Impact of the Strong Downwelling (Upwelling) on Small Pelagic Fish Production during the 2016 (2019) Negative (Positive) Indian Ocean Dipole Events in the Eastern Indian Ocean off Java
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Temperature, Salinity, and Chl-a (In Situ Observations)
3.2. IOD and Interannual Variability of Pelagic Fishery Environment
3.3. Pelagic Fish Catch Variability During 2016 nIOD and 2019 pIOD Phases
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Saji, N.H.; Yamagata, T. Structure of SST and surface wind variability during Indian Ocean dipole mode events: COADS observations. J. Clim. 2003, 16, 2735–2751. [Google Scholar] [CrossRef]
- Saji, N.H. The Indian Ocean Dipole. In Oxford Research Encyclopedia of Climate Science; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Abram, N.J.; Wright, N.M.; Ellis, B.; Dixon, B.C.; Wurtzel, J.B.; England, M.H.; Ummenhofer, C.C.; Philibosian, B.; Cahyarini, S.Y.; Yu, T.L.; et al. Coupling of Indo-Pacific climate variability over the last millennium. Nature 2020, 579, 385–392. [Google Scholar] [CrossRef]
- Cai, W.; Yang, K.; Wu, L.; Huang, G.; Santoso, A.; Benjamin, N.; Wang, G.; Yamagata, T. Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. Nat. Clim. Chang. 2020, 11, 1–6. [Google Scholar]
- Cai, W.; Zheng, X.T.; Weller, E.; Collins, M.; Cowan, T.; Lengaigne, M.; Yu, W.; Yamagata, T. Projected response of the Indian Ocean Dipole to greenhouse warming. Nat. Geosci. 2013, 6, 999–1007. [Google Scholar] [CrossRef]
- Ashok, K.; Guan, Z.; Yamagata, T. Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys. Res. Lett. 2001, 28, 4499–4502. [Google Scholar] [CrossRef] [Green Version]
- Hashizume, M.; Chaves, L.F.; Minakawa, N. Indian Ocean Dipole drives malaria resurgence in East African highlands. Sci. Rep. 2012, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Chaves, L.F.; Satake, A.; Hashizume, M.; Minakawa, N. Indian Ocean dipole and rainfall drive a Moran effect in East Africa malaria transmission. J. Infect. Dis. 2012, 205, 1885–1891. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Cowan, T.; Raupach, M. Positive Indian Ocean Dipole events precondition southeast Australia bushfires. Geophys. Res. Lett. 2009, 36, 1–6. [Google Scholar] [CrossRef]
- Manatsa, D.; Chingombe, W.; Matarira, C.H. The impact of the positive Indian Ocean dipole on Zimbabwe droughts. Int. J. Clim. 2008, 28, 2011–2029. [Google Scholar] [CrossRef]
- Vinayachandran, P.N.; Iizuka, S.; Yamagata, T. Indian Ocean dipole mode events in an ocean general circulation model. Deep Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 1573–1596. [Google Scholar] [CrossRef]
- Iskandar, I.; Rao, S.A.; Tozuka, T. Chlorophyll-a bloom along the southern coasts of Java and Sumatra during 2006. Int. J. Remote Sens. 2009, 30, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Sari, Q.W.; Utari, P.A.; Setiabudidaya, D.; Yustian, I.; Siswanto, E.; Iskandar, I. Surface chlorophyll-a variations in the Southeastern Tropical Indian Ocean during various types of the positive Indian Ocean Dipole events. Int. J. Remote Sens. 2020, 41, 171–184. [Google Scholar] [CrossRef]
- Mashita, M.; Lumban-Gaol, J. Variability of sea surface temperature (SST) and chlorophyll-a (Chl-a) Concentrations in the Eastern Indian Ocean during the Period 2002–2017. Int. J. Remote Sens Earth Sci. 2019, 16, 55–62. [Google Scholar] [CrossRef]
- Iskandar, I.; Lestari, D.O.; Utari, P.A.; Khakim, M.Y.N.; Poerwono, P.; Setiabudidaya, D. Evolution and impact of the 2016 negative Indian Ocean Dipole. J. Phys. Conf. Ser. 2018, 985, 012017. [Google Scholar] [CrossRef] [Green Version]
