Energy Absorption Behavior of Elastomeric Matrix Composites Reinforced with Hollow Glass Microspheres
Abstract
:1. Introduction
2. Experimental Approach
2.1. Materials
2.2. Manufacturing
2.3. Testing
2.4. Metrics for Energy Absorption
3. Results and Discussion
3.1. Qualitative Results
3.2. Mechanical Characteristics
3.3. Analysis of Composite Modulus
- Particles are cubic in shape.
- Distribution of matrix volume to each particle is also cubic.
- Particles are uniformly distributed.
- Both matrix material and particles are elastic, isotropic, and homogeneous.
- The particle volume fraction is small enough that particle interactions can be ignored.
- The applied deformation is small, so linearity is maintained.
- The strains do not vary when components are in parallel.
- The stresses do not vary when components are connected in series.
3.4. Discussion Summary
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Acronyms | |
CE | Crush efficiency |
EA | Energy absorber |
EAE | Energy absorbed efficiency |
HGM | Hollow glass microsphere |
MTS | Materials Test System |
PU | Polyurethane |
RVE | Representative Volume Element |
SEM | Scanning electron microscope |
Notation | |
Elastic modulus of composite | |
Elastic modulus of matrix | |
Elastic modulus of particle | |
Strain | |
Densification strain | |
Crush efficiency | |
Energy absorbed efficiency | |
Stress | |
Mean crush stress | |
U() | Energy absorbed |
Volume fraction | |
vol% | Volume fraction |
References
- Al-Gemeel, A.; Zhuge, Y.; Youssf, O. Use of hollow glass microspheres and hybrid fibres to improve the mechanical properties of engineered cementitious composite. Constr. Build. Mater. 2018, 171, 858–870. [Google Scholar] [CrossRef]
- Park, J.; Howard, J.; Edery, A.; DeMay, M.; Wereley, N. Bilayer glass foam with tunable energy absorbing property by localizing voids density. Adv. Eng. Mater. 2021, 29, 2100105. [Google Scholar] [CrossRef]
- Shu, X.; Xi, H.; Wang, X.; Huang, S.; Wang, B. Preparation and energy absorption of flexible polyurethane foam with hollow glass microsphere. J. Cell. Plast. 2024, 60, 201–219. [Google Scholar] [CrossRef]
- Gupta, N.; Zeltmann, S.E.; Shunmugasamy, V.C.; Pinisetty, D. Applications of polymer matrix syntactic foams. JOM 2014, 66, 245–254. [Google Scholar] [CrossRef]
- Ding, J.; Ye, F.; Liu, Q.; Yang, C.; Gao, Y.; Zhang, B. Co-continuous hollow glass microspheres/epoxy resin syntactic foam prepared by vacuum resin transfer molding. J. Reinf. Plast. Compos. 2019, 38, 896–909. [Google Scholar] [CrossRef]
- Bolat, Ç.; Akgün, İ.C.; Göksenli, A. On the way to real applications: Aluminum matrix syntactic foams. Eur. Mech. Sci. 2020, 4, 131–141. [Google Scholar] [CrossRef]
- Ozer, H.; Can, Y.; Guclu, H.; Karen, I.; Yazici, M. Development of lightweight bumper beam and crashbox with thermoplastic composite and syntactic foam based sandwich materials. Automot. Technol. Conf. (Otekon) 2016, 565–570, Bursa, Turkey, 23-24 May. [Google Scholar]
- Swetha, C.; Kumar, R. Quasi-static uni-axial compression behaviour of hollow glass microspheres/epoxy based syntactic foams. Mater. Des. 2011, 32, 4152–4163. [Google Scholar] [CrossRef]
- Ding, J.; Liu, Q.; Ye, F.; Zhang, H.; Gao, Y.; Zhang, B. Compressive properties of co-continuous hollow glass microsphere/epoxy resin syntactic foams prepared using resin transfer molding. J. Reinf. Plast. Compos. 2020, 39, 132–143. [Google Scholar] [CrossRef]
- Mei, Y.; Fu, C.; Fu, Y.; Wang, E.; Yang, Q.; Ding, Y. Effect of particle size and distribution of hollow spheres on the compressive behavior of aluminum matrix syntactic foams. J. Mater. Res. 2023, 38, 4408–4419. [Google Scholar] [CrossRef]
- Buddhacosa, N.; Khatibi, A.; Das, R.; Giustozzi, F.; Galos, J.; Kandare, E. Crush behaviour and vibration damping properties of syntactic foam incorporating waste tyre-derived crumb rubber. J. Mater. Res. Technol. 2023, 26, 3214. [Google Scholar] [CrossRef]
- Fu, Z.; Zhang, W.; Zhao, T.; Wang, Y.; Duan, L.; Liu, H. Constitutive modeling and simulation of polyethylene foam under quasi-static and impact loading. J. Cell. Plast. 2024, 60, 59–78. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. Cellular Solids, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Alteneiji, M.; Krishnan, K.; GUan, Z.; Cantwell, W.; Zhao, Y.; Langdon, G. Dynamic response of aluminium matrix syntactic foams subjected to high strain-rate loading. Compos. Struct. 2023, 303, 116289. [Google Scholar] [CrossRef]
