Evaluating the Performance-Shaping Factors of Air Traffic Controllers Using Fuzzy DEMATEL and Fuzzy BWM Approach
Abstract
:1. Introduction
2. Human Performance Envelope (HPE) Components
2.1. Workload
2.2. Situation Awareness (SA)
2.3. Communication
2.4. Teamwork
2.5. Trust
2.6. Fatigue
2.7. Stress
2.8. Attention and Vigilance
3. MCDM in Air Transport Operations
3.1. Fuzzy Set Theory
3.2. Decision-Making Trial Evaluation and Laboratory (DEMATEL)
3.3. Best-Worst Method (BWM)
3.4. Proposed Fuzzy DEMATEL-Based BWM
4. Results and Discussion
Illustrative Case Study
5. Managerial Implications
6. Conclusions and Ways Forward
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, Z.; Moolchandani, K.; Chao, H.; DeLaurentis, D. A Method for Emission Allowances Allocation in Air Transportation Systems from a System-of-Systems Perspective. J. Clean. Prod. 2019, 226, 419–431. [Google Scholar] [CrossRef]
- Otčenášek, J. Environmental Aircraft Take-off Noise—Sound Quality Factors Associated with Unpleasantness. Transp. Res. Part D Transp. Environ. 2019, 67, 366–374. [Google Scholar] [CrossRef]
- Lam, C.-M.; Yu, I.K.M.; Medel, F.; Tsang, D.C.W.; Hsu, S.-C.; Poon, C.S. Life-Cycle Cost-Benefit Analysis on Sustainable Food Waste Management: The Case of Hong Kong International Airport. J. Clean. Prod. 2018, 187, 751–762. [Google Scholar] [CrossRef]
- Thamagasorn, M.; Pharino, C. An Analysis of Food Waste from a Flight Catering Business for Sustainable Food Waste Management: A Case Study of Halal Food Production Process. J. Clean. Prod. 2019, 228, 845–855. [Google Scholar] [CrossRef]
- da Menegon, L.S.; Vincenzi, S.L.; de Andrade, D.F.; Barbetta, P.A.; Vink, P.; Merino, E.A.D. An Aircraft Seat Discomfort Scale Using Item Response Theory. Appl. Ergon. 2019, 77, 1–8. [Google Scholar] [CrossRef]
- Shaban, R.Z.; Sotomayor-Castillo, C.F.; Jakrot, H.; Jiang, P. Passenger Travel Health Advice Regarding Infection Control and the Prevention of Infectious Diseases: What’s in Airline Inflight Magazines? Travel Med. Infect. Dis. 2020, 33, 101453. [Google Scholar] [CrossRef]
- Bouwens, J.M.A.; Fasulo, L.; Hiemstra-van Mastrigt, S.; Schultheis, U.W.; Naddeo, A.; Vink, P. Effect of In-Seat Exercising on Comfort Perception of Airplane Passengers. Appl. Ergon. 2018, 73, 7–12. [Google Scholar] [CrossRef]
- Achenbach, A.; Spinler, S. Prescriptive Analytics in Airline Operations: Arrival Time Prediction and Cost Index Optimization for Short-Haul Flights. Oper. Res. Perspect. 2018, 5, 265–279. [Google Scholar] [CrossRef]
- Dalmau, R.; Prats, X. Fuel and Time Savings by Flying Continuous Cruise Climbs. Transp. Res. Part D Transp. Environ. 2015, 35, 62–71. [Google Scholar] [CrossRef]
- Kenan, N.; Jebali, A.; Diabat, A. The Integrated Aircraft Routing Problem with Optional Flights and Delay Considerations. Transp. Res. Part E Logist. Transp. Rev. 2018, 118, 355–375. [Google Scholar] [CrossRef]
- Mohammadian, I.; Abbasi, B.; Abareshi, A.; Goh, M. Antecedents of Flight Delays in the Australian Domestic Aviation Market. Transp. Res. Interdiscip. Perspect. 2019, 1, 100007. [Google Scholar] [CrossRef]
- Jiang, H.; Ren, X. Model of Passenger Behavior Choice under Flight Delay Based on Dynamic Reference Point. J. Air Transp. Manag. 2019, 75, 51–60. [Google Scholar] [CrossRef]
- Sezgen, E.; Mason, K.J.; Mayer, R. Voice of Airline Passenger: A Text Mining Approach to Understand Customer Satisfaction. J. Air Transp. Manag. 2019, 77, 65–74. [Google Scholar] [CrossRef]
- Tobaruela, G.; Schuster, W.; Majumdar, A.; Ochieng, W.Y.; Martinez, L.; Hendrickx, P. A Method to Estimate Air Traffic Controller Mental Workload Based on Traffic Clearances. J. Air Transp. Manag. 2014, 39, 59–71. [Google Scholar] [CrossRef]
- Asadi, H.; Yu, D.; Mott, J.H. Risk Factors for Musculoskeletal Injuries in Airline Maintenance, Repair & Overhaul. Int. J. Ind. Ergon. 2019, 70, 107–115. [Google Scholar] [CrossRef]
- Chen, M.-L.; Lu, S.-Y.; Mao, I.-F. Subjective Symptoms and Physiological Measures of Fatigue in Air Traffic Controllers. Int. J. Ind. Ergon. 2019, 70, 1–8. [Google Scholar] [CrossRef]
- Stroeve, S.H.; van Doorn, B.A.; Everdij, M.H.C. Analysis of the Roles of Pilots and Controllers in the Resilience of Air Traffic Management. Saf. Sci. 2015, 76, 215–227. [Google Scholar] [CrossRef]
- Chang, Y.-H.; Yang, H.-H.; Hsu, W.-J. Effects of Work Shifts on Fatigue Levels of Air Traffic Controllers. J. Air Transp. Manag. 2019, 76, 1–9. [Google Scholar] [CrossRef]
- Endsley, M.R.; Sollenberger, R.; Stein, E. Situation awareness: A comparison of measures. In Proceedings of the Human Performance, Situation Awareness and Automation: User Centered Design for the New Millennium Conference, Savannah, GA, USA, 15–19 October 2000. [Google Scholar]
- Kearney, P.; Li, W.-C.; Yu, C.-S.; Braithwaite, G. The Impact of Alerting Designs on Air Traffic Controller’s Eye Movement Patterns and Situation Awareness. Ergonomics 2019, 62, 305–318. [Google Scholar] [CrossRef] [Green Version]
- Padrón, S.; Guimarans, D.; Ramos, J.J.; Fitouri-Trabelsi, S. A Bi-Objective Approach for Scheduling Ground-Handling Vehicles in Airports. Comput. Oper. Res. 2016, 71, 34–53. [Google Scholar] [CrossRef] [Green Version]