- Sartimbul, A.; Nakata, H.; Rohadi, E.; Yusuf, B.; Kadarisman, H.P. Variations in chlorophyll-a concentration and the impact on Sardinella lemuru catches in Bali Strait, Indonesia. Prog. Oceanogr. 2010, 87, 168–174. [Google Scholar] [CrossRef]
- Lumban-Gaol, J.; Leben, R.R.; Vignudelli, S.; Mahapatra, K.; Okada, Y.; Nababan, B.; Mei-Ling, M.; Amri, K.; Arhatin, R.E.; Syahdan, M. Variability of satellite-derived sea surface height anomaly, and its relationship with Bigeye tuna (Thunnus obesus) catch in the Eastern Indian Ocean. Eur. J. Remote Sens. 2015, 48, 465–477. [Google Scholar] [CrossRef]
- Syamsuddin, M.; Saitoh, S.I.; Hirawake, T.; Syamsudin, F.; Zainuddin, M. Interannual variation of bigeye tuna (Thunnus obesus) hotspots in the eastern Indian Ocean off Java. Int. J. Remote Sens. 2016, 37, 2087–2100. [Google Scholar] [CrossRef]
- Lu, B.; Ren, H.L. What caused the extreme Indian Ocean Dipole event in 2019? Geophys. Res. Lett. 2020. [Google Scholar] [CrossRef]
- Lu, B.; Ren, H.L.; Scaife, A.A.; Wu, J.; Dunstone, N.; Smith, D.; Wan, J.; Eade, R.; MacLachlan, C.; Gordon, M. An extreme negative Indian Ocean Dipole event in 2016: Dynamics and predictability. Clim. Dyn. 2018, 51, 89–100. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration (NASA). Earth Data Open Access for Sciences. Available online: https://worldview.earthdata.nasa.gov/?v=-64.24903328066966,-54.16368159935122,144.66899950621558,45.39881840064878&l=MODIS_Aqua_Chlorophyll_A (accessed on 1 November 2020).
- NASA Goddard Space Flight Center; Ocean Ecology Laboratory; Ocean Biology Processing Group. Moderate-Resolution Imaging Spectroradiometer (MODIS) Aqua CHL-a Data; NASA OB.DAAC. Maintained by NASA Ocean Biology Distibuted Active Archive Center (OB.DAAC), Goddard Space Flight Center: Greenbelt, MD, USA. Available online: https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Monthly/9km/chlor_a/; https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Monthly/4km/sst/; (accessed on 1 November 2020).
- Thomson, R.E.; Emery, W.J. Data Analysis Methods in Physical Oceanography, 1st ed.; Elsevier: New York, NY, USA, 1998; pp. 371–511. [Google Scholar]
- NOAA Physical Sciences Laboratory. Available online: https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/index.html (accessed on 1 November 2020).
- Asia-Pacific Data Research-Center (APDRC). HYCOM + NCODA Global 1/12° GOFS 3.1 41-Layer Analysis. Available online: http://apdrc.soest.hawaii.edu/datadoc/hycom_global_ana_gofs31v.php (accessed on 25 December 2020).
- Susanto, R.; Marra, J.O.H.N. Chlorophyll a variability. Oceanography 2005, 18, 124–127. [Google Scholar] [CrossRef]
- Wyrtki, K. The upwelling in the region between Java and Australia during the south-east monsoon. Mar. Freshw. Res. 1962, 13, 217–225. [Google Scholar] [CrossRef]
- Kuswardani, R.T.D.; Qiao, F. Influence of the Indonesian Throughflow on the upwelling off the east coast of South Java. Chin. Sci. Bull. 2014, 59, 4516–4523. [Google Scholar] [CrossRef]
- Varela, R.; Santos, F.; Gómez-Gesteira, M.; Álvarez, I.; Costoya, X.; Días, J.M. Influence of coastal upwelling on SST trends along the south coast of Java. PLoS ONE 2016, 11, e0162122. [Google Scholar] [CrossRef] [Green Version]
- Siswanto, E.; Horii, T.; Iskandar, I.; Gaol, J.L.; Setiawan, R.Y.; Susanto, R.D. Impacts of climate changes on the phytoplankton biomass of the Indonesian Maritime Continent. J. Mar. Syst. 2020, 212, 103451. [Google Scholar] [CrossRef]
- Matsuyama, M.; Senjyu, T.; Natih, N.M.N. Oceanographic conditions in Pelabuhanratu Bay, West Java. La Mer 1996, 34, 283–291. [Google Scholar]
- Matsuura, H.; Sugimoto, T.; Nakai, M.; Tsuji, S. Oceanographic conditions near the spawning ground of southern bluefin tuna; northeastern Indian Ocean. J. Oceanogr. 1997, 53, 421–434. [Google Scholar]
