Spectral Imager of the Solar Atmosphere: The First Extreme-Ultraviolet Solar Integral Field Spectrograph Using Slicers
Abstract
:1. The Need for Solar Integral Field Spectrographs in the Extreme Ultraviolet
2. SISA Science in the SPARK Framework
- How does impulsive energy release events lead to accelerate particles in the solar atmosphere? SISA shall provide several measurements of accelerated particles in EUV, both electrons through line ratios (see Section 3.2) and ions through line profiles (see Section 3.3). The integral field spectroscopy of SISA will offer insights as to where and when the particles are accelerated, while the fast cadence will reveal how long they persist at a given location. Measuring the spatial distribution of the accelerated particles, and their relationship to magnetic field (see Section 3.1) and field-aligned emission structures, will also offer insights as to the conditions required for particle acceleration, both in solar flares and active-region corona. The fast-cadence SISA observations with multiple hot lines (Table 1) shall also clarify the relationship of particle acceleration to plasma heating. Finally, since the emission line profiles reflect the line-of-sight distribution of ion velocities, from zero to very high velocities, they provide key information about both the high-energy particles simultaneously with the low-energy end of the distribution, which is not accessible with either LISSAN or FOXSI instruments.
- How is impulsively released energy transported and dissipated in the solar atmosphere? Once heated, the hot flare plasma evolves rapidly on short timescales depending on the conditions. The hot flare lines observed by SISA cover some of the largest available temperatures via EUV line spectroscopy (Table 1) and are thus favourable for characterising the hot flare plasma and its evolution. Typically, the hot plasma is observed first above the chromospheric footpoints in the form of localised bright kernels, e.g., Refs. [13,14], from which the flare loops are filled. Indications exist, however, that these kernels located within bright flare ribbons can already be pre-heated by electron beams [15,16]. These kernels have long been observed to move along ribbons, e.g., Refs. [17,18,19], which have been identified as a consequence of 3D slipping reconnection, e.g., Refs. [4,14,20,21,22,23,24], where the field lines do not reconnect in an X-point, but slip (slide) past each other as they mutually exchange their connectivities see, e.g., Refs. [25,26,27]. The existence of this process implies that the location of the energy deposition into the lower solar atmosphere changes with time as the slipping reconnection proceeds. In the past, it has been extremely difficult to identify the spectroscopic signatures of this process due to the slit not being able (or designed) to track a particular moving (slipping) kernel. Using sit-and-stare observations Li and Zhang [22] showed that the slipping reconnection is likely be related to periodic changes in the Si iv spectral line intensities accompanied by enhanced redshifts, as well as increased nonthermal widths, as individual kernels moved through the location of the slit. Recently, Lörinčík et al. [4] detected extremely short-lived blueshifts (upflows), lasting only seconds, and reaching about 50 km s−1 in chromospheric and transition-region lines, at the leading edges of the slipping kernels. The authors argued that such detection can be a matter of luck with slit spectrographs, as the slit has to be in the right place at the right time. The IFS provided by SISA shall be enormously helpful in this regard, as it can image the entire flare region and allow us to identify how the flaring atmosphere undergoing slipping reconnection responds at short temporal cadences, as well as enable the tracking of the spectral evolution of individual moving kernels as they slip along flare ribbons. In addition, the SISA thermal coverage would help in establishing whether the blueshifts at the leading edges of ribbons or individual kernels are related to the evaporation of hot flare plasma.The fastest upflow velocities of the evaporating hot flaring plasma filling coronal loops are detected in the hottest flare lines [13], while the ‘cooler’ (T < ∼1 MK) lines show downflows at the same location, implying multi-directional flows that could occur due to rapid plasma evolution. The fast SISA cadence and the integral field spectroscopy, coupled with the available plasma diagnostics (Section 3), will provide key information on the thermal evolution of the heated plasma. For example, the diagnostics of electron density coupled with the measured timescales of plasma cooling will allow one to discern whether the plasma is in ionisation equilibrium, and at what times. Meanwhile, the emission line profiles will provide information on the presence and role of turbulence. Mass flows and the thermodynamic evolution of the atmosphere determined via spectroscopy can reveal much about the energy input into the lower atmosphere during flares, especially when combined with state-of-the-art modelling. For example, flare observations from the Interface Region Imaging Spectrograph IRIS, as seen in Refs. [10,28], have been used in tandem with flare loop models to interrogate our understanding of flare processes [29,30]. There is a major model–data discrepancy in the duration of the flare gradual phase, with models under-predicting the cooling time by an order of magnitude. SISA observations