- Endsley, M.R. Toward a Theory of Situation Awareness in Dynamic Systems. Hum. Factors 1995, 37, 32–64. [Google Scholar] [CrossRef]
- Argyle, E.M.; Houghton, R.J.; Atkin, J.; De Maere, G.; Moore, T.; Morvan, H.P. Human Performance and Strategies While Solving an Aircraft Routing and Sequencing Problem: An Experimental Approach. Cogn. Tech. Work 2018, 20, 425–441. [Google Scholar] [CrossRef] [Green Version]
- Graziani, I.; Berberian, B.; Kirwan, B.; Le Blaye, P.; Napoletano, L.; Rognin, L.; Silvagni, S. Development of the human performance envelope concept for cockpit HMI design. In Proceedings of the HCI-Aero 2016 International Conference on Human-Computer Interaction in Aerospace, Paris, France, 14–16 September 2016; hal-01409075ff. [Google Scholar]
- Edwards, T.; Homola, J.; Mercer, J.; Claudatos, L. Multifactor Interactions and the Air Traffic Controller: The Interaction of Situation Awareness and Workload in Association with Automation. Cogn. Technol. Work. 2016, 49, 597–602. [Google Scholar] [CrossRef]
- Edwards, T.; Gabets, C.; Mercer, J.; Bienert, N. Task Demand Variation in Air Traffic Control: Implications for Workload, Fatigue, and Performance. In Advances in Human Aspects of Transportation; Stanton, N.A., Landry, S., Di Bucchianico, G., Vallicelli, A., Eds.; Springer: Cham, Switzerland, 2017; Volume 484, pp. 91–102. ISBN 9783319416816. [Google Scholar]
- Kaber, D.B.; Perry, C.M.; Segall, N.; McClernon, C.K.; Prinzel, L.J. Situation Awareness Implications of Adaptive Automation for Information Processing in an Air Traffic Control-Related Task. Int. J. Ind. Ergon. 2006, 36, 447–462. [Google Scholar] [CrossRef]
- Gawade, M.; Zhang, Y. Synthesis of Remote Air Traffic Control System and Air Traffic Controllers’ Perceptions. Transp. Res. Rec. 2016, 2600, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Wickens, C.D.; Mavor, A.S.; McGee, J.; National Research Council (U.S.) (Eds.) Flight to the Future: Human Factors in Air Traffic Control. National Academy Press: Washington, DC, USA, 1997; ISBN 9780309056373. [Google Scholar]
- Friedrich, M.; Biermann, M.; Gontar, P.; Biella, M.; Bengler, K. The Influence of Task Load on Situation Awareness and Control Strategy in the ATC Tower Environment. Cogn. Techol. Work 2018, 20, 205–217. [Google Scholar] [CrossRef]
- Mulliner, E.; Malys, N.; Maliene, V. Comparative Analysis of MCDM Methods for the Assessment of Sustainable Housing Affordability. Omega 2016, 59, 146–156. [Google Scholar] [CrossRef]
- Gabus, A.; Fontela, E. World Problems. An Invitation to Further Thought within the Framework of DEMATEL; Battelle Geneva Research Centre: Geneva, Switzerland, 1972. [Google Scholar]
- Saaty, T.L. Decision Making with Dependence and Feedback: The Analytic Network Process; RWS Publications Publishers: Pittsburgh, PA, USA, 1996. [Google Scholar]
- Warfield, J.N. Developing Subsystem Matrices in Structural Modeling. IEEE Trans. Syst. Man Cybern. 1974, SMC-4, 74–80. [Google Scholar] [CrossRef]
- Sharma, H.D.; Gupta, A.D.; Sushil. The Objectives of Waste Management in India: A Futures Inquiry. Technol. Forecast. Soc. Chang. 1995, 48, 285–309. [Google Scholar] [CrossRef]
- Rezaei, J. Best-Worst Multi-Criteria Decision-Making Method. Omega 2015, 53, 49–57. [Google Scholar] [CrossRef]
- Brans, J.P. L’ingénierie de la décision. Elaboration d’instruments d’aide à la décision. Méthode PROMETHEE. In L’aide à la Décision: Nature, Instruments et Perspectives D’avenir; Nadeau, R., Landry, M., Eds.; Presses de l’Université Laval: QC, Canada, 1982; pp. 183–214. [Google Scholar]
- Brans, J.P.; Vincke, P. Note—A Preference Ranking Organisation Method: (The PROMETHEE Method for Multiple Criteria Decision-Making). Manag. Sci. 1985, 31, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Brans, J.-P.; Mareschal, B. The PROMCALC & GAIA Decision Support System for Multicriteria Decision Aid. Decis. Support Syst. 1994, 12, 297–310. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process, New York: McGraw Hill. International, Translated to Russian, Portuguese, and Chinese, Revised Editions, Paperback (1996, 2000); RWS Publications: Pittsburgh, PA, USA, 1980. [Google Scholar]
- Hwang, C.L.; Yoon, K. Multiple Attributes Decision Making Methods and Applications; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Opricovic, S. Multicriteria Optimization of Civil Engineering Systems; Faculty of Civil Engineering: Belgrade, Serbia, 1998. [Google Scholar]
- Opricovic, S.; Tzeng, G.-H. Compromise Solution by MCDM Methods: A Comparative Analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Roy, B. The Outranking Approach and the Foundations of Electre Methods. Theor. Decis. 1991, 31, 49–73. [Google Scholar] [CrossRef]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Data Envelopment Analysis a Comprehensive Text with Models, Applications, References, and DEA-Solver Software, 1st ed.; Kluwer Academic: Boston, MA, USA, 2000; ISBN 9781280200281. [Google Scholar]
- Bañares, J.R.; Caballes, S.A.; Serdan, M.J.; Liggayu, A.T.; Bongo, M.F. A Comprehension-Based Ergonomic Redesign of Philippine Road Warning Signs. Int. J. Ind. Ergon. 2018, 65, 17–25. [Google Scholar] [CrossRef]
- del Pilar, E.C.; Alegado, I.; Bongo, M.F. Structural Relationships among Critical Failure Factors of Microbusinesses. JSBED 2019, 27, 148–174. [Google Scholar] [CrossRef]
