Stress Characteristics and Structural Optimization of Spacecraft Multilayer Insulation Components
Abstract
:1. Introduction
2. FSI Model of an MLI Component
2.1. FSI Model
2.2. Calculation Method
2.3. CFD Mathematical Model
2.4. Mesh Generation
2.5. Boundary Conditions
3. Results and Discussion
3.1. Fluid Model Result Analysis
3.2. Solid Model Result Analysis
3.3. Structure Optimization Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Ning, X.W.; Su, S. Experiment research on heat-transfer capability of the multi-layer insulation blankets under different vacuum degrees. Sci. Sin. Technol. 2015, 45, 263–267. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Li, M.; Shang, K. Development of Thermal Insulation Materials Technology for Spacesuit. J. Aeronaut. Mater. 2016, 36, 87–96. [Google Scholar] [CrossRef]
- Chen, J. Spacesuit Engineering; National Defense Industry Press: Beijing, China, 2004; pp. 206–215. [Google Scholar]
- Keller, C.W.; Cunnington, G.R.; Glassford, A.P. Thermal Performance of Multilayer Insulations Gas Evacuation Characteristics of Three Selected Multilayer Insulation Composites; NASA: Sunnyvale, CA, USA, 1974; N74–N22; p. 564.
- Jiang, J. Multilayer Insulation Materials and Their Application to Spacecrafts. Aerosp. Mater. Technol. 2000, 2000, 17–25. [Google Scholar] [CrossRef]
- Abramov, I.P.; Pozdnyakov, S.S.; Severin, G.I. Main Problems of the Russian Orlan-M space suit utilization for evas on the iss. Acta Astronaut. 2001, 48, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, D.G. Spacecraft Thermal Control Handbook, Volume I: Fundamental Technologies; The Aerospace Press: El Segundo, CA, USA, 2002. [Google Scholar]
- Liu, Z.; Li, Y.; Xie, F. Thermal performance of foam/MLI for cryogenic liquid hydrogen tank during the ascent and on orbit period. Appl. Therm. Eng. 2016, 98, 430–439. [Google Scholar] [CrossRef]
- Johnson, W.L. Launch ascent testing of a representative Altair ascent stage methane tank. Cryogenics 2012, 52, 278–282. [Google Scholar] [CrossRef]
- Riesco, M.E.; Mclean, C.H.; Mills, G.L. Venting and High Vacuum Performance of Low Density Multilayer Insulation. In Proceedings of the Advances Cryogenic Engineering Conference (CEC), Tucson, AZ, USA, 9 April 2010. [Google Scholar] [CrossRef]
- Fesmire, J.E.; Johnson, W.L.; Meneghelli, B.J.; Coffman, B.E. Cylindrical Boiloff Calorimeters for Testing of Thermal Insulation Systems. In Proceedings of the Advances Cryogenic Engineering Conference (CEC), Tucson, AZ, USA, 28 June–2 July 2015. [Google Scholar] [CrossRef]
- Bapat, S.L.; Narayankhedkar, K.G.; Lukose, T.P. Performance prediction of multilayer insulation. Cryogenics 1990, 30, 700–710. [Google Scholar] [CrossRef]
- Wei, W.; Li, X.; Wang, R.; Li, Y. Effects of structure and shape on thermal performance of Perforated Multi-Layer Insulation Blankets. Appl. Therm. Eng. 2008, 29, 1264–1266. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, R.; Lu, X.; Gu, A. The main influencing factors of high vacuum multilayer insulation. Vac. Cryog. 1998, 1998, 7–10. [Google Scholar]
- Ferrero, A.; Palestro, R.; Tavera, S. Qualification Campaign on ATV Enhanced Design MLI Blankets. In Proceedings of the 40th International Conference on Environmental Systems, Barcelona, Spain, 11–15 July 2010. [Google Scholar]
- Ren, H.; Zhao, X. The failure mechanism of multilayer insulation (MLI) in low-altitude environment and its protection. Spacecr. Environ. Eng. 2008, 25, 523–525. [Google Scholar] [CrossRef]
- Woodward, S.E.; Taylor, B.D.; Jones, T.W. A Method to have Multi-Layer Thermal Insulation Provide Damage Detection. In Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, USA, 23–26 April 2007. [Google Scholar]