- Pertami, N.D.; Rahardjo, M.F.; Damar, A.; Nurjaya, I.W. Food and feeding habit of Bali Sardinella, Sardinella lemuru Bleeker, 1853 in Bali Strait waters. J. Iktiologi. Indones. 2019, 19, 143–155. [Google Scholar] [CrossRef]
- Platt, T.; Fuentes-Yaco, C.; Frank, K.T. Spring algal bloom and larval fish survival. Nature 2003, 423, 398–399. [Google Scholar] [CrossRef]
- Beaugrand, G.; Brander, K.M.; Lindley, J.A.; Souissi, S.; Reid, P.C. Plankton effect on cod recruitment in the North Sea. Nature 2003, 426, 661–666. [Google Scholar] [CrossRef]
- Ferreira, A.S.A.; Stige, L.C.; Neuheimer, A.B.; Bogstad, B.; Yaragina, N.; Prokopchuk, I.; Durant, J.M. Match–mismatch dynamics in the Norwegian–Barents Sea system. Mar. Ecol. Prog. Ser. 2020, 1–14. [Google Scholar] [CrossRef]
- Brosset, P.; Smith, A.D.; Plourde, S.; Castonguay, M.; Lehoux, C.; Beveren, E.V. A fine-scale multi-step approach to understand fish recruitment variability. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Munch, S.B.; Giron-Nava, A.; Sugihara, G. Nonlinear dynamics and noise in fisheries recruitment: A global meta-analysis. Fish Fish. 2018, 19, 964–973. [Google Scholar] [CrossRef]
- Hjort, J. Fluctuations in the great fisheries of northern Europe viewed in the light of biological research. Rapp. P. V. Réun. 1914, 607, 20. [Google Scholar]
- Dahl, R.E.; Oglend, A. Fish price volatility. Mar. Resour. Econ. 2014, 29, 305–322. [Google Scholar] [CrossRef]
- Sathiadhas, R.; Narayanakumar, R. Price policy and fish marketing system in India. J. Biol. Educ. 1994, 11, 225–241. [Google Scholar]
Stations | Chl-a (mg/m3) | |
---|---|---|
Peak of pIOD | End of pIOD | |
St-1 (7.00° S 106.45° E) | 0.42 | 0.62 |
St-2 (7.03° S 106.45° E) | 5.29 | 0.81 |
St-3 (7.05° S 106.42° E) | 5.03 | 1.28 |
St-4 (7.07° S 106.38° E) | 8.06 | 1.15 |
St-5 (7.12° S 106.31° E) | 10.06 | 0.90 |
Mean | 5.77 | 0.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lumban-Gaol, J.; Siswanto, E.; Mahapatra, K.; Natih, N.M.N.; Nurjaya, I.W.; Hartanto, M.T.; Maulana, E.; Adrianto, L.; Rachman, H.A.; Osawa, T.; et al. Impact of the Strong Downwelling (Upwelling) on Small Pelagic Fish Production during the 2016 (2019) Negative (Positive) Indian Ocean Dipole Events in the Eastern Indian Ocean off Java. Climate 2021, 9, 29. https://doi.org/10.3390/cli9020029
Lumban-Gaol J, Siswanto E, Mahapatra K, Natih NMN, Nurjaya IW, Hartanto MT, Maulana E, Adrianto L, Rachman HA, Osawa T, et al. Impact of the Strong Downwelling (Upwelling) on Small Pelagic Fish Production during the 2016 (2019) Negative (Positive) Indian Ocean Dipole Events in the Eastern Indian Ocean off Java. Climate. 2021; 9(2):29. https://doi.org/10.3390/cli9020029
Chicago/Turabian StyleLumban-Gaol, Jonson, Eko Siswanto, Kedarnath Mahapatra, Nyoman Metta Nyanakumara Natih, I Wayan Nurjaya, Mochamad Tri Hartanto, Erwin Maulana, Luky Adrianto, Herlambang Aulia Rachman, Takahiro Osawa, and et al. 2021. "Impact of the Strong Downwelling (Upwelling) on Small Pelagic Fish Production during the 2016 (2019) Negative (Positive) Indian Ocean Dipole Events in the Eastern Indian Ocean off Java" Climate 9, no. 2: 29. https://doi.org/10.3390/cli9020029
APA StyleLumban-Gaol, J., Siswanto, E., Mahapatra, K., Natih, N. M. N., Nurjaya, I. W., Hartanto, M. T., Maulana, E., Adrianto, L., Rachman, H. A., Osawa, T., Rahman, B. M. K., & Permana, A. (2021). Impact of the Strong Downwelling (Upwelling) on Small Pelagic Fish Production during the 2016 (2019) Negative (Positive) Indian Ocean Dipole Events in the Eastern Indian Ocean off Java. Climate, 9(2), 29. https://doi.org/10.3390/cli9020029