that provide plasma diagnostics over the full field of view, with high cadence, will help illuminate the source of the continued heating or energy input. Measurements of nonthermal line widths from lines formed at different temperatures will inform us about the roles of turbulence in suppressing thermal conduction, e.g., Ref. [31], and the potential role of Alfvén waves in flares, e.g., Refs. [32,33].SISA measurements will provide key diagnostics of processes that occur within flares on short timescales. For example, a key open question in the solar flare energy release is what drives “bursty” pulsations and the oscillatory signatures observed in flare emission, known as quasi-periodic pulsations (QPPs), reviews of which can be found in Refs. [34,35,36]. QPPs and other oscillatory behaviour observed in flares have timescales ranging from sub-seconds to minutes, and are identified across the entire electromagnetic spectrum from radio, EUV [37], X-rays [38], and even -rays [39], essentially encompassing all aspects of the flaring process. The exact nature and underlying physical mechanism for the generation of these pulsations remains highly debated. It is suggested that they may be related to magnetohydrodynamic oscillations in/near the flare site, or possibly connected to the intermittent or time-dependent magnetic reconnection itself. Observational limitations of temporal cadences, spatial resolution, and saturation issues with EUV imagers have to date limited our ability to observationally identify the locations of the emission modulations and constrain the suggested models—both of which are directly linked to energy release and transport in solar flares. Some work has aimed to identify the spatial locations of the modulations, e.g., Refs. [22,37,40,41,42], although there are limits to the temporal cadences and spatial diagnostics, for example, there is only spatial observation along the slit position. In order to correctly identify the mechanism producing QPPs, the characteristics of the temporal, spatial, and spectral properties of pulsations and their relationships across energy ranges and temperatures are required. The SISA EUV measurements, with its high temporal cadence and its ability to perform the imaging spectroscopy of the flaring region (rather than just over the slit), will allow us to observe rapid changes in the flaring regions such as these pulsations, with information regarding where and at what temperature they originate in the flare structure.Finally, although there is unambiguous evidence for the presence of nonthermal particles in flares, other mechanisms may also act to transport liberated magnetic energy. High-frequency Alfvén waves have been proposed as a means of transporting energy the magnetic reconnection site to the lower atmosphere and heating it, e.g., as shown in Refs. [43,44,45]. Modelling has revealed that those waves do indeed heat the chromosphere, and drive explosive evaporation into the corona [46,47]. While it is likely that MHD waves are produced during flares, which are fundamentally a large-scale change in the corona’s magnetic field, the proportion of energy that manifests itself in the form of waves compared to energetic particles is not known. SISA’s capability to measure the coronal magnetic field before, during, and after a flare will provide crucial information regarding field perturbations, density diagnostics, and the Alfvén speed, which will help to provide estimates of the Poynting flux carried by MHD waves. Furthermore, the nonthermal broadening of ions will also help constrain the Poynting flux see discussion, e.g., in Ref. [32].
- What are the physical origins of space weather events in the low-corona? Both coronal mass ejections (CMEs) and jets inject magnetic field and plasma into the heliosphere, where they disturb the solar wind flow. Although previous studies of CME source regions have provided details about the physical processes taking place once a CME has initiated, many questions remain regarding their initiation and similarities with smaller-scale flux rope eruptions within solar jets. Observing the initiation of both CMEs and jets spectroscopically is quite difficult with current or planned instrumentation for several reasons, including the use of a single slit, long exposure times, or limited diagnostics and temperature coverage provided by the available spectral lines. SISA will capture these processes at cadences down to a few seconds from every pixel within its entire field of view. This will allow us to identify the locations, spectral properties, plasma conditions, and thus the mechanisms behind the processes of CME and jet initiations. In larger eruptive events, SISA will be able to capture the entirety of the precursor phase of the associated flare. The spatial localisation of the precursors with respect to the subsequent flare and eruption allows for the identification of the CME initiation mechanism, whether by tether-cutting, ideal MHD instability, or breakout, as can be seen in Ref. [48] for every flare observed. The high-temperature lines observed by SISA (Table 1) will provide information on the plasma properties during the onset of eruptive events, including the possibly constant, isothermal 10–15 MK onset temperatures detected by broad-band X-ray instrumentation [49]. These lines will also allow the quantification of plasma heating (via temperature and density measurements) as well as turbulence (via line broadening) in the precursor phase.