- Stević, Ž.; Pamučar, D.; Puška, A.; Chatterjee, P. Sustainable Supplier Selection in Healthcare Industries Using a New MCDM Method: Measurement of Alternatives and Ranking According to COmpromise Solution (MARCOS). Comput. Ind. Eng. 2020, 140, 106231. [Google Scholar] [CrossRef]
- Balezentis, T.; Chen, X.; Galnaityte, A.; Namiotko, V. Optimizing Crop Mix with Respect to Economic and Environmental Constraints: An Integrated MCDM Approach. Sci. Total Environ. 2020, 705, 135896. [Google Scholar] [CrossRef]
- de Assis, G.S.; dos Santos, M.; Basilio, M.P. Use of the WASPAS Method to Select Suitable Helicopters for Aerial Activity Carried Out by the Military Police of the State of Rio De Janeiro. Axioms 2023, 12, 77. [Google Scholar] [CrossRef]
- Bakır, M.; Akan, Ş.; Özdemir, E. Regional aircraft selection with fuzzy piprecia and fuzzy marcos: A case study of the turkish airline industry. Facta Univ. Ser. Mech. Eng. 2021, 19, 423–445. [Google Scholar] [CrossRef]
- Maêda, S.M.D.N.; Costa, I.P.D.A.; Castro, M.A.P.D.; Fávero, L.P.; Costa, A.P.D.A.; Corriça, J.V.D.P.; Gomes, C.F.S.; dos Santos, M. Multi-criteria Analysis Applied to Aircraft Selection by Brazilian Navy. Prod. J. 2021, 31. [Google Scholar] [CrossRef]
- Bongo, M.F.; Ocampo, L.A. A Hybrid Fuzzy MCDM Approach for Mitigating Airport Congestion: A Case in Ninoy Aquino International Airport. J. Air Transp. Manag. 2017, 63, 1–16. [Google Scholar] [CrossRef]
- Bongo, M.F.; Ocampo, L.A. Exploring Critical Attributes during Air Traffic Congestion with a Fuzzy DEMATEL–ANP Technique: A Case Study in Ninoy Aquino International Airport. J. Mod. Transport. 2018, 26, 147–161. [Google Scholar] [CrossRef] [Green Version]
- Ancheta, R.A.A., Jr.; Bongo, M.F.; Ocampo, L.A.; Kilongkilong, D.A.A.; Amit, M.; Cuizon, O.A.; Arda, N.J. DEMATEL-AHP Technique to Minimise Departure Delays Due to Airspace Congestion: A Case in Mactan-Cebu International Airport. IJSSE 2018, 8, 365. [Google Scholar] [CrossRef]
- Lu, M.-T.; Hsu, C.-C.; Liou, J.J.H.; Lo, H.-W. A Hybrid MCDM and Sustainability-Balanced Scorecard Model to Establish Sustainable Performance Evaluation for International Airports. J. Air Transp. Manag. 2018, 71, 9–19. [Google Scholar] [CrossRef]
- Pandey, M.M.; Shukla, D. Evaluating the Human Performance Factors of Air Traffic Control in Thailand Using Fuzzy Multi Criteria Decision Making Method. J. Air Transp. Manag. 2019, 81, 101708. [Google Scholar] [CrossRef]
- Kumar, A.; Anbanandam, R. Analyzing Interrelationships and Prioritising the Factors Influencing Sustainable Intermodal Freight Transport System: A Grey-DANP Approach. J. Clean. Prod. 2020, 252, 119769. [Google Scholar] [CrossRef]
- Edwards, T.; Sharples, S.; Wilson, J.R.; Kirwan, B. The Need for a Multi-Factorial Model of Safe Human Performance in Air Traffic Control. In Proceedings of the 28th Annual European Conference on Cognitive Ergonomics, ACM, Delft, The Netherlands, 25 August 2010; pp. 253–260. [Google Scholar]
- Chang, Y.-H.; Yeh, C.-H. Human Performance Interfaces in Air Traffic Control. Appl. Ergon. 2010, 41, 123–129. [Google Scholar] [CrossRef]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLS (Task Load Index): Results of empirical and theoretical research. In Human Mental Workload; Hancock, P.A., Meshkati, N., Eds.; North-Holland Elsevier Science: Amsterdam, NY, USA, 1988; pp. 139–183. [Google Scholar]
- Li, P.; Zhang, L.; Dai, L.; Zou, Y.; Li, X. An Assessment Method of Operator’s Situation Awareness Reliability Based on Fuzzy Logic-AHP. Saf. Sci. 2019, 119, 330–343. [Google Scholar] [CrossRef]
- Miles, J.D.; Strybel, T.Z. Measuring Situation Awareness of Student Air Traffic Controllers with Online Probe Queries: Are We Asking the Right Questions? Int. J. Hum. Comput. Interact. 2017, 33, 55–65. [Google Scholar] [CrossRef]
- Lundberg, J. Situation Awareness Systems, States and Processes: A Holistic Framework. Theor. Issues Ergon. Sci. 2015, 16, 447–473. [Google Scholar] [CrossRef]
- Vu, K.L.; Strybel, T.Z.; Kraut, J.; Paige Bacon, L.; Minakata, K.; Nguyen, J.; Rotterman, A.; Battiste, V.; Johnson, W. Pilot and controller workload and situation awareness with three traffic management concepts. In Proceedings of the 29th Digital Avionics Systems Conference, Salt Lake City, UT, USA, 3–7 October 2010; pp. 4.A.5-1–4.A.5-10. [Google Scholar] [CrossRef]
- Inoue, S.; Furuta, K.; Kanno, T.; Aoyama, H.; Nakata, K. Cognitive Process Modelling of Team Cooperative Work in En Route Air Traffic Control. IFAC Proc. Vol. 2010, 43, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Rantanen, E.M.; Zhang, K. The Impact of Time Efficacy on Air Traffic Controller Situation Awareness and Mental Workload. Int. J. Aviat. Psychol. 2009, 20, 74–91. [Google Scholar] [CrossRef]
- Tattersall, A.J.; Foord, P.S. An Experimental Evaluation of Instantaneous Self-Assessment as a Measure of Workload. Ergonomics 1996, 39, 740–748. [Google Scholar] [CrossRef]
- Roscoe, A.E.; Ellis, G.A. A Subjective Rating Scale for Assessing Pilot Workload in Flight: A Decade of Practical Use (TR 90019). 1990. Available online: www.dtic.mil/dtic/tr/fulltext/u2/a227864.pdf (accessed on 4 March 2022).