- Li, F.; Huang, S.; Qi, Z.; Hao, J. Fluid Simulation and Reliability Evaluation for the Spacecraft Multilayer Insulation in the Rapid Pressure Relief Process of the Powered Phase. In Proceedings of the 2022 Global Reliability and Prognostics and Health Management Conference, Yantai, China, 2 March 2022. [Google Scholar] [CrossRef]
- Liu, Y.; Suo, S.; Guo, F.; Huang, M.; Sun, W.; Tan, B.; Huang, S.; Li, F. Stress uniformity of spacecraft multilayer thermal insulation components. J. Tsinghua Univ. Sci. Technol. 2023, 26, 1–10. [Google Scholar] [CrossRef]
- Yan, S.; Hu, F.; Huang, S. Leakage and inter-stage imbalance analysis of two-stage brush seals structure based on CFD and neural network. Aeroengine 2022, 48, 70–75. [Google Scholar] [CrossRef]
- Huang, S.; Suo, S.; Li, Y.; Yang, J.; Liu, S.; Wang, Y. Flows in brush seals based on a 2-D staggered tube bundle model. J. Tsinghua Univ. Sci. Technol. 2016, 56, 160–166. [Google Scholar] [CrossRef]
- Boustani, J.; Cadieux, F.; Kenway, G.K. FSI simulations of the ASPIRE SR01 supersonic parachute flight test. Aerosp. Sci. Technol. 2022, 2022, 126. [Google Scholar] [CrossRef]
- Yang, H.Q.; West, J.; Harris, R. Coupled FSI Analysis of Solid Rocket Motor with Flexible Inhibitors. J. Spacecr. Rocket. 2018, 55, 303–314. [Google Scholar] [CrossRef]
- Diosady, L.; Murman, S.; Carton, C.; Wiart, D. A higher-order space-time finite-element method for moving-body and FSI problems. In Proceedings of the Tenth International Conference on Computational Fluid Dynamics, Barcelona, Spain, 9–13 July 2018. [Google Scholar]
- Sances, D.J.; Gangadharan, S.N.; Sudermann, J.E. CFD Fuel Slosh Modeling of FSI in Spacecraft Propellant Tanks with Diaphragms. In Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando, FL, USA, 12–15 April 2010. [Google Scholar]
- Brehm, C.; Barad, M.F.; Kiris, C.C. An Immersed Boundary Method for Solving the Compressible Navier-Stokes Equations with FSI. In Proceedings of the 34th AIAA Applied Aerodynamics Conference, Washington, DC, USA, 13–17 June 2016. [Google Scholar] [CrossRef] [Green Version]
C1ε | C2ε | C3ε | Cμ | σk | σε |
---|---|---|---|---|---|
1.44 | 1.92 | 1.3 | 0.09 | 1 | 1.3 |
Factor | Level | |||
---|---|---|---|---|
1 | 2 | 3 | ||
1 | Number of component layers | 5 | 10 | 15 |
2 | Film thickness (10−3 mm) | 10 | 20 | 30 |
3 | Film hole diameter (mm) | 0.8 | 1 | 1.2 |
4 | Staggered hole distance (mm) | 4 | 6 | 7.75 |
Model | Number of Component Layers | Film Thickness (10−3 mm) | Film Hole Diameter (mm) | Staggered Hole Distance (mm) |
---|---|---|---|---|
1 | 5 | 10 | 0.8 | 4 |
2 | 5 | 20 | 1 | 6 |
3 | 5 | 30 | 1.2 | 7.75 |
4 | 10 | 10 | 1 | 7.75 |
5 | 10 | 20 | 1.2 | 4 |
6 | 10 | 30 | 0.8 | 6 |
7 | 15 | 10 | 1.2 | 6 |
8 | 15 | 20 | 0.8 | 7.75 |
9 | 15 | 30 | 1 | 4 |
1.717 | 3.361 | 2.3 | 2.007 | |
1.528 | 0.765 | 1.167 | 1.34 | |
1.314 | 0.433 | 1.092 | 1.213 | |
Rj | 0.403 | 2.928 | 1.208 | 0.794 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Liu, Y.; An, Q.; Huang, S.; Li, F. Stress Characteristics and Structural Optimization of Spacecraft Multilayer Insulation Components. Aerospace 2023, 10, 577. https://doi.org/10.3390/aerospace10070577
Sun W, Liu Y, An Q, Huang S, Li F. Stress Characteristics and Structural Optimization of Spacecraft Multilayer Insulation Components. Aerospace. 2023; 10(7):577. https://doi.org/10.3390/aerospace10070577
Chicago/Turabian StyleSun, Weiwei, Yue Liu, Qi An, Shouqing Huang, and Fangyong Li. 2023. "Stress Characteristics and Structural Optimization of Spacecraft Multilayer Insulation Components" Aerospace 10, no. 7: 577. https://doi.org/10.3390/aerospace10070577