- Farley, G.L. Energy Absorption of Composite Materials. J. Compos. Mater. 1983, 17, 267–279. [Google Scholar] [CrossRef]
- Desjardins, S.P. The evolution of energy absorption systems for crashworthy helicopter seats. J. Am. Helicopter Soc. 2006, 51, 150–163. [Google Scholar] [CrossRef]
- Wereley, N.; Park, J.; Howard, J.; DeMay, M.; Edery, A. Tailorable energy absorbing cellular materials via sintering of dry powder printed hollow glass microspheres. SAMPE J. 2024, 60, 42–51. [Google Scholar] [CrossRef]
- Park, J.; Howard, J.; Edery, A.; Demay, M.; Wereley, N. Tunable energy absorbing property of bilayer amorphous glass foam via dry powder printing. Materials 2022, 15, 9080. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Wiest, A.; Conner, R. Uniaxial quasistatic and dynamic compressive response of foams made from hollow glass microspheres. J. Eur. Ceram. Soc. 2016, 36, 781–789. [Google Scholar] [CrossRef]
- Ren, S.; Hu, X.; Ren, H.; Wang, M.; Guo, A.; Liu, J.; Du, H.; Xian, L. Development of a buoyancy material of hollow glass microspheres/SiO2 for high-temperature applications. J. Alloys Compd. 2017, 721, 213–219. [Google Scholar] [CrossRef]
- Yazici, M.; Fahr, P.; Shukla, A.; Gunes, S.; Akay, S. Development of a polymer based syntactic foam for high temperature applications. Acta Phys. Pol. Ser. A 2014, 125, 526–528. [Google Scholar] [CrossRef]
- Yu, Q.; Zhao, Y.; Dong, A.; Li, Y. Mechanical properties of EPS filled syntactic foams prepared by VARTM. Compos. Part B Eng. 2018, 136, 126–134. [Google Scholar] [CrossRef]
- Rohatgi, P.K.; Gupta, N.; Schultz, B.F.; Luong, D.D. The synthesis, compressive properties, and applications of metal matrix syntactic foams. JOM 2011, 63, 36–42. [Google Scholar] [CrossRef]
- Baumeister, E.; Klaeger, S. Advanced new lightweight materials: Hollow-sphere composites (HSCs) for mechanical engineering applications. Adv. Eng. Mater. 2003, 5, 673–677. [Google Scholar] [CrossRef]
- Afolabi, O.; Mohan, T.; Kanny, K. Processing of low-density HGM-filled epoxy-syntactic foam composites with high specific properties for marine applications. Materials 2023, 16. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, P.; Zhou, Y.; Li, Z.; Yang, E.; Yu, T.; Yang, J. The effect of strain rate and filler volume fraction on the mechanical properties of hollow glass microsphere modified polymer. Compos. Part B Eng. 2016, 101, 53–63. [Google Scholar] [CrossRef]
- Gao, Y.; Ying, L.; Fan, Z.; Wei, Y. The failure behavior of syntactic foams as buoyancy materials for deepsea applications. Eur. J. Mech.-A/Solids 2024, 105, 105256. [Google Scholar] [CrossRef]
- Hobaica, E.; Cook, S. The characteristics of syntactic foams used for buoyancy. J. Cell. Plast. 1968, 4, 143–148. [Google Scholar] [CrossRef]
- Kim, H.; Plubrai, P. Manufacturing and failure mechanisms of syntactic foam under compression. Compos. Part A Appl. Sci. Manuf. 2004, 35, 1009–1015. [Google Scholar] [CrossRef]
- Wu, X.; Gao, Y.; Wang, Y.; Fan, R.; Ali, Z.; Yu, J.; Yang, K.; Sun, K.; Li, X.; Lei, Y.; et al. Recent developments on epoxy-based syntactic foams for deep sea exploration. J. Mater. Sci. 2020, 56, 2037–2076. [Google Scholar] [CrossRef]
- Mizera, K.; Chrzaszcz, M.; Ryszkowska, J. Thermal and mechanical properties of ureaurethane elastomer composites with hollow glass spheres. Polym. Compos. 2018, 39, 2019–2028. [Google Scholar] [CrossRef]
- Im, H.; Roh, S.C.; Kim, C.K. Fabrication of novel polyurethane elastomer composites containing hollow glass microspheres and their underwater applications. Ind. Eng. Chem. Res. 2011, 50, 7305–7312. [Google Scholar] [CrossRef]
- Upadhyay, A.; Ullas, A. Compressive properties of poly (Dimethylsiloxane)–hollow glass microballoons syntactic foams. Cell. Polym. 2022, 41, 243–251. [Google Scholar] [CrossRef]
- ASTM D695-15; Standard Test Method for Compressive Properties of Rigid Plastics. ASTM International: West Conshohocken, PA, USA, 2023.