- Dönmez, K.; Demirel, S.; Özdemir, M. Handling the Pseudo Pilot Assignment Problem in Air Traffic Control Training by Using NASA TLX. J. Air Transp. Manag. 2020, 89, 101934. [Google Scholar] [CrossRef]
- Farbos, B.; Mollard, R.; Cabon, P.; David, H. Measurement of fatigue and adaptation in large-scale real-time ATC simulation. In Proceedings of the IEA 2000/HFS 2000 Congress, San Diego, CA, USA; 2000; pp. 204–207. [Google Scholar]
- Harris, D. (Ed.) Engineering Psychology and Cognitive Ergonomics. In Proceedings of the 15th International Conference, EPCE 2018, Held as Part of HCI International 2018, Las Vegas, NV, USA, 15–20 July 2018; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 10906, ISBN 9783319911212. [Google Scholar]
- Mulder, M.; Borst, C.; van Paassen, M. Designing for situation awareness—Aviation perspective. In Proceedings of the International Conference on Computer-Human Interaction Research and Applications, Funchal, Portugal, 31 October–2 November 2017; pp. 9–21. [Google Scholar]
- Endsley, M. A taxonomy of situation awareness errors. In Proceedings of the Western European Association of Aviation Psychology 21st Conference, Dublin, Ireland, 20–21 June 1994. [Google Scholar]
- Bhavsar, P.; Srinivasan, B.; Srinivasan, R. Quantifying Situation Awareness of Control Room Operators Using Eye-Gaze Behavior. Comput. Chem. Eng. 2017, 106, 191–201. [Google Scholar] [CrossRef]
- Scott-Parker, B.; Curran, M.; Rune, K.; Lord, W.; Salmon, P.M. Situation Awareness in Young Novice Ambulance Drivers: So Much More than Driving. Saf. Sci. 2018, 108, 48–58. [Google Scholar] [CrossRef]
- Oltrogge, D.L.; Alfano, S. The Technical Challenges of Better Space Situational Awareness and Space Traffic Management. J. Space Saf. Eng. 2019, 6, 72–79. [Google Scholar] [CrossRef]
- Sawaragi, T.; Fujii, K.; Horiguchi, Y.; Nakanishi, H. Analysis of Team Situation Awareness Using Serious Game and Constructive Model-Based Simulation. IFAC-PapersOnLine 2016, 49, 537–542. [Google Scholar] [CrossRef]
- Naderpour, M.; Lu, J.; Zhang, G. A Safety-Critical Decision Support System Evaluation Using Situation Awareness and Workload Measures. Reliab. Eng. Syst. Saf. 2016, 150, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Reinerman-Jones, L.E.; Hughes, N.; D’Agostino, A.; Matthews, G. Human Performance Metrics for the Nuclear Domain: A Tool for Evaluating Measures of Workload, Situation Awareness and Teamwork. Int. J. Ind. Ergon. 2019, 69, 217–227. [Google Scholar] [CrossRef]
- Brommelsiek, M.; Graybill, T.L.; Gotham, H.J. Improving Communication, Teamwork and Situation Awareness in Nurse-Led Primary Care Clinics of a Rural Healthcare System. J. Interprofessional Educ. Pract. 2019, 16, 100268. [Google Scholar] [CrossRef]
- Hogg, M.A.; Vaughan, G.M. Social Psycholog, 3rd ed.; Prentice Hall: London, UK, 2002. [Google Scholar]
- Huttunen, K.; Keränen, H.; Väyrynen, E.; Pääkkönen, R.; Leino, T. Effect of Cognitive Load on Speech Prosody in Aviation: Evidence from Military Simulator Flights. Appl. Ergon. 2011, 42, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Jou, R.-C.; Kuo, C.-W.; Tang, M.-L. A Study of Job Stress and Turnover Tendency among Air Traffic Controllers: The Mediating Effects of Job Satisfaction. Transp. Res. Part E Logist. Transp. Rev. 2013, 57, 95–104. [Google Scholar] [CrossRef]
- Tullo, F.J. Teamwork and Organizational Factors. In Crew Resource Management; Elsevier: Amsterdam, The Netherlands, 2010; pp. 59–78. ISBN 9780123749468. [Google Scholar]
- Ajeigbe, O.D. Nurse-physician Teamwork in the Emergency Department. Ph.D. Thesis, University of California, Los Angeles, CA, USA, 2012. [Google Scholar] [CrossRef] [Green Version]
- Kontogiannis, T.; Malakis, S. Strategies in Coping with Complexity: Development of a Behavioural Marker System for Air Traffic Controllers. Saf. Sci. 2013, 57, 27–34. [Google Scholar] [CrossRef]
- Woldring, M. Team Resource Management in European Air Traffic Control. Air Space Eur. 1999, 1, 81–84. [Google Scholar] [CrossRef]
- Kiffin-Petersen, S.; Cordery, J. Trust, Individualism and Job Characteristics as Predictors of Employee Preference for Teamwork. Int. J. Hum. Resour. Manag. 2003, 14, 93–116. [Google Scholar] [CrossRef]
- Muir, B.M. Trust between Humans and Machines, and the Design of Decision Aids. Int. J. Man-Mach. Stud. 1987, 27, 527–539. [Google Scholar] [CrossRef]
- Yasar, M. Flight anomaly tracking for improved situational awareness: Case study of Germanwings flight 9525. In Proceedings of the Annual Conference of the Prognostics and Health Management Society, PHM, Ottawa, ON, Canada, 20–22 June 2016; pp. 237–243. [Google Scholar]
- Dillingham, G.L. Air Traffic Control: Evolution and Status of FAA’s Automation Program; Technical Report GAO/T-RCED/AIMD-98-85; United States General Accounting Office: Washington, DC, USA, 1998. [Google Scholar]
- Endsley, M.R.; Jones, D.G. Situation Awareness Requirements Analysis for TRACON Air Traffic Control; Technical Report TTU-IE-95-01; Technology Center, Federal Aviation Administration: Atlantic City, NJ, USA, 1995. [Google Scholar]
- International Civil Aviation Organization (ICAO) Fatigue Risk Management Systems: Implementation Guide for Operators. 2019. Available online: http://www.icao.int (accessed on 11 August 2019).
