Effects of Ozone Addition on Multi-Wave Modes of Hydrogen–Air Rotating Detonations
Abstract
:1. Introduction
2. Materials and Methods
- For ≥ , there is no inflow, the sonic nozzle is chocked, where is the inlet total pressure;
- For > > , the speed of inflow can be obtained by isentropic expansion:
- For ≤ , the sonic nozzle is chocked, , and the temperature and velocity are computed using Equation (4).
3. Results
3.1. Effects of Total Temperature on the Modes of Detonation
3.2. Effects of Ozone Addition
3.3. Discussion of Propagation Behaviors and Propulsion Performances
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolański, P. Detonative propulsion. Proc. Combust. Inst. 2013, 34, 125–158. [Google Scholar] [CrossRef]
- Nlcholls, J.A.; Cullen, R.E.; Ragland, K.W. Feasibility studies of a rotating detonation wave rocket motor. J. Spacecr. Rocket. 1966, 3, 893–898. [Google Scholar] [CrossRef]
- Yokoo, R.; Goto, K.; Kim, J.; Kawasaki, A.; Matsuoka, K.; Kasahara, J.; Matsuo, A.; Funaki, I. Propulsion performance of cylindrical rotating detonation engine. AIAA J. 2020, 58, 5107–5116. [Google Scholar] [CrossRef]
- Xia, Z.; Ma, H.; Ge, G.; Zhou, C. Visual experimental investigation on initiation process of H2/air rotating detonation wave in plane-radial structure. Int. J. Hydrog. Energy 2020, 45, 29579–29593. [Google Scholar] [CrossRef]
- Meng, Q.; Zhao, N.; Zhang, H. On the distributions of fuel droplets and in situ vapor in rotating detonation combustion with prevaporized n-heptane sprays. Phys. Fluids 2021, 33, 043307. [Google Scholar] [CrossRef]
- Rankin, B.A.; Fotia, M.L.; Naples, A.G.; Stevens, C.A.; Hoke, J.L.; Kaemming, T.A.; Theuerkauf, S.W.; Schauer, F.R. Overview of performance, application, and analysis of rotating detonation engine technologies. J. Propuls. Power 2017, 33, 131–143. [Google Scholar] [CrossRef]
- Lu, F.K.; Braun, E.M. Rotating detonation wave propulsion: Experimental challenges, modeling, and engine concepts. J. Propuls. Power 2014, 30, 1125–1142. [Google Scholar] [CrossRef]
- Viotsehkovsky, B.V. Stationary spin detonation. Sov. J. Appl. Mech. Tech. Phys. 1960, 3, 157–164. [Google Scholar]
- Bykovskii, F.A.; Zhdan, S.A.; Vedernikov, E.F. Continuous spin detonations. J. Propuls. Power 2006, 22, 1204–1216. [Google Scholar] [CrossRef]
- Bykovskii, F.A.; Vedernikov, E.F. Continuous detonation combustion of an annular gas-mixture layer. Combust. Explos. Shock. Waves 1996, 32, 489–491. [Google Scholar] [CrossRef]
- Bykovskii, F.A.; Mitrofanov, V.V. A continuous spin detonation in liquid fuel sprays. In Control of Detonation Processes; Elex-KM Publ.: Moscow, Russia, 2000; pp. 209–211. [Google Scholar]
- Zhou, R.; Wang, J.P. Numerical investigation of shock wave reflections near the head ends of rotating detonation engines. Shock Waves 2013, 23, 461–472. [Google Scholar] [CrossRef]
- Yi, T.H.; Lou, J.; Turangan, C.; Choi, J.Y.; Wolanski, P. Propulsive performance of a continuously rotating detonation engine. J. Propuls. Power 2011, 27, 171–181. [Google Scholar] [CrossRef]
- Uemura, Y.; Hayashi, A.K.; Asahara, M.; Tsuboi, N.; Yamada, E. Transverse wave generation mechanism in rotating detonation. Proc. Combust. Inst. 2013, 34, 1981–1989. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, S.; Luan, M.; Yao, S.; Xia, Z.; Wang, J. Experimental research on ignition, quenching, reinitiation and the stabilization process in rotating detonation engine. Int. J. Hydrog. Energy 2018, 43, 18521–18529. [Google Scholar] [CrossRef]
