22 | 0.18 | 4 | |||
CMCC-CMS | 0.81 | 0.65 | 0.84 | 0.78 | 0.70 | 0.31 | 0.74 | 2 | |||
Dry-Cold | MPI-ESM-LR | 1.00 | 0.86 | 0.73 | 0.96 | 0.75 | 0.31 | 1.42 | 1 | ||
NorESM1-M | 0.12 | 0.85 | 0.64 | 0.01 | 0.79 | 0.50 | 0.00 | 2 | |||
CCSM4 | 0.24 | 0.84 | 0.64 | 0.48 | 0.79 | 0.26 | 0.13 | 4 | |||
inmcm4 | 0.16 | 1.00 | 0.57 | 0.42 | 0.66 | 0.34 | 0.09 | 2 | |||
Mean | NorESM1-ME | 0.93 | 0.91 | 0.79 | 0.50 | 3.34 | 1 | ||||
GFDL-ESM2G | 0.95 | 0.09 | 0.75 | 0.32 | 0.21 | 2 | |||||
CCSM4_r1i1p1 | 0.93 | 0.13 | 0.79 | 0.26 | 0.25 | 2 | |||||
bcc-csm1-1 | 0.92 | 0.86 | 0.77 | 0.28 | 1.70 | 4 |
Nr | Scenario | Experiment | Driving AOGCM | RCM | RCM Description | |
---|---|---|---|---|---|---|
Name | Short Form | |||||
1 | Wet-Warm | CanESM2_ RegCM4-4 | CAN | CCCma-CanESM2 (1st) | RegCM4 | Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climatic Model version 4 (RegCM4; [46]) |
2 | Wet-Cold | GFDL-ESM2M_ RCA4 | GFDL | NOAA-GFDL-GFDL-ESM2M (2nd) | RCA4 | Rossby Centre regional atmospheric model version 4 (RCA4; [47]) |
3 | Mean | NorESM1-M_ RCA4 | NOR | Nor-ESM1-M (1st) | ||
4 | Dry-Cold | MPI-ESM-LR_ RCA4 | MPI | MPI-ESM-LR (1st) | ||
5 | Dry-Warm | IPSL-CM5A-MR_ RCA4 | IPSL | IPSL-CM5A-MR (1st) |
Model | Duration | Precipitation (mm) | Temperature (°C) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RCP 4.5 Values and (change %) | RCP 8.5 Values and (change %) | RCP 4.5 Values and change | RCP 8.5 Values and change | ||||||||||||
PCP (mm) (Av-An) | 90th percentile (mm) | Probability-Wet Days (days) | Intensity-Wet Days (mm) | PCP (mm) (Av-An) | 90th percentile (mm) | Probability-Wet Days (days) | Intensity-Wet Days (mm) | TMP (C°) (mean) | 90th Percentile (C°) | 10th Percentile (C°) | TMP (C°) (mean) | 90th Percentile (C°) | 10th Percentile (C°) | ||
IPSL-CM5A-MR_ RCA4 | 41–70 | 539 (2.9%) | 19.7 (36.8%) | 107.4 (−7.8%) | 5.0 (13.2%) | 532 (1.7%) | 19.5 (35.4%) | 106.9 (−8.3%) | 4.9 (11.8%) | 5.52 (4.12) | 17.6 (3.85) | −6.1 (4.93) | 6.3 (4.91) | 18.4 (4.66) | −5.3 (5.70) |
71–00 | 557 (6.2%) | 20.7 (42.1%) | 107.4 (−7.8%) | 5.2 (17%) | 502 (−4.2%) | 20.5 (18%) | 94.4 (−1.9%) | 5.4 (22%) | 7.7 (6.33) | 19.1 (5.34) | −3.6 (7.44) | 10.4 (9.0) | 21.9 (8.17) | −1.2 (9.82) | |
MPI-ESM-LR_ RCA4 | 41–70 | 536 (2.3%) | 18.6 (29.1%) | 110.9 (−4.8%) | 4.6 (5.2%) | 535 (2.0%) | 18.6 (29.1%) | 108.5 (−6.9%) | 4.7 (7.3%) | 4.0 (2.64) | 16.2 (2.44) | −8.1 (2.85) | 4.5 (3.08) | 16.7 (2.99) | −7.7 (3.27) |