- Gawron, V.J. Overview of Self-Reported Measures of Fatigue. Int. J. Aviat. Psychol. 2016, 26, 120–131. [Google Scholar] [CrossRef]
- Grandjean, E.P.; Wotzka, G.; Schaad, R.; Gilgen, A. Fatigue and Stress in Air Traffic Controllers. Ergonomics 1971, 14, 159–165. [Google Scholar] [CrossRef]
- Triyanti, V.; Azis, H.A.; Iridiastadi, H.; Yassierli. Workload and Fatigue Assessment on Air Traffic Controller. IOP Conf. Ser. Mater. Sci. Eng. 2020, 847, 012087. [Google Scholar] [CrossRef]
- Kuo, J.; Lenné, M.G.; Myers, R.; Collard-Scruby, A.; Jaeger, C.; Birmingham, C. Real-time assessment of operator state in air traffic controllers using ocular metrics. In Proceedings of the Human Factors and Ergonomics Society 2017 Annual Meeting, Austin, TX, USA, 9–13 October 2017; pp. 257–261. [Google Scholar]
- Gomes De Carvalho, L.M.; De Souza Borges, S.F.; Machado Cardoso Júnior, M. Fatigue Assessment Methods Applied to Air Traffic Control – A Bibliometric Analysis. In Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021), Online, 13–18 June 2021; Black, N.L., Neumann, W.P., Noy, I., Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 221, pp. 136–142, ISBN 9783030746070. [Google Scholar]
- Costa, G. Occupational Stress and Stress Prevention in Air Traffic Control; International Labour Office: Geneva, Switzerland, 1996; ISBN 9789221100706. [Google Scholar]
- Bongo, M.F.; Alimpangog, K.M.S.; Loar, J.F.; Montefalcon, J.A.; Ocampo, L.A. An Application of DEMATEL-ANP and PROMETHEE II Approach for Air Traffic Controllers’ Workload Stress Problem: A Case of Mactan Civil Aviation Authority of the Philippines. J. Air Transp. Manag. 2018, 68, 198–213. [Google Scholar] [CrossRef]
- Cooper, C.L.; Sloan, S.J.; Williams, S. Occupational Stress Indicator Management Guide; NFER-Nelson Press: London, UK, 1988. [Google Scholar]
- Lesiuk, T. The Effect of Preferred Music Listening on Stress Levels of Air Traffic Controllers. Arts Psychother. 2008, 35, 1–10. [Google Scholar] [CrossRef]
- Chiou, Y.-C.; Chen, Z.-T. Identifying Key Risk Factors in Air Traffic Control by Exploratory and Confirmatory Factor Analysis. J. Adv. Transp. 2010, 44, 267–283. [Google Scholar] [CrossRef]
- Eysenck, M.W. Principles of Cognitive Psychology; Psychology Press: London, UK, 2001. [Google Scholar]
- McIntire, L.K.; McKinley, R.A.; Goodyear, C.; McIntire, J.P. Detection of Vigilance Performance Using Eye Blinks. Appl. Ergon. 2014, 45, 354–362. [Google Scholar] [CrossRef]
- Shorrock, S.T. Errors of Perception in Air Traffic Control. Saf. Sci. 2007, 45, 890–904. [Google Scholar] [CrossRef]
- Chen, S.-M.; Munif, A.; Chen, G.-S.; Liu, H.-C.; Kuo, B.-C. Fuzzy Risk Analysis Based on Ranking Generalized Fuzzy Numbers with Different Left Heights and Right Heights. Expert Syst. Appl. 2012, 39, 6320–6334. [Google Scholar] [CrossRef]
- Chang, B.; Chang, C.-W.; Wu, C.-H. Fuzzy DEMATEL Method for Developing Supplier Selection Criteria. Expert Syst. Appl. 2011, 38, 1850–1858. [Google Scholar] [CrossRef]
- Ali, A.; Rashid, T. Hesitant Fuzzy Best-worst Multi-criteria Decision-making Method and Its Applications. Int. J. Intell. Syst. 2019, 34, 1953–1967. [Google Scholar] [CrossRef]
- Bongo, M.F.; Sy, C.L. A Robust Optimisation Formulation for Post-Departure Rerouting Problem. In Proceedings of the 2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 14 December 2020; IEEE: Singapore; pp. 509–513. [Google Scholar]
- Bongo, M.; Sy, C. An integer linear programming formulation for post-departure air traffic flow management. AEJ 2021, 11, 101–117. [Google Scholar] [CrossRef]
Linguistic Term | Membership Function |
---|---|
No influence (NI) | (0.00, 0.00, 0.25) |
Very low influence (VLII) | (0.00, 0.25, 0.50) |
Low influence (LI) | (0.25, 0.50, 0.75) |
High influence (HI) | (0.50, 0.75, 1.00) |
Very high influence (VHI) | (0.75, 1.00, 1.00) |
Linguistic Term | Membership Function |
---|---|
Equally important (EI) | (1, 1, 1) |
Weakly important (WI) | (2/3, 1, 3/2) |
Fairly important (FI) | (3/2, 2, 5/2) |
Very important (VI) | (5/2, 3, 7/2) |
Absolutely important (AI) | (7/2, 4, 9/2) |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
