Guidance, Navigation, and Control for the Moon, Mars, and Beyond
1. Introduction
2. An Overview of the Contributions to This Special Issue
3. Concluding Remarks
Data Availability Statement
Conflicts of Interest
References
- space.com. SpaceX Catches Giant Starship Booster with ’Chopsticks’ on Historic Flight 5 Rocket Launch and Landing. Available online: https://www.space.com/spacex-starship-flight-5-launch-super-heavy-booster-catch-success-video (accessed on 15 October 2024).
- Gettatelli, F.; Benedikter, B.; Zavoli, A.; Pizzurro, S.; Cavallini, E. Convex Optimization of Ascent and Powered Descent of a Reusable Launch Vehicle. In Proceedings of the AIAA SCITECH 2023 Forum, Harbor, MD, USA, 23–27 January 2023. [Google Scholar] [CrossRef]
- Guadagnini, J.; De Zaiacomo, G.; Lavagna, M. Mission Performance Assessment of the Recovery and Vertical Landing of a Reusable Launch Vehicle. Aerospace 2023, 11, 35. [Google Scholar] [CrossRef]
- Spada, F.; Sagliano, M.; Topputo, F. Direct–Indirect Hybrid Strategy for Optimal Powered Descent and Landing. J. Spacecr. Rocket. 2023, 60, 1–18. [Google Scholar] [CrossRef]
- Sagliano, M.; Hernández, J.A.M.; Farì, S.; Heidecker, A.; Schlotterer, M.; Woicke, S.; Seelbinder, D.; Krummen, S.; Dumont, E. Unified-Loop Structured H-Infinity Control for Aerodynamic Steering of Reusable Rockets. J. Guid. Control. Dyn. 2023, 46, 815–837. [Google Scholar] [CrossRef]
- Sagliano, M.; Lu, P.; Johnson, B.; Seelbinder, D.; Theil, S. Six-Degrees-of-Freedom Aero-Propulsive Entry Trajectory Optimization. In Proceedings of the AIAA SCITECH 2024 Forum, Orlando, FL, USA, 8–12 January 2024. [Google Scholar] [CrossRef]
- Sagliano, M.; Heidecker, A.; Farì, S.; Jose Alfredo, M.H.; Schlotterer, M.; Woicke, S.; Seelbinder, D.; Dumont, E. Powered Atmospheric Landing Guidance for Reusable Rockets: The CALLISTO studies. In Proceedings of the AIAA SCITECH 2024 Forum, Orlando, FL, USA, 8–12 January 2024. [Google Scholar] [CrossRef]
- Robbiani, T.; Sagliano, M.; Topputo, F.; Seywald, H. Fast Desensitized Optimal Control for Rocket Powered Descent and Landing. In Proceedings of the AIAA SCITECH 2024 Forum, Orlando, FL, USA, 8–12 January 2024. [Google Scholar] [CrossRef]
- Federici, L.; Scorsoglio, A.; Zavoli, A.; Furfaro, R. Autonomous Guidance Between Quasiperiodic Orbits in Cislunar Space via Deep Reinforcement Learning. J. Spacecr. Rocket. 2023, 60, 1–12. [Google Scholar] [CrossRef]
- Bowerfind, S.; Taheri, E. Rapid Approximation of Low-Thrust Spacecraft Reachable Sets within Complex Two-Body and Cislunar Dynamics. Aerospace 2024, 11, 380. [Google Scholar] [CrossRef]
- Hofmann, C.; Topputo, F. Rapid Low-Thrust Trajectory Optimization in Deep Space Based on Convex Programming. J. Guid. Control. Dyn. 2021, 44, 1379–1388. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, H.; Li, S. Low-Energy Endgame Trajectory Design for Callisto Orbiter. J. Spacecr. Rocket. 2024, 1–9. [Google Scholar] [CrossRef]
- Simplício, P.; Marcos, A.; Bennani, S. Reusable Launchers: Development of a Coupled Flight Mechanics, Guidance, and Control Benchmark. J. Spacecr. Rocket. 2020, 57, 74–89. [Google Scholar] [CrossRef]
- De Oliveira, A.; Lavagna, M. Development of a Controlled Dynamics Simulator for Reusable Launcher Descent and Precise Landing. Aerospace 2023, 10, 993. [Google Scholar] [CrossRef]
