Flow Structure behind Spanwise Pin Array in Supersonic Flow
Abstract
:1. Introduction
2. Experimental Setup and Instrumentation
2.1. Test Geometry
2.2. Schlieren Technique
2.3. Acetone PLIF and Mie Scattering
2.4. Optical Setup Using a Shack–Hartmann Wavefront Sensor
3. Results and Discussion
3.1. Overall Flow Structure
3.2. PLIF
3.3. Wavefront Measurements Using the Shack–Hartmann Wavefront Sensor (SHWFS)
3.4. Streamwise Features behind Pins Visualized by Mie Scattering
3.5. Cross-Flow Fine Scale Features Visualized by Mie Scattering
3.6. Visualization and Discussion of Different Flow Field Features
3.7. Enhanced Scattering Regions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
a | droplet radius |
d | pin diameter |
h | pin height |
l | pin center-to-center distance |
S | scattering amplitude function |
v | droplet volume |
γ | specific heat ratio |
θ | shock wave angle or angle from incident light direction |
gas mass density |
References
- Murphree, Z.R.; Combs, C.S.; Yu, W.M.; Dolling, D.S.; Clemens, N.T. Physics of unsteady cylinder-induced shock-wave/transitional boundary-layer interactions. J. Fluid Mech. 2021, 918, A39. [Google Scholar] [CrossRef]
- Sedney, R.; Kitchens, C.W. Separation ahead of Protuberances in Supersonic Turbulent Boundary Layers. AIAA J. 1977, 15, 546–552. [Google Scholar] [CrossRef]
- Sumner, D. Flow above the free end of a surface-mounted finite-height circular cylinder: A review. J. Fluids Struct. 2013, 43, 41–63. [Google Scholar] [CrossRef]
- Leidy, A.N.; Neel, I.T.; Tichenor, N.R.; Bowersox, R.D.W. High-Speed Schlieren Imaging of Cylinder-Induced Hypersonic-Shock-Wave–Boundary-Layer Interactions. AIAA J. 2020, 58, 3090–3099. [Google Scholar] [CrossRef]
- Gang, D.; Yi, S.; Niu, H. Highly separated axisymmetric step shock-wave/turbulent-boundary-layer interaction. J. Vis. 2021, 828, 461–470. [Google Scholar] [CrossRef]
- Hahn, P.V.; Frendi, A. Experimental investigation of supersonic turbulent flow over cylinders with various heights. AIAA J. 2013, 51, 1657–1666. [Google Scholar] [CrossRef]
- Dudley, J.G.; Ukeiley, L. Numerical Investigation of a Cylinder Immersed in a Supersonic Boundary Layer. AIAA J. 2012, 50, 257–270. [Google Scholar] [CrossRef]
- Dolling, D.S.; Bogdonoff, S.M. Scaling of interactions of cylinders with supersonic turbulent boundary layers. AIAA J. 1981, 19, 655–657. [Google Scholar] [CrossRef]
- Boukharfane, R.; Bouvelle, B.; Bouali, Z.; Mura, A. An Immersed Boundary Method to Simulate Compressible Reactive Flows featuring Shock-Wave Interactions with Three-Dimensional Solid Obstacles. In Proceedings of the 25th ICDERS, Leeds, UK, 2–7 August 2015. [Google Scholar]
- Guvernyuk, S.V.; Maksimov, F.A. Supersonic flow past a flat lattice of cylindrical rods. Comput. Math. Math. Phys. 2016, 56, 1012–1019. [Google Scholar] [CrossRef]
- Mehta, Y.; Jackson, T.L.; Zhang, J.; Balachandar, S. Numerical investigation of shock interaction with one-dimensional transverse array of particles in air. J. Appl. Phys. 2016, 119, 104901. [Google Scholar] [CrossRef]
- Kudryavtsev, A.N.; Epstein, D.B. Hysteresis phenomenon in supersonic flow past a system of cylinders. Fluid Dyn. 2012, 47, 395–402. [Google Scholar] [CrossRef]
- Williamson, C.; Govardhan, R. Vortex-induced vibrations. Annu. Rev. Fluid Mech. 2004, 36, 413–455. [Google Scholar] [CrossRef]
- Blevins, R.D. Flow-Induced Vibration; Van Nostrand Reinhold Co.: New York, NY, USA, 1977. [Google Scholar]
- Schmidt, B.E.; Shepherd, J.E. Oscillations in cylinder wakes at Mach 4. J. Fluid Mech. 2015, 785, R3. [Google Scholar] [CrossRef]
- Awasthi, M.; McCreton, S.; Moreau, D.; Doolan, C. Supersonic cylinder wake dynamics. J. Fluid Mech. 2022, 945, A4. [Google Scholar] [CrossRef]
- Slotnick, J.; Khodadoust, A.; Alonso, J.; Darmofal, D.; Gropp, W.; Lurie, E.; Mavriplis, D. CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences. NASA/CR-2014-218178, 1 March 2014. [Google Scholar]
- Shang, J.J.S. Landmarks and new frontiers of computational fluid dynamics. Adv. Aerodyn. 2019, 1, 5. [Google Scholar] [CrossRef]