Consistency index | 0.00 | 0.44 | 1.00 | 1.63 | 2.30 | 3.00 | 3.73 | 4.47 | 5.23 |
Criteria | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 |
---|---|---|---|---|---|---|---|---|---|
C1 | NI | VHI | HI | VHI | HI | HI | VHI | HI | VHI |
C2 | HI | NI | HI | HI | HI | HI | HI | VHI | HI |
C3 | HI | HI | NI | HI | HI | VHI | VHI | HI | HI |
C4 | HI | HI | HI | NI | VHI | LI | LI | HI | HI |
C5 | VHI | HI | VHI | HI | NI | HI | VHI | HI | HI |
C6 | VHI | HI | VHI | HI | LI | NI | HI | LI | LI |
C7 | LI | HI | HI | LI | LI | LI | NI | HI | LI |
C8 | VHI | LI | VHI | LI | LI | HI | LI | NI | HI |
C9 | LI | HI | HI | LI | LI | LI | LI | LI | NI |
Criteria | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 |
---|---|---|---|---|---|---|---|---|---|
C1 | (0.00, 0.00, 0.25) | (0.75, 1.00, 1.00) | (0.50, 0.75, 1.00) | (0.75, 1.00, 1.00) | (0.50, 0.75, 1.00) | (0.50, 0.75, 1.00) | (0.75, 1.00, 1.00) | (0.50, 0.75, 1.00) | (0.75, 1.00, 1.00) |
C2 | (0.50, 0.75, 1.00) | (0.00, 0.00, 0.25) | (0.50, 0.75, 1.00) | (0.50, 0.75, 1.00) | (0.50, 0.75, 1.00) | (0.50, 0.75, 1.00) | (0.50, 0.75, 1.00) | (0.75, 1.00, 1.00) | (0.50, 0.75, 1.00) |
C3 | (0.50, 0.75, 1.00) | (0.50, 0.75, 1.00) | (0.00, 0.00, 0.25) | (0.50, 0.75, 1.00) | (0.50, 0.75, 1.00) | (0.75, 1.00, 1.00) | (0.75, 1.00, 1.00) | (0.50, 0.75, 1.00) | (0.50, 0.75, 1.00) |
C4 | (0.50, 0.75, 1.00) | (0.50, 0.75, 1.00) | (0.50, 0.75, 1.00) | (0.00, 0.00, 0.25) | (0.75, 1.00, 1.00) | (0.25, 0.50, 0.75) | (0.25, 0.50, 0.75) | (0.50, 0.75, 1.00) | (0.50, 0.75, 1.00) |
C5 | (0.75, 1.00, 1.00) | (0.50, 0.75, 1.00) | (0.75, 1.00, 1.00) | (0.50, 0.75, 1.00) | (0.00, 0.00, 0.25) | (0.50, 0.75, 1.00) | (0.75, 1.00, 1.00) | (0.50, 0.75, 1.00) | (0.50, 0.75, 1.00) |
C6 | (0.75, 1.00, 1.00) | (0.50, 0.75, 1.00) | (0.75, 1.00, 1.00) | (0.50, 0.75, 1.00) | (0.25, 0.50, 0.75) | (0.00, 0.00, 0.25) | (0.50, 0.75, 1.00) | (0.25, 0.50, 0.75) | (0.25, 0.50, 0.75) |
C7 | (0.25, 0.50, 0.75) | (0.50, 0.75, 1.00) | (0.50, 0.75, 1.00) | (0.25, 0.50, 0.75) | (0.25, 0.50, 0.75) | (0.25, 0.50, 0.75) | (0.00, 0.00, 0.25) | (0.50, 0.75, 1.00) | (0.25, 0.50, 0.75) |
C8 | (0.75, 1.00, 1.00) | (0.25, 0.50, 0.75) | (0.75, 1.00, 1.00) | (0.25, 0.50, 0.75) | (0.25, 0.50, 0.75) | (0.50, 0.75, 1.00) | (0.25, 0.50, 0.75) | (0.00, 0.00, 0.25) | (0.50, 0.75, 1.00) |
C9 | (0.25, 0.50, 0.75) | (0.50, 0.75, 1.00) | (0.50, 0.75, 1.00) | (0.25, 0.50, 0.75) | (0.25, 0.50, 0.75) | (0.25, 0.50, 0.75) | (0.25, 0.50, 0.75) | (0.25, 0.50, 0.75) | (0.00, 0.00, 0.25) |
Criteria | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 |
---|---|---|---|---|---|---|---|---|---|
C1 | (0.00, 0.00, 0.25) | (0.71, 0.96, 1.00) | (0.67, 0.92, 1.00) | (0.63, 0.88, 1.00) | (0.58, 0.83, 1.00) | (0.63, 0.88, 1.00) | (0.75, 1.00, 1.00) | (0.63, 0.88, 1.00) | (0.71, 0.96, 1.00) |
C2 | (0.63, 0.88, 1.00) | (0.00, 0.00, 0.25) | (0.50, 0.75, 0.92) | (0.63, 0.88, 1.00) | (0.58, 0.83, 1.00) | (0.54, 0.79, 0.96) | (0.54, 0.79, 0.96) | (0.67, 0.92, 1.00) | (0.71, 0.96, 1.00) |
C3 | (0.67, 0.92, 1.00) | (0.67, 0.92, 1.00) | (0.00, 0.00, 0.25) | (0.58, 0.83, 1.00) | (0.63, 0.88, 1.00) | (0.38, 0.63, 0.83) | (0.46, 0.71, 0.88) | (0.58, 0.83, 1.00) | (0.63, 0.88, 1.00) |
C4 | (0.50, 0.75, 0.96) | (0.67, 0.92, 1.00) | (0.50, 0.75, 1.00) | (0.00, 0.00, 0.25) | (0.71, 0.96, 1.00) | (0.33, 0.54, 0.79) | (0.29, 0.50, 0.75) | (0.54, 0.79, 0.96) | (0.58, 0.83, 1.00) |
C5 | (0.71, 0.96, 1.00) | (0.58, 0.83, 1.00) | (0.67, 0.92, 1.00) | (0.54, 0.79, 0.96) | (0.00, 0.00, 0.25) | (0.33, 0.50, 0.75) | (0.71, 0.96, 1.00) | (0.54, 0.75, 0.88) | (0.58, 0.83, 1.00) |
C6 | (0.67, 0.92, 1.00) | (0.50, 0.75, 0.96) | (0.50, 0.71, 0.83) | (0.42, 0.67, 0.92) | (0.29, 0.46, 0.71) | (0.00, 0.00, 0.25) | (0.63, 0.88, 1.00) | (0.42, 0.63, 0.83) | (0.42, 0.63, 0.83) |
C7 | (0.42, 0.67, 0.83) | (0.63, 0.88, 1.00) | (0.63, 0.88, 1.00) | (0.54, 0.79, 0.96) | (0.42, 0.63, 0.83) | (0.42, 0.67, 0.92) | (0.00, 0.00, 0.25) | (0.54, 0.79, 1.00) | (0.58, 0.83, 0.96) |
C8 | (0.75, 1.00, 1.00) | (0.50, 0.75, 0.92) | (0.75, 1.00, 1.00) | (0.58, 0.83, 0.92) | (0.42, 0.67, 0.92) | (0.42, 0.67, 0.92) | (0.33, 0.58, 0.83) | (0.00, 0.00, 0.25) | (0.58, 0.83, 1.00) |