- Zhao, M.; Li, J.M.; Teo, C.J.; Khoo, B.C.; Zhang, H. Effects of Variable Total Pressures on Instability and Extinction of Rotating Detonation Combustion. Flow Turbul. Combust. 2020, 104, 261–290. [Google Scholar] [CrossRef]
- Jourdaine, N.; Tsuboi, N.; Ozawa, K.; Kojima, T.; Hayashi, A.K. Three-dimensional numerical thrust performance analysis of hydrogen fuel mixture rotating detonation engine with aerospike nozzle. Proc. Combust. Inst. 2019, 37, 3443–3451. [Google Scholar] [CrossRef]
- Liu, X.Y.; Cheng, M.; Zhang, Y.Z.; Wang, J.P. Design and optimization of aerospike nozzle for rotating detonation engine. Aerosp. Sci. Technol. 2022, 120, 107300. [Google Scholar] [CrossRef]
- Eto, S.; Tsuboi, N.; Kojima, T.; Hayashi, A.K. Three-dimensional numerical simulation of a rotating detonation engine: Effects of the throat of a converging-diverging nozzle on engine performance. Combust. Sci. Technol. 2016, 188, 2105–2116. [Google Scholar] [CrossRef]
- Shao, Y.; Liu, M.; Wang, J. Continuous detonation engine and effects of different types of nozzle on its propulsion performance. Chin. J. Aeronaut. 2010, 23, 647–652. [Google Scholar] [CrossRef]
- Huang, Y.; Xia, H.; Chen, X.; Luan, Z.; You, Y. Shock dynamics and expansion characteristics of an aerospike nozzle and its interaction with the rotating detonation combustor. Aerosp. Sci. Technol. 2021, 117, 106969. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, K.; Wang, Z.; Zhao, M.; Jiao, Z.; Wang, Y.; Fan, W. Study on the performance of a rotating detonation chamber with different aerospike nozzles. Aerosp. Sci. Technol. 2020, 107, 106338. [Google Scholar] [CrossRef]
- Huang, Z.; Zhao, M.; Zhang, H. Modelling n-heptane dilute spray flames in a model supersonic combustor fueled by hydrogen. Fuel 2020, 264, 116809. [Google Scholar] [CrossRef]
- Kindracki, J. Study of detonation initiation in kerosene–oxidizer mixtures in short tubes. Shock Waves 2014, 24, 603–618. [Google Scholar] [CrossRef]
- Kindracki, J. Experimental research on rotating detonation in liquid fuel–gaseous air mixtures. Aerosp. Sci. Technol. 2015, 43, 445–453. [Google Scholar] [CrossRef]
- Zhao, M.; Ren, Z.; Zhang, H. Pulsating detonative combustion in n-heptane/air mixtures under off-stoichiometric conditions. Combust. Flame 2021, 226, 285–301. [Google Scholar] [CrossRef]
- Fotia, M.L.; Schauer, F.; Kaemming, T.; Hoke, J. Experimental study of the performance of a rotating detonation engine with nozzle. J. Propuls. Power 2016, 32, 674–681. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, X.; Ju, Y. Kinetic studies of ozone assisted low temperature oxidation of dimethyl ether in a flow reactor using molecular-beam mass spectrometry. Combust. Flame 2016, 173, 187–194. [Google Scholar] [CrossRef]
- Han, W.; Liang, W.; Wang, C.; Wen, J.X.; Law, C.K. Spontaneous initiation and development of hydrogen-oxygen detonation with ozone sensitization. Proc. Combust. Inst. 2021, 38, 3575–3583. [Google Scholar] [CrossRef]
- Sun, W.; Gao, X.; Wu, B.; Ombrello, T. The effect of ozone addition on combustion: Kinetics and dynamics. Prog. Energy Combust. Sci. 2019, 73, 1–25. [Google Scholar] [CrossRef]
- Burke, M.P.; Chaos, M.; Ju, Y.; Dryer, F.L.; Klippenstein, S.J. Comprehensive H2/O2 kinetic model for high-pressure combustion. Int. J. Chem. Kinet. 2012, 44, 444–474. [Google Scholar] [CrossRef]