- ISO-604; Plastics—Determination of Compressive Properties. International Organization for Standardization (ISO): Geneva, Switzerland, 2002.
- Gupta, N.; Ricci, W. Comparison of compressive properties of layered syntactic foams having gradient in microballoon volume fraction and wall thickness. Mater. Sci. Eng. A 2006, 427, 331–342. [Google Scholar] [CrossRef]
- Li, Q.; Magkiriadis, I.; Harrigan, J.J. Compressive strain at the onset of densification of cellular solids. J. Cell. Plast. 2006, 42, 371–392. [Google Scholar] [CrossRef]
- Avalle, M.; Belingardi, G.; Montanini, R. Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram. Int. J. Impact Eng. 2001, 25, 455–472. [Google Scholar] [CrossRef]
- Murray, C.M.; Mao, M.; Park, J.; Howard, J.; Wereley, N.M. Visco-elastic honeycomb structures with increased energy absorption and shape recovery performance using buckling initiators. Polymers 2023, 15, 3350. [Google Scholar] [CrossRef]
- Murray, C.; Wise, S.; Wereley, N. Electroplating additively manufactured honeycomb structures to increase energy absorption under quasi-static crush. SAMPE J. 2024, 60, 38–45. [Google Scholar] [CrossRef]
- Santiso, E.; Müller, E.A. Dense packing of binary and polydisperse hard spheres. Mol. Phys. 2002, 100, 2461–2469. [Google Scholar] [CrossRef]
- Bourkas, G.; Prassianakis, I. Kytopoulos, V.; Sideridis, E.; Younis, C. Estimation of elastic moduli of particulate composites by new models and comparison with moduli measured by tension, dynamic, and ultrasonic tests. Adv. Mater. Sci. Eng. 2010, 2010, 891824. [Google Scholar] [CrossRef]
- Moss, S.; Beckage, M. Vehicle crash test data acquisition—a review of requirements, technologies and standards. SAE Technical Paper 2009-01-0054, SAE International: Warrendale, PA, USA, 2009. [Google Scholar] [CrossRef]
HGM Volume Fraction [%] | Density [g/cc] | Peak Crush Efficiency [%] | Peak EA Efficiency [%] | Densification Strain [- ] | Mean Crush Stress [MPa] |
---|---|---|---|---|---|
0 | 1.00 ± 0.00 | 44.70 ± 1.36 | - | - | 0.49 ± 0.09 |
40 | 0.76 ± 0.00 | 51.33 ± 3.18 | - | - | 1.04 ± 0.10 |
55 | 0.64 ± 0.01 | 57.45 ± 4.41 | 26.54 ± 2.45 | 0.54 ± 0.02 | 1.35± 0.09 |
60 | 0.62 ± 0.01 | 67.45 ± 2.55 | 30.80 ± 3.15 | 0.54 ± 0.02 | 1.15± 0.17 |
65 | 0.65 ± 0.01 | 76.38 ± 5.44 | 34.63 ± 4.24 | 0.52 ± 0.02 | 1.09 ± 0.11 |
70 | 0.51 ± 0.00 | 77.44 ± 1.14 | 32.43 ± 1.24 | 0.52 ± 0.01 | 0.97 ± 0.10 |
100 | 0.37 | 89.26 | 55.96 | 0.63 | 1.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schumacher, G.; Murray, C.M.; Park, J.; Wereley, N.M. Energy Absorption Behavior of Elastomeric Matrix Composites Reinforced with Hollow Glass Microspheres. Aerospace 2024, 11, 1012. https://doi.org/10.3390/aerospace11121012
Schumacher G, Murray CM, Park J, Wereley NM. Energy Absorption Behavior of Elastomeric Matrix Composites Reinforced with Hollow Glass Microspheres. Aerospace. 2024; 11(12):1012. https://doi.org/10.3390/aerospace11121012
Chicago/Turabian StyleSchumacher, Gabrielle, Colleen M. Murray, Jungjin Park, and Norman M. Wereley. 2024. "Energy Absorption Behavior of Elastomeric Matrix Composites Reinforced with Hollow Glass Microspheres" Aerospace 11, no. 12: 1012. https://doi.org/10.3390/aerospace11121012
APA StyleSchumacher, G., Murray, C. M., Park, J., & Wereley, N. M. (2024). Energy Absorption Behavior of Elastomeric Matrix Composites Reinforced with Hollow Glass Microspheres. Aerospace, 11(12), 1012. https://doi.org/10.3390/aerospace11121012