C9 | (0.42, 0.63, 0.83) | (0.63, 0.88, 1.00) | (0.54, 0.79, 1.00) | (0.50, 0.75, 0.96) | (0.42, 0.67, 0.88) | (0.33, 0.58, 0.83) | (0.46, 0.71, 0.88) | (0.54, 0.79, 0.96 | (0.00, 0.00, 0.25) |
Criteria | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 |
---|---|---|---|---|---|---|---|---|---|
C1 | (0.00, 0.00, 0.03) | (0.09, 0.12, 0.12) | (0.08, 0.11, 0.12) | (0.08, 0.11, 0.12) | (0.07, 0.10, 0.12) | (0.08, 0.11, 0.12) | (0.09, 0.12, 0.12) | (0.08, 0.11, 0.12) | (0.09, 0.12, 0.12) |
C2 | (0.08, 0.11, 0.12) | (0.00, 0.00, 0.03) | (0.06, 0.09, 0.11) | (0.08, 0.11, 0.12) | (0.07, 0.10, 0.12) | (0.07, 0.10, 0.12) | (0.07, 0.10, 0.12) | (0.08, 0.11, 0.12) | (0.09, 0.12, 0.12) |
C3 | (0.08, 0.11, 0.12) | (0.08, 0.11, 0.12) | (0.00, 0.00, 0.03) | (0.07, 0.10, 0.12) | (0.08, 0.11, 0.12) | (0.05, 0.08, 0.10) | (0.06, 0.09, 0.11) | (0.07, 0.10, 0.12) | (0.08, 0.11, 0.12) |
C4 | (0.06, 0.09, 0.12) | (0.08, 0.11, 0.12) | (0.06, 0.09, 0.12) | (0.00, 0.00, 0.03) | (0.09, 0.12, 0.12) | (0.04, 0.07, 0.10) | (0.04, 0.06, 0.09) | (0.07, 0.10, 0.12) | (0.07, 0.10, 0.12) |
C5 | (0.09, 0.12, 0.12) | (0.07, 0.10, 0.12) | (0.08, 0.11, 0.12) | (0.07, 0.10, 0.12) | (0.00, 0.00, 0.03) | (0.04, 0.06, 0.09) | (0.09, 0.12, 0.12) | (0.07, 0.09, 0.11) | (0.07, 0.10, 0.12) |
C6 | (0.08, 0.11, 0.12) | (0.06, 0.09, 0.12) | (0.06, 0.09, 0.1) | (0.05, 0.08, 0.11) | (0.04, 0.06, 0.09) | (0.00, 0.00, 0.03) | (0.08, 0.11, 0.12) | (0.05, 0.08, 0.10) | (0.05, 0.08, 0.10) |
C7 | (0.05, 0.08, 0.10) | (0.08, 0.11, 0.12) | (0.08, 0.11, 0.12) | (0.07, 0.10, 0.12) | (0.05, 0.08, 0.10) | (0.05, 0.08, 0.11) | (0.00, 0.00, 0.03) | (0.07, 0.10, 0.12) | (0.07, 0.10, 0.12) |
C8 | (0.09, 0.12, 0.12) | (0.06, 0.09, 0.11) | (0.09, 0.12, 0.12) | (0.07, 0.10, 0.11) | (0.05, 0.08, 0.11) | (0.05, 0.08, 0.11) | (0.04, 0.07, 0.10) | (0.00, 0.00, 0.03) | (0.07, 0.10, 0.12) |
C9 | (0.05, 0.08, 0.10) | (0.08, 0.11, 0.12) | (0.07, 0.10, 0.12) | (0.06, 0.09, 0.12) | (0.05, 0.08, 0.11) | (0.04, 0.07, 0.10) | (0.06, 0.09, 0.11) | (0.07, 0.10, 0.12) | (0.00, 0.00, 0.03) |
Criteria | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 |
---|---|---|---|---|---|---|---|---|---|
C1 | (0.10, 0.38, 2.84) | (0.18, 0.50, 3.01) | (0.17, 0.48, 2.97) | (0.16, 0.47, 2.96) | (0.15, 0.44, 2.84) | (0.14, 0.4, 2.72) | (0.17, 0.46, 2.81) | (0.16, 0.46, 2.93) | (0.18, 0.49, 2.99) |
C2 | (0.16, 0.45, 2.88) | (0.09, 0.37, 2.87) | (0.15, 0.44, 2.91) | (0.15, 0.44, 2.90) | (0.14, 0.41, 2.79) | (0.13, 0.38, 2.67) | (0.14, 0.42, 2.76) | (0.16, 0.45, 2.88) | (0.17, 0.47, 2.93) |
C3 | (0.16, 0.45, 2.84) | (0.16, 0.46, 2.92) | (0.08, 0.35, 2.80) | (0.15, 0.43, 2.87) | (0.15, 0.41, 2.75) | (0.11, 0.35, 2.62) | (0.13, 0.40, 2.72) | (0.15, 0.43, 2.84) | (0.16, 0.45, 2.90) |
C4 | (0.13, 0.41, 2.76) | (0.15, 0.43, 2.84) | (0.13, 0.41, 2.80) | (0.07, 0.31, 2.70) | (0.15, 0.40, 2.68) | (0.10, 0.32, 2.54) | (0.10, 0.36, 2.63) | (0.14, 0.40, 2.76) | (0.15, 0.42, 2.82) |
C5 | (0.17, 0.45, 2.8) | (0.16, 0.45, 2.88) | (0.16, 0.45, 2.84) | (0.14, 0.42, 2.82) | (0.08, 0.31, 2.63) | (0.10, 0.34, 2.58) | (0.16, 0.43, 2.69) | (0.14, 0.42, 2.79) | (0.15, 0.45, 2.86) |
C6 | (0.15, 0.4, 2.64) | (0.13, 0.39, 2.71) | (0.13, 0.38, 2.66) | (0.12, 0.37, 2.66) | (0.10, 0.33, 2.53) | (0.05, 0.24, 2.37) | (0.13, 0.38, 2.54) | (0.12, 0.36, 2.63) | (0.12, 0.38, 2.67) |
C7 | (0.13, 0.4, 2.75) | (0.15, 0.43, 2.85) | (0.15, 0.42, 2.81) | (0.13, 0.40, 2.79) | (0.12, 0.37, 2.67) | (0.10, 0.34, 2.57) | (0.07, 0.30, 2.58) | (0.14, 0.40, 2.77) | (0.15, 0.42, 2.82) |
C8 | (0.17, 0.45, 2.77) | (0.14, 0.43, 2.84) | (0.17, 0.45, 2.81) | (0.14, 0.42, 2.79) | (0.12, 0.38, 2.68) | (0.11, 0.35, 2.57) | (0.11, 0.38, 2.65) | (0.08, 0.32, 2.69) | (0.15, 0.44, 2.83) |
C9 | (0.12, 0.38, 2.70) | (0.14, 0.42, 2.79) | (0.13, 0.4, 2.76) | (0.13, 0.38, 2.74) | (0.11, 0.36, 2.62) | (0.09, 0.32, 2.51) | (0.12, 0.36, 2.60) | (0.13, 0.39, 2.72) | (0.07, 0.31, 2.69) |
Criteria | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 |
---|---|---|---|---|---|---|---|---|---|
C1 | 0.92 | 1.05 | 1.03 | 1.01 | 0.97 | 0.91 | 0.98 | 1.01 | 1.04 |