- How is the corona above active regions heated? It is currently thought that the solar corona is heated by individual impulsive “nanoflare” events that release small amounts of energy at either high or low frequencies, e.g., in Refs. [6,7,8,50,51]. A key prediction of such impulsive energy release is the existence of small amounts of hot 5–10 MK plasma, which is difficult to detect spectroscopically with currently available instrumentation [52,53,54,55,56]. The spectral range of SISA contains several hot lines (Table 1) that will provide stringent constraints on the amount of plasma reaching 10 MK temperatures. The Fe xvii and Ni xvii lines (Table 1) shall provide additional constraints. SISA will also work in tandem with the HXR and SXR observations to constrain the high-T component of the impulsive energy release by nanoflares. Another key observable of impulsive energy release is that the plasma should at least temporarily be out of thermal equilibrium, showing either the presence of accelerated particles, out-of-ionisation equilibrium plasma, e.g., Refs. [57,58,59,60], or both. The coronal Fe xi lines formed in both quiet Sun and active regions offer such diagnostics for electrons [61,62] while the line profiles of multiple ionisation stages shall provide information on ion velocity distribution [63,64,65,66]. Furthermore, the temporal evolution of the line intensities of multiple ionisation stages obtained in high cadences in combination with electron density diagnostics (Section 3.7) shall provide information on both the presence of energy release events and constraints on the presence of non-equilibrium ionisation for multiple coronal structures at the same time, a feat not possible with current or planned instrumentation. Finally, it will become possible for the first time to tie all these measurements to the measurements of the underlying magnetic field (Section 3.1), thus allowing for discerning whether there are different heating mechanisms for different magnetic structures within the active and quiescent solar corona.
3. SISA EUV Measurements and Diagnostics
3.1. Magnetic Field Measurements
3.2. Electron Temperature and Nonthermal Diagnostics
3.3. Ion Temperature and Nonthermal Diagnostics
3.4. Electron Density Diagnostics
3.5. Elemental Composition Diagnostics
3.6. Flare Lines
3.7. Departures from Ionisation Equilibrium
3.8. Predicted Signal in the Main SISA Lines
4. Image Slicer Technology in the EUV Regime
5. SISA Instrument Proposal
5.1. Specifications
5.2. Layout
5.3. Components
5.4. Efficiency
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIA | Atmospheric Imaging Assembly |
AIV | Alignment Integration and Verification |
CCD | Charge-Coupled Device |
CME | Coronal Mass Ejection |
CUBES | Cassegrain U-Band Efficient Spectrograph |
EIS | EUV Imaging Spectrometer Onboard Hinode |
ELT | Extremely Large Telescope |
EUI | Extreme Ultraviolet Imager (onboard Solar Orbiter) |
EUV | Extreme Ultraviolet |
EUVST | Extreme Ultraviolet High-Throughput Spectroscopic Telescope |
EVE | EUV Variability Experiment Onboard SDO |
FIP | First Ionisation Potential |
FOXSI | Focusing Optics X-ray Solar Imager |
FRIDA | Infrared Imager and Dissector for Adaptive optics |
Full Width Half Maximum | |
FUV | Far Ultraviolet |