- Lozano, A.; Yip, B.; Hanson, R.K. Acetone: A tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence. Exp. Fluids 1992, 13, 369–376. [Google Scholar] [CrossRef]
- Schulz, C.; Sick, V. Tracer-LIF diagnostics: Quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems. Prog. Energy Combust. Sci. 2005, 31, 75–121. [Google Scholar] [CrossRef]
- Thurber, M.C.; Grisch, F.; Kirby, B.J.; Votsmeier, M.; Hanson, R.K. Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics. Appl. Opt. 1998, 37, 4963–4978. [Google Scholar] [CrossRef]
- Zhang, K.; Gao, W.; Li, Y.; Zhang, Z.; Shang, S.; Zhang, C.; Chen, X.; Sun, K. Lower flammability limits of ethanol, acetone and ethyl acetate vapor mixtures in air. J. Loss Prev. Process Ind. 2022, 74, 104676. [Google Scholar] [CrossRef]
- Elliott, S.; Lax, P.; Leonov, S.B.; Carter, C.; Ombrello, T. Acetone PLIF visualization of the fuel distribution at plasma-enhanced supersonic combustion. Exp. Therm. Fluid Sci. 2022, 136, 110668. [Google Scholar] [CrossRef]
- Takahashi, H.; Hirota, M.; Oso, H.; Masuya, G. Measurement of Supersonic Injection Flowfield Using Acetone PLIF. Trans. Jpn. Soc. Aeronaut. Space Sci. 2009, 51, 252–258. [Google Scholar] [CrossRef]
- Takahashi, H.; Ikegami, S.; Masuya, G.; Hirota, M. Extended Quantitative Fluorescence Imaging for Multicomponent and Staged Injection into Supersonic Crossflows. J. Propuls. Power 2010, 26, 798–807. [Google Scholar] [CrossRef]
- Clemens, N.T.; Mungal, M.G. A planar Mie scattering technique for visualizing supersonic mixing flows. Exp. Fluids 1991, 11, 175–185. [Google Scholar] [CrossRef]
- Thurow, B.; Jiang, N.; Lempert, W. Review of ultra-high repetition rate laser diagnostics for fluid dynamic measurements. Meas. Sci. Technol. 2013, 24, 012002. [Google Scholar] [CrossRef]
- Gordeyev, S.; Jumper, E.; Whiteley, M.R. Aero-Optical Effects: Physics, Analysis and Mitigation; John Wiley & Sons: Hoboken, NJ, USA, 2023. [Google Scholar]
- Kalensky, M.; Spencer, M.F.; Jumper, E.J.; Gordeyev, S. Estimation of atmospheric optical turbulence strength in realistic airborne environments. Appl. Opt. 2022, 61, 6268–6279. [Google Scholar] [CrossRef] [PubMed]
- Lynch, K.P.; Miller, N.E.; Guildenbecher, D.R.; Butler, L.; Gordeyev, S. Aero-Optical Measurements of a Mach 8 Boundary Layer. AIAA J. 2023, 61, 991–1001. [Google Scholar] [CrossRef]
- Andrews, P.; Lax, P.; Elliott, S.; Firsov, A.; Leonov, S. Flow Characterization at Heated Air Supersonic Facility SBR-50. Fluids 2022, 7, 168. [Google Scholar] [CrossRef]
- Monin, A.; Yaglom, A. Statistical Fluid Mechanics; Mechanics of Turbulence: Cambridge, MA, USA, 1975; Volume 2. [Google Scholar]
- Southwell, W.H. Wave-front estimation from wave-front slope measurements. J. Opt. Soc. Am. 1980, 70, 998–1006. [Google Scholar] [CrossRef]
- Del Álamo, J.C.; Jiménez, J. Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 2009, 640, 5–26. [Google Scholar] [CrossRef]
- Bendat, J.S.; Piersol, A.G. Random Data: Analysis and Measurement Procedures, 4th ed.; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Staff, A.R. Equations, Tables, and Charts for Compressible Flow: Report 1135; Ames Aeronautical Laboratory: Moffett Field, CA, USA, 1953.
- Kerker, M. The Scattering of Light and Other Electromagnetic Radiation, 1st ed.; Academic Press: New York, NY, USA, 1969. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lax, P.A.; Elliott, S.; Gordeyev, S.; Kemnetz, M.R.; Leonov, S.B. Flow Structure behind Spanwise Pin Array in Supersonic Flow. Aerospace 2024, 11, 93. https://doi.org/10.3390/aerospace11010093
Lax PA, Elliott S, Gordeyev S, Kemnetz MR, Leonov SB. Flow Structure behind Spanwise Pin Array in Supersonic Flow. Aerospace. 2024; 11(1):93. https://doi.org/10.3390/aerospace11010093
Chicago/Turabian StyleLax, Philip A., Skye Elliott, Stanislav Gordeyev, Matthew R. Kemnetz, and Sergey B. Leonov. 2024. "Flow Structure behind Spanwise Pin Array in Supersonic Flow" Aerospace 11, no. 1: 93. https://doi.org/10.3390/aerospace11010093
APA StyleLax, P. A., Elliott, S., Gordeyev, S., Kemnetz, M. R., & Leonov, S. B. (2024). Flow Structure behind Spanwise Pin Array in Supersonic Flow. Aerospace, 11(1), 93. https://doi.org/10.3390/aerospace11010093