C2 | 0.99 | 0.92 | 0.99 | 0.99 | 0.94 | 0.89 | 0.93 | 0.98 | 1.01 |
C3 | 0.97 | 1.00 | 0.90 | 0.97 | 0.93 | 0.86 | 0.91 | 0.96 | 0.99 |
C4 | 0.93 | 0.96 | 0.94 | 0.85 | 0.91 | 0.82 | 0.86 | 0.92 | 0.95 |
C5 | 0.97 | 0.98 | 0.98 | 0.95 | 0.83 | 0.84 | 0.92 | 0.94 | 0.98 |
C6 | 0.90 | 0.91 | 0.89 | 0.88 | 0.82 | 0.73 | 0.86 | 0.87 | 0.89 |
C7 | 0.91 | 0.97 | 0.95 | 0.93 | 0.88 | 0.84 | 0.81 | 0.93 | 0.95 |
C8 | 0.96 | 0.96 | 0.97 | 0.94 | 0.89 | 0.84 | 0.88 | 0.85 | 0.96 |
C9 | 0.90 | 0.94 | 0.92 | 0.91 | 0.86 | 0.81 | 0.86 | 0.91 | 0.85 |
Criteria | Cluster | ||||
---|---|---|---|---|---|
C1 | 8.45 | 8.91 | −0.46 | 17.36 | Effect |
C2 | 8.70 | 8.63 | 0.06 | 17.33 | Causal |
C3 | 8.55 | 8.49 | 0.06 | 17.05 | Causal |
C4 | 8.43 | 8.14 | 0.29 | 16.57 | Causal |
C5 | 8.02 | 8.40 | −0.38 | 16.42 | Effect |
C6 | 7.53 | 7.73 | −0.20 | 15.26 | Effect |
C7 | 8.01 | 8.17 | −0.16 | 16.19 | Effect |
C8 | 8.37 | 8.26 | 0.12 | 16.63 | Causal |
C9 | 8.61 | 7.95 | 0.66 | 16.56 | Causal |
Criteria | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 |
---|---|---|---|---|---|---|---|---|---|
C1 | VI | EI | VI | VI | VI | EI | EI | EI | VHI |
C2 | AI | EI | AI | FI | FI | AI | AI | AI | HI |
C3 | AI | EI | EI | EI | EI | EI | EI | EI | HI |
C4 | VI | EI | AI | AI | VI | EI | VI | VI | HI |
C5 | VI | VI | VI | VI | VI | WI | WI | VI | HI |
C6 | VI | VI | VI | VI | VI | VI | VI | VI | LI |
C7 | LI | HI | HI | LI | LI | LI | NI | HI | LI |
C8 | VHI | LI | VHI | LI | LI | HI | LI | NI | HI |
C9 | LI | HI | HI | LI | LI | LI | LI | LI | NI |
Criteria | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 |
---|---|---|---|---|---|---|---|---|---|
C1 | FI | FI | VI | EI | WI | FI | FI | FI | VI |
C2 | FI | FI | VI | EI | WI | FI | FI | FI | VI |
C3 | FI | FI | VI | FI | WI | FI | FI | FI | VI |
C4 | FI | EI | VI | EI | WI | FI | FI | EI | VI |
C5 | FI | VI | VI | FI | WI | FI | FI | VI | VI |
C6 | FI | FI | VI | FI | WI | FI | FI | FI | VI |
C7 | FI | VI | VI | FI | EI | FI | FI | VI | VI |
C8 | FI | FI | VI | FI | WI | FI | FI | FI | VI |
C9 | FI | FI | VI | EI | WI | FI | FI | FI | VI |
Criteria | l | m | u |
---|---|---|---|
C1 | 0.1064358 | 0.1064358 | 0.1064358 |
C2 | 0.0591310 | 0.0591310 | 0.0591310 |
C3 | 0.0591310 | 0.0591310 | 0.0591310 |
C4 | 0.1708869 | 0.2278492 | 0.2660894 |
C5 | 0.1064358 | 0.1139246 | 0.1139246 |
C6 | 0.0591310 | 0.0591310 | 0.0591310 |
C7 | 0.1064358 | 0.1139246 | 0.1139246 |
C8 | 0.1330447 | 0.1330447 | 0.1330447 |
C9 | 0.1330447 | 0.1330447 | 0.1330447 |
Criteria | Weights |
C1 | 0.10644 |
C2 | 0.05913 |
C3 | 0.05913 |
C4 | 0.22473 |
C5 | 0.11268 |
C6 | 0.05913 |
C7 | 0.11268 |
C8 | 0.13304 |
C9 | 0.13304 |
Criteria | Weights |
---|---|
C1 | 0.1022 |
C2 | 0.0994 |
C3 | 0.1436 |
C4 | 0.1112 |
C5 | 0.0836 |
C6 | 0.1232 |
C7 | 0.1198 |
C8 | 0.1130 |
C9 | 0.1197 |
Expert | Best-Worst | Rating | CI | CR | |
---|---|---|---|---|---|
1 | C2-C5 | FI | 5.2900 | 0.5505 | 0.1041 |
2 | C2-C4 | AI | 8.0400 | 2.0000 | 0.2488 |
3 | C1-C5 | EI | 3.0000 | 1.7639 | 0.5880 |
4 | C3-C9 | VI | 6.6900 | 1.0000 | 0.1495 |
5 | C4-C7 | VI | 6.6900 | 1.0000 | 0.1495 |
6 | C2-C9 | VI | 6.6900 | 1.4062 | 0.2102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bongo, M.F.; Seva, R.R. Evaluating the Performance-Shaping Factors of Air Traffic Controllers Using Fuzzy DEMATEL and Fuzzy BWM Approach. Aerospace 2023, 10, 252. https://doi.org/10.3390/aerospace10030252
Bongo MF, Seva RR. Evaluating the Performance-Shaping Factors of Air Traffic Controllers Using Fuzzy DEMATEL and Fuzzy BWM Approach. Aerospace. 2023; 10(3):252. https://doi.org/10.3390/aerospace10030252
Chicago/Turabian StyleBongo, Miriam F., and Rosemary R. Seva. 2023. "Evaluating the Performance-Shaping Factors of Air Traffic Controllers Using Fuzzy DEMATEL and Fuzzy BWM Approach" Aerospace 10, no. 3: 252. https://doi.org/10.3390/aerospace10030252
APA StyleBongo, M. F., & Seva, R. R. (2023). Evaluating the Performance-Shaping Factors of Air Traffic Controllers Using Fuzzy DEMATEL and Fuzzy BWM Approach. Aerospace, 10(3), 252. https://doi.org/10.3390/aerospace10030252