FWHM | Full Width Half Maximum |
GOES | Geostationary Operational Environmental Satellite |
GNIRS | Gemini Near-Infrared Spectrograph |
GRIS | Gregor Infrared Spectrograph |
GTC | Gran Telescopio Canarias |
HARMONI | High-Angular-Resolution Monolithic Optical |
and Near-Infrared Integral field spectrograph | |
HXR | Hard X-ray |
IFS | Integral Field Spectrograph |
IFU | Integral Field Unit |
INFUSE | Integral Field Ultraviolet Spectroscopic Experiment |
LISSAN | Large Imaging Spectrometer for Solar Accelerated Nuclei |
LUCES | Looking Up Image Slicer Optimum Capabilities in the EUV for Space |
METIS | Mid-Infrared E-ELT Imager and Spectrograph |
MHD | Magnetohydrodynamic |
MINOS | Manufacturing of Image Slicer Novel technology for Space |
MIRI | Mid-Infrared Instrument |
MUSE | Multi-Slit Solar Explorer |
QPP | Quasi-Periodic Pulsations |
SDO | Solar Dynamics Observatory |
SISA | Spectral Imaging of the Solar Atmosphere |
SNIFS | Solar Eruption Integral Field Spectrograph |
SPARK | Solar Particle Acceleration, Radiation, and Kinetics Mission |
SXR | Soft X-ray |
TRL | Technology Readiness Level |
References
- Fletcher, L.; Dennis, B.R.; Hudson, H.S.; Krucker, S.; Phillips, K.; Veronig, A.; Battaglia, M.; Bone, L.; Caspi, A.; Chen, Q.; et al. An Observational Overview of Solar Flares. Space Sci. Rev. 2011, 159, 19–106. [Google Scholar] [CrossRef]
- Milligan, R.O. Extreme Ultra-Violet Spectroscopy of the Lower Solar Atmosphere During Solar Flares (Invited Review). Sol. Phys. 2015, 290, 3399–3423. [Google Scholar] [CrossRef]
- De Pontieu, B.; Testa, P.; Martínez-Sykora, J.; Antolin, P.; Karampelas, K.; Hansteen, V.; Rempel, M.; Cheung, M.C.M.; Reale, F.; Danilovic, S.; et al. Probing the Physics of the Solar Atmosphere with the Multi-slit Solar Explorer (MUSE). I. Coronal Heating. Astrophys. J. 2022, 926, 52. [Google Scholar] [CrossRef]
- Lörinčík, J.; Dudík, J.; Polito, V. Blueshifted Si IV 1402.77 Å Line Profiles in a Moving Flare Kernel Observed by IRIS. Astrophys. J. 2022, 934, 80. [Google Scholar] [CrossRef]
- Klimchuk, J.A. On Solving the Coronal Heating Problem. Sol. Phys. 2006, 234, 41–77. [Google Scholar] [CrossRef]
- Klimchuk, J.A. Key aspects of coronal heating. Philos. Trans. R. Soc. Lond. Ser. A 2015, 373, 20140256. [Google Scholar] [CrossRef]
- Cargill, P.J. Active Region Emission Measure Distributions and Implications for Nanoflare Heating. Astrophys. J. 2014, 784, 49. [Google Scholar] [CrossRef]
- Schmelz, J.T.; Winebarger, A.R. What can observations tell us about coronal heating? Philos. Trans. R. Soc. Lond. Ser. A 2015, 373, 20140257. [Google Scholar] [CrossRef]
- Culhane, J.L.; Harra, L.K.; James, A.M.; Al-Janabi, K.; Bradley, L.J.; Chaudry, R.A.; Rees, K.; Tandy, J.A.; Thomas, P.; Whillock, M.C.R.; et al. The EUV Imaging Spectrometer for Hinode. Sol. Phys. 2007, 243, 19–61. [Google Scholar] [CrossRef]
- De Pontieu, B.; Title, A.M.; Lemen, J.R.; Kushner, G.D.; Akin, D.J.; Allard, B.; Berger, T.; Boerner, P.; Cheung, M.; Chou, C.; et al. The Interface Region Imaging Spectrograph (IRIS). Sol. Phys. 2014, 289, 2733–2779. [Google Scholar] [CrossRef]
- Chamberlin, P.C.; Schmit, D.J.; Daw, A.N.; Polito, V.; Gong, Q.; Milligan, R.O. The Solar eruptioN Integral Field Spectrograph (SNIFS) Sounding Rocket. In Proceedings of the AGU Fall Meeting Abstracts, Online, 1–17 December 2020; Volume 2020, p. SH056-03. [Google Scholar]