- Kurganov, A.; Noelle, S.; Petrova, G. Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton—Jacobi equations. SIAM J. Sci. Comput. 2001, 23, 707–740. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Li, Y.; Li, Y.; Wang, J. Spectral analysis and self-adjusting mechanism for oscillation phenomenon in hydrogen-oxygen continuously rotating detonation engine. Chin. J. Aeronaut. 2015, 28, 669–675. [Google Scholar] [CrossRef]
- Yao, K.; Yang, P.; Teng, H.; Chen, Z.; Wang, C. Effects of injection parameters on propagation patterns of hydrogen-fueled rotating detonation waves. Int. J. Hydrog. Energy 2022, 47, 38811–38822. [Google Scholar] [CrossRef]
- Chacon, F.; Gamba, M. OH PLIF visualization of an optically accessible rotating detonation combustor. In Proceedings of the AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN, USA, 19–22 August 2019; p. 4217. [Google Scholar] [CrossRef]
- Chacon, F.; Gamba, M. Study of parasitic combustion in an optically accessible continuous wave rotating detonation engine. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019; p. 0473. [Google Scholar] [CrossRef]
- Cocks, P.A.; Holley, A.T.; Rankin, B.A. High fidelity simulations of a non-premixed rotating detonation engine. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016; p. 0125. [Google Scholar] [CrossRef]
- Kumar, D.S.; Ivin, K.; Singh, A.V. Sensitizing gaseous detonations for hydrogen/ethylene-air mixtures using ozone and H2O2 as dopants for application in rotating detonation engines. Proc. Combust. Inst. 2021, 38, 3825–3834. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, C.; Lin, Y.; Zhou, M.; Jiang, B.; Liu, N.; Zhong, H.; Ju, Y. Kinetics and extinction of non-premixed cool and warm flames of dimethyl ether at elevated pressure. Proc. Combust. Inst. 2022, in press. [Google Scholar] [CrossRef]
- Paxson, D.E. Computational Assessment of the Impact of Wave Count on Rotating Detonation Engine Performance. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23–27 January 2023; p. 1290. [Google Scholar] [CrossRef]
0% | 0.1% | 0.5% | 1.0% | ||
---|---|---|---|---|---|
400 K | 1875.1 | 1869.1 | 1811.2 | 1822.6 | |
600 K | 1776.4 | 1707.3 | 1773.0 | 1763.4 | |
400 K | 5.21938 × 106 | 5.26051 × 106 | 5.07845 × 106 | 5.28373 × 106 | |
600 K | 4.43678 × 106 | 4.27587 × 106 | 4.48233 × 106 | 4.36204 × 106 |
0% | 0.1% | 0.5% | 1.0% | ||
---|---|---|---|---|---|
MPa | 400 K | 0.538 | 0.533 | 0.528 | 0.527 |
600 K | 0.476 | 0.466 | 0.470 | 0.486 | |
/s | 400 K | 209.5 | 206.4 | 201.3 | 201.7 |
600 K | 220.3 | 212.7 | 219.3 | 226.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Tian, C.; Yang, P. Effects of Ozone Addition on Multi-Wave Modes of Hydrogen–Air Rotating Detonations. Aerospace 2023, 10, 443. https://doi.org/10.3390/aerospace10050443
Wang Y, Tian C, Yang P. Effects of Ozone Addition on Multi-Wave Modes of Hydrogen–Air Rotating Detonations. Aerospace. 2023; 10(5):443. https://doi.org/10.3390/aerospace10050443
Chicago/Turabian StyleWang, Yang, Cheng Tian, and Pengfei Yang. 2023. "Effects of Ozone Addition on Multi-Wave Modes of Hydrogen–Air Rotating Detonations" Aerospace 10, no. 5: 443. https://doi.org/10.3390/aerospace10050443
APA StyleWang, Y., Tian, C., & Yang, P. (2023). Effects of Ozone Addition on Multi-Wave Modes of Hydrogen–Air Rotating Detonations. Aerospace, 10(5), 443. https://doi.org/10.3390/aerospace10050443