71–00 | 537 (2.4%) | 18.7 (41.1%) | 109.1 (−6.4%) | 4.7 (7.7%) | 559 (6.7%) | 20.3 (41.1%) | 106.1 (−8.9%) | 5.1 (15.5%) | 5.5 (4.11) | 17.4 (3.67) | −6.5 (4.48) | 7.3 (5.86) | 19.2 (5.51) | −4.9 (6.09) | |
NorESM1-M_ RCA4 | 41–70 | 536 (2.4%) | 20.3 (46.1%) | 109.0 (−6.4%) | 4.9 (10.7%) | 555 (6.0%) | 21.1 (46.1%) | 111.3 (−4.5%) | 4.9 (12.3%) | 3.8 (2.36) | 16.8 (3.03) | −8.0 (3.02) | 4.3 (2.92) | 17.9 (4.2) | −7.5 (3.53) |
71–00 | 537 (2.5%) | 20.3 (54.4%) | 109.0 (−6.4%) | 4.9 (12%) | 548 (4.6%) | 22.2 (54.4%) | 107.0 (−8.2%) | 5.2 (17.5%) | 4.9 (3.50) | 17.7 (3.99) | −6.76 (4.23) | 6.6 (5.23) | 19.9 (6.16) | −5.1 (5.93) | |
GFDL-ESM2M_ RCA4 | 41–70 | 540 (3.1%) | 17.9 (42.6%) | 111.9 (−4%) | 4.7 (7%) | 578 (10.4%) | 20.5 (42.6%) | 114.9 (−1.4%) | 4.9 (11.1%) | 3.8 (2.41) | 16.0 (2.31) | −7.8 (3.22) | 4.1 (2.73) | 16.2 (2.43) | −7.0 (4.02) |
71–00 | 536 (2.2%) | 19.4 (52.8%) | 112.8 (−3.2%) | 4.7 (5.7%) | 612 (16.8%) | 22.0 (52.8%) | 114.7 (−1.5%) | 5.2 (18.6%) | 5.1 (3.70) | 17.14 (3.42) | −6.4 (4.57) | 6.6 (5.22) | 18.8 (5.03) | −4.8 (6.17) | |
CanESM2_ RegCM4-4 | 41–70 | 560 (6.9%) | 21.1 (43.8%) | 119.6 (2.7%) | 4.7 (6.4%) | 557 (6.3%) | 20.7 (43.8%) | 115.6 (−0.8%) | 4.6 (5.5%) | 4.5 (3.14) | 16.8 (3.08) | −7.8 (3.20) | 4.9 (3.51) | 16.9 (3.16) | −7.2 (3.75) |
71–00 | 607 (15.9%) | 23.2 (51.6%) | 117.2 (0.6%) | 5.05 (14.8%) | 590 (12.5%) | 21.8 (51.6%) | 114.9 (−1.3%) | 5.0 (13.2%) | 5.6 (4.24) | 17.5 (3.8) | −6.5 (4.47) | 7.4 (6.03) | 20.0 (6.24) | −5.1 (5.89) | |
Observed | 1976–2005 | 524 | 14.4 | 116.5 | 4.4 | 524.1 | 14.4 | 116.5 | 4.4 | 1.4 | 13.7 | −11.0 | 1.4 | 13.7 | −11.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.J.; Koch, M. Selecting and Downscaling a Set of Climate Models for Projecting Climatic Change for Impact Assessment in the Upper Indus Basin (UIB). Climate 2018, 6, 89. https://doi.org/10.3390/cli6040089
Khan AJ, Koch M. Selecting and Downscaling a Set of Climate Models for Projecting Climatic Change for Impact Assessment in the Upper Indus Basin (UIB). Climate. 2018; 6(4):89. https://doi.org/10.3390/cli6040089
Chicago/Turabian StyleKhan, Asim Jahangir, and Manfred Koch. 2018. "Selecting and Downscaling a Set of Climate Models for Projecting Climatic Change for Impact Assessment in the Upper Indus Basin (UIB)" Climate 6, no. 4: 89. https://doi.org/10.3390/cli6040089
APA StyleKhan, A. J., & Koch, M. (2018). Selecting and Downscaling a Set of Climate Models for Projecting Climatic Change for Impact Assessment in the Upper Indus Basin (UIB). Climate, 6(4), 89. https://doi.org/10.3390/cli6040089