- Knoer, V.; Chamberlin, P.; Daw, A.; Gong, Q.; Milligan, R.; Polito, V.; Schmit, D. A Novel Integral Field Spectrograph Design for taking High-Cadence Spectral Solar Images: SNIFS. In Proceedings of the AGU Fall Meeting Abstracts, Online, 13–17 December 2021; Volume 2021, p. SH55B-1837. [Google Scholar]
- Young, P.R.; Doschek, G.A.; Warren, H.P.; Hara, H. Properties of a Solar Flare Kernel Observed by Hinode and SDO. Astrophys. J. 2013, 766, 127. [Google Scholar] [CrossRef]
- Dudík, J.; Polito, V.; Janvier, M.; Mulay, S.M.; Karlický, M.; Aulanier, G.; Del Zanna, G.; Dzifčáková, E.; Mason, H.E.; Schmieder, B. Slipping Magnetic Reconnection, Chromospheric Evaporation, Implosion, and Precursors in the 2014 September 10 X1.6-Class Solar Flare. Astrophys. J. 2016, 823, 41. [Google Scholar] [CrossRef]
- Panos, B.; Kleint, L.; Huwyler, C.; Krucker, S.; Melchior, M.; Ullmann, D.; Voloshynovskiy, S. Identifying Typical Mg II Flare Spectra Using Machine Learning. Astrophys. J. 2018, 861, 62. [Google Scholar] [CrossRef]
- Polito, V.; Kerr, G.S.; Xu, Y.; Sadykov, V.M.; Lorincik, J. Solar Flare Ribbon Fronts. I. Constraining Flare Energy Deposition with IRIS Spectroscopy. Astrophys. J. 2023, 944, 104. [Google Scholar] [CrossRef]
- Qiu, J.; Lee, J.; Gary, D.E.; Wang, H. Motion of Flare Footpoint Emission and Inferred Electric Field in Reconnecting Current Sheets. Astrophys. J. 2002, 565, 1335–1347. [Google Scholar] [CrossRef]
- Fletcher, L.; Pollock, J.A.; Potts, H.E. Tracking of TRACE Ultraviolet Flare Footpoints. Sol. Phys. 2004, 222, 279–298. [Google Scholar] [CrossRef]
- Sun, X.; Hoeksema, J.T.; Liu, Y.; Aulanier, G.; Su, Y.; Hannah, I.G.; Hock, R.A. Hot Spine Loops and the Nature of a Late-phase Solar Flare. Astrophys. J. 2013, 778, 139. [Google Scholar] [CrossRef]
- Dudík, J.; Janvier, M.; Aulanier, G.; Del Zanna, G.; Karlický, M.; Mason, H.E.; Schmieder, B. Slipping Magnetic Reconnection during an X-class Solar Flare Observed by SDO/AIA. Astrophys. J. 2014, 784, 144. [Google Scholar] [CrossRef]
- Li, T.; Zhang, J. Slipping Magnetic Reconnection Triggering a Solar Eruption of a Triangle-shaped Flag Flux Rope. Astrophys. J. Lett. 2014, 791, L13. [Google Scholar] [CrossRef]
- Li, T.; Zhang, J. Quasi-periodic Slipping Magnetic Reconnection During an X-class Solar Flare Observed by the Solar Dynamics Observatory and Interface Region Imaging Spectrograph. Astrophys. J. Lett. 2015, 804, L8. [Google Scholar] [CrossRef]
- Gou, T.; Liu, R.; Wang, Y.; Liu, K.; Zhuang, B.; Chen, J.; Zhang, Q.; Liu, J. Stereoscopic Observation of Slipping Reconnection in a Double Candle-flame-shaped Solar Flare. Astrophys. J. Lett. 2016, 821, L28. [Google Scholar] [CrossRef]
- Pan, H.; Gou, T.; Liu, R. Sigmoid Formation through Slippage of a Single J-shaped Coronal Loop. Astrophys. J. 2022, 937, 77. [Google Scholar] [CrossRef]
- Aulanier, G.; Pariat, E.; Démoulin, P.; Devore, C.R. Slip-Running Reconnection in Quasi-Separatrix Layers. Sol. Phys. 2006, 238, 347–376. [Google Scholar] [CrossRef]
- Aulanier, G.; Janvier, M.; Schmieder, B. The standard flare model in three dimensions. I. Strong-to-weak shear transition in post-flare loops. A&A 2012, 543, A110. [Google Scholar] [CrossRef]