- Schiassi, E.; D’Ambrosio, A.; Drozd, K.; Curti, F.; Furfaro, R. Physics-Informed Neural Networks for Optimal Planar Orbit Transfers. J. Spacecr. Rocket. 2022, 59, 834–849. [Google Scholar] [CrossRef]
- Li, W.; Zhang, X.; Dong, Y.; Lin, Y.; Li, H. Powered Landing Control of Reusable Rockets Based on Softmax Double DDPG. Aerospace 2023, 10, 590. [Google Scholar] [CrossRef]
- Federici, L.; Furfaro, R. Meta-Reinforcement Learning with Transformer Networks for Space Guidance Applications. In Proceedings of the AIAA SCITECH 2024 Forum 2024, Orlando, FL, USA, 8–12 January 2024. [Google Scholar] [CrossRef]
- Farì, S.; Sagliano, M.; Macés Hernández, J.A.; Schneider, A.; Heidecker, A.; Schlotterer, M.; Woicke, S. Physical Modeling and Simulation of Reusable Rockets for GNC Verification and Validation. Aerospace 2024, 11, 337. [Google Scholar] [CrossRef]
- Guédron, S.; Ishimoto, S.; Dumont, E.; Tatiossian, P.; Chavagnac, C.; Desmariaux, J.; Monchaux, D.; Frenoy, O.; Moreno, E.C.; Deremaux, C.; et al. CALLISTO DEMONSTRATOR: Focus on system aspects. In Proceedings of the 71th International Astronautical Congress, Dubai, UAE, 25–29 October 2021. [Google Scholar]
- D’Ambrosio, A.; Furfaro, R. Learning Fuel-Optimal Trajectories for Space Applications via Pontryagin Neural Networks. Aerospace 2024, 11, 228. [Google Scholar] [CrossRef]
- Mortari, D. The Theory of Connections: Connecting Points. Mathematics 2017, 5, 57. [Google Scholar] [CrossRef]
- Critchley-Marrows, J.J.R.; Wu, X.; Kawabata, Y.; Nakasuka, S. Autonomous and Earth-Independent Orbit Determination for a Lunar Navigation Satellite System. Aerospace 2024, 11, 153. [Google Scholar] [CrossRef]
- Sabatini, M.; Palmerini, G.B. Filtering Strategies for Relative Navigation in Lunar Scenarios Using LCNS. Aerospace 2024, 11, 59. [Google Scholar] [CrossRef]
- Bacu, V.; Nandra, C.; Sabou, A.; Stefanut, T.; Gorgan, D. Assessment of Asteroid Classification Using Deep Convolutional Neural Networks. Aerospace 2023, 10, 752. [Google Scholar] [CrossRef]
- Li, Y.; Liang, S.; Gao, J.; Chen, Z.; Qiao, S.; Yin, Z. Trajectory Optimization for the Nonholonomic Space Rover in Cluttered Environments Using Safe Convex Corridors. Aerospace 2023, 10, 705. [Google Scholar] [CrossRef]
- Malgarini, A.; Franzese, V.; Topputo, F. Application of Pulsar-Based Navigation for Deep-Space CubeSats. Aerospace 2023, 10, 695. [Google Scholar] [CrossRef]
- Santoro, R.; Pustorino, M.; Pontani, M. Low-Thrust Transfer to Quasi-Synchronous Martian Elliptic Orbit via Nonlinear Feedback Control. Aerospace 2023, 10, 670. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sagliano, M. Guidance, Navigation, and Control for the Moon, Mars, and Beyond. Aerospace 2024, 11, 863. https://doi.org/10.3390/aerospace11100863
Sagliano M. Guidance, Navigation, and Control for the Moon, Mars, and Beyond. Aerospace. 2024; 11(10):863. https://doi.org/10.3390/aerospace11100863
Chicago/Turabian StyleSagliano, Marco. 2024. "Guidance, Navigation, and Control for the Moon, Mars, and Beyond" Aerospace 11, no. 10: 863. https://doi.org/10.3390/aerospace11100863
APA StyleSagliano, M. (2024). Guidance, Navigation, and Control for the Moon, Mars, and Beyond. Aerospace, 11(10), 863. https://doi.org/10.3390/aerospace11100863