- Janvier, M.; Aulanier, G.; Pariat, E.; Démoulin, P. The standard flare model in three dimensions. III. Slip-running reconnection properties. A&A 2013, 555, A77. [Google Scholar] [CrossRef]
- De Pontieu, B.; Polito, V.; Hansteen, V.; Testa, P.; Reeves, K.K.; Antolin, P.; Nóbrega-Siverio, D.E.; Kowalski, A.F.; Martinez-Sykora, J.; Carlsson, M.; et al. A New View of the Solar Interface Region from the Interface Region Imaging Spectrograph (IRIS). Sol. Phys. 2021, 296, 84. [Google Scholar] [CrossRef]
- Kerr, G.S. Interrogating Solar Flare Loop Models with IRIS Observations 1: Overview of the Models, and Mass flows. Front. Astron. Space Sci. 2022, 9, 1060856. [Google Scholar] [CrossRef]
- Kerr, G.S. Interrogating Solar Flare Loop Models with IRIS Observations 2: Plasma Properties, Energy Transport, and Future Directions. Front. Astron. Space Sci. 2023, 9, 1060862. [Google Scholar] [CrossRef]
- Allred, J.C.; Kerr, G.S.; Gordon Emslie, A. Solar Flare Heating with Turbulent Suppression of Thermal Conduction. Astrophys. J. 2022, 931, 60. [Google Scholar] [CrossRef]
- Cheung, M.C.M.; Martínez-Sykora, J.; Testa, P.; De Pontieu, B.; Chintzoglou, G.; Rempel, M.; Polito, V.; Kerr, G.S.; Reeves, K.K.; Fletcher, L.; et al. Probing the Physics of the Solar Atmosphere with the Multi-slit Solar Explorer (MUSE). II. Flares and Eruptions. Astrophys. J. 2022, 926, 53. [Google Scholar] [CrossRef]
- Ashfield, W.; Longcope, D. A Model for Gradual-phase Heating Driven by MHD Turbulence in Solar Flares. Astrophys. J. 2023, 944, 147. [Google Scholar] [CrossRef]
- Nakariakov, V.M.; Melnikov, V.F. Quasi-Periodic Pulsations in Solar Flares. Space Sci. Rev. 2009, 149, 119–151. [Google Scholar] [CrossRef]
- McLaughlin, J.A.; Nakariakov, V.M.; Dominique, M.; Jelínek, P.; Takasao, S. Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares. Space Sci. Rev. 2018, 214, 45. [Google Scholar] [CrossRef]
- Zimovets, I.V.; McLaughlin, J.A.; Srivastava, A.K.; Kolotkov, D.Y.; Kuznetsov, A.A.; Kupriyanova, E.G.; Cho, I.H.; Inglis, A.R.; Reale, F.; Pascoe, D.J.; et al. Quasi-Periodic Pulsations in Solar and Stellar Flares: A Review of Underpinning Physical Mechanisms and Their Predicted Observational Signatures. Space Sci. Rev. 2021, 217, 66. [Google Scholar] [CrossRef]
- Clarke, B.P.; Hayes, L.A.; Gallagher, P.T.; Maloney, S.A.; Carley, E.P. Quasi-periodic Particle Acceleration in a Solar Flare. Astrophys. J. 2021, 910, 123. [Google Scholar] [CrossRef]
- Hayes, L.A.; Inglis, A.R.; Christe, S.; Dennis, B.; Gallagher, P.T. Statistical Study of GOES X-ray Quasi-periodic Pulsations in Solar Flares. Astrophys. J. 2020, 895, 50. [Google Scholar] [CrossRef]
- Nakariakov, V.M.; Foullon, C.; Myagkova, I.N.; Inglis, A.R. Quasi-Periodic Pulsations in the Gamma-Ray Emission of a Solar Flare. In Proceedings of the EGU General Assembly Conference Abstracts: EGU General Assembly Conference Abstracts, Vienna, Austria, 2–7 May 2010; p. 8615. [Google Scholar]
- Brosius, J.W.; Daw, A.N.; Inglis, A.R. Quasi-periodic Fluctuations and Chromospheric Evaporation in a Solar Flare Ribbon Observed by Hinode/EIS, IRIS, and RHESSI. Astrophys. J. 2016, 830, 101. [Google Scholar] [CrossRef]
- Mishra, S.K.; Sangal, K.; Kayshap, P.; Jelínek, P.; Srivastava, A.K.; Rajaguru, S.P. Origin of Quasi-periodic Pulsation at the Base of a Kink-unstable Jet. Astrophys. J. 2023, 945, 113. [Google Scholar] [CrossRef]
- Xu, J.; Ning, Z.; Li, D.; Shi, F. Quasi-Periodic Pulsations in an M-Class Solar Flare. Universe 2023, 9, 215. [Google Scholar] [CrossRef]
- Emslie, A.G.; Sturrock, P.A. Temperature minimum heating in solar flares by resistive dissipation of Alfvén waves. Sol. Phys. 1982, 80, 99–112. [Google Scholar] [CrossRef]
- Fletcher, L.; Hudson, H.S. Impulsive Phase Flare Energy Transport by Large-Scale Alfvén Waves and the Electron Acceleration Problem. Astrophys. J. 2008, 675, 1645–1655. [Google Scholar] [CrossRef]
- Russell, A.J.B.; Fletcher, L. Propagation of Alfvénic Waves from Corona to Chromosphere and Consequences for Solar Flares. Astrophys. J. 2013, 765, 81. [Google Scholar] [CrossRef]
- Reep, J.W.; Russell, A.J.B. Alfvenic Wave Heating of the Upper Chromosphere in Flares. Astrophys. J. Lett. 2016, 818, L20. [Google Scholar] [CrossRef]
- Reep, J.W.; Russell, A.J.B.; Tarr, L.A.; Leake, J.E. A Hydrodynamic Model of Alfvénic Wave Heating in a Coronal Loop and Its Chromospheric Footpoints. Astrophys. J. 2018, 853, 101. [Google Scholar] [CrossRef]
- Chifor, C.; Tripathi, D.; Mason, H.E.; Dennis, B.R. X-ray precursors to flares and filament eruptions. A&A 2007, 472, 967–979. [Google Scholar] [CrossRef]
- Hudson, H.; Fletcher, L.; Hannah, I.; Hayes, L.; Simoes, P. Hot onsets of solar flares. In Proceedings of the AGU Fall Meeting Abstracts, Online, 13–17 December 2021; Volume 2021, p. SH22B-02. [Google Scholar]
- Warren, H.P.; Reep, J.W.; Crump, N.A.; Ugarte-Urra, I.; Brooks, D.H.; Winebarger, A.R.; Savage, S.; De Pontieu, B.; Peter, H.; Cirtain, J.W.; et al. Observation and Modeling of High-temperature Solar Active Region Emission during the High-resolution Coronal Imager Flight of 2018 May 29. Astrophys. J. 2020, 896, 51. [Google Scholar] [CrossRef]
- Upendran, V.; Tripathi, D. On the Impulsive Heating of Quiet Solar Corona. Astrophys. J. 2021, 916, 59. [Google Scholar] [CrossRef]
- Cargill, P.J. Some Implications of the Nanoflare Concept. Astrophys. J. 1994, 422, 381. [Google Scholar] [CrossRef]
- Reale, F.; McTiernan, J.M.; Testa, P. Comparison of Hinode/XRT and RHESSI Detection of Hot Plasma in the Non-Flaring Solar Corona. Astrophys. J. Lett. 2009, 704, L58–L61. [Google Scholar] [CrossRef]
- Schmelz, J.T.; Kashyap, V.L.; Saar, S.H.; Dennis, B.R.; Grigis, P.C.; Lin, L.; De Luca, E.E.; Holman, G.D.; Golub, L.; Weber, M.A. Some Like It Hot: Coronal Heating Observations from Hinode X-ray Telescope and RHESSI. Astrophys. J. 2009, 704, 863–869. [Google Scholar] [CrossRef]
- Winebarger, A.R.; Warren, H.P.; Schmelz, J.T.; Cirtain, J.; Mulu-Moore, F.; Golub, L.; Kobayashi, K. Defining the “Blind Spot” of Hinode EIS and XRT Temperature Measurements. Astrophys. J. Lett. 2012, 746, L17. [Google Scholar] [CrossRef]
- Parenti, S.; del Zanna, G.; Petralia, A.; Reale, F.; Teriaca, L.; Testa, P.; Mason, H.E. Spectroscopy of Very Hot Plasma in Non-flaring Parts of a Solar Limb Active Region: Spatial and Temporal Properties. Astrophys. J. 2017, 846, 25. [Google Scholar] [CrossRef]
- Bradshaw, S.J.; Del Zanna, G.; Mason, H.E. On the consequences of a non-equilibrium ionisation balance for compact flare emission and dynamics. A&A 2004, 425, 287–299. [Google Scholar] [CrossRef]
- Bradshaw, S.J.; Klimchuk, J.A. What Dominates the Coronal Emission Spectrum During the Cycle of Impulsive Heating and Cooling? Astrophys. J. Suppl. Ser. 2011, 194, 26. [Google Scholar] [CrossRef]
- Dzifčáková, E.; Dudík, J.; Mackovjak, Š. Non-equilibrium ionization by a periodic electron beam. I. Synthetic coronal spectra and implications for interpretation of observations. A&A 2016, 589, A68. [Google Scholar] [CrossRef]
- Dudík, J.; Dzifčáková, E.; Meyer-Vernet, N.; Del Zanna, G.; Young, P.R.; Giunta, A.; Sylwester, B.; Sylwester, J.; Oka, M.; Mason, H.E.; et al. Nonequilibrium Processes in the Solar Corona, Transition Region, Flares, and Solar Wind (Invited Review). Sol. Phys. 2017, 292, 100. [Google Scholar] [CrossRef]
- Lörinčík, J.; Dudík, J.; del Zanna, G.; Dzifčáková, E.; Mason, H.E. Plasma Diagnostics from Active Region and Quiet-Sun Spectra Observed by Hinode/EIS: Quantifying the Departures from a Maxwellian Distribution. Astrophys. J. 2020, 893, 34. [Google Scholar] [CrossRef]
- Del Zanna, G.; Polito, V.; Dudík, J.; Testa, P.; Mason, H.E.; Dzifčáková, E. Diagnostics of Non-Maxwellian Electron Distributions in Solar Active Regions from Fe XII Lines Observed by the Hinode Extreme Ultraviolet Imaging Spectrometer and Interface Region Imaging Spectrograph. Astrophys. J. 2022, 930, 61. [Google Scholar] [CrossRef]
- Jeffrey, N.L.S.; Fletcher, L.; Labrosse, N. First evidence of non-Gaussian solar flare EUV spectral line profiles and accelerated non-thermal ion motion. A&A 2016, 590, A99. [Google Scholar] [CrossRef]
- Jeffrey, N.L.S.; Fletcher, L.; Labrosse, N. Non-Gaussian Velocity Distributions in Solar Flares from Extreme Ultraviolet Lines: A Possible Diagnostic of Ion Acceleration. Astrophys. J. 2017, 836, 35. [Google Scholar] [CrossRef]
- Dudík, J.; Polito, V.; Dzifčáková, E.; Del Zanna, G.; Testa, P. Non-Maxwellian Analysis of the Transition-region Line Profiles Observed by the Interface Region Imaging Spectrograph. Astrophys. J. 2017, 842, 19. [Google Scholar] [CrossRef]
- Polito, V.; Dudík, J.; Kašparová, J.; Dzifčáková, E.; Reeves, K.K.; Testa, P.; Chen, B. Broad Non–Gaussian Fe XXIV Line Profiles in the Impulsive Phase of the 2017 September 10 X8.3-class Flare Observed by Hinode/EIS. Astrophys. J. 2018, 864, 63. [Google Scholar] [CrossRef]
- Del Zanna, G. The multi-thermal emission in solar active regions. A&A 2013, 558, A73. [Google Scholar] [CrossRef]
- Li, W.; Li, M.; Wang, K.; Brage, T.; Hutton, R.; Landi, E. A Theoretical Investigation of the Magnetic-field-induced Transition in Fe X, of Importance for Measuring Magnetic Field Strengths in the Solar Corona. Astrophys. J. 2021, 913, 135. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Tian, H.; Bai, X.; Hutton, R.; Brage, T. Application of a Magnetic-field-induced Transition in Fe X to Solar and Stellar Coronal Magnetic Field Measurements. Res. Astron. Astrophys. 2023, 23, 022001. [Google Scholar] [CrossRef]
- Del Zanna, G.; Mason, H.E. Solar UV and X-ray spectral diagnostics. Living Rev. Sol. Phys. 2018, 15, 5. [Google Scholar] [CrossRef]
- Landi, E.; Li, W.; Brage, T.; Hutton, R. Hinode/EIS Coronal Magnetic Field Measurements at the Onset of a C2 Flare. Astrophys. J. 2021, 913, 1. [Google Scholar] [CrossRef]
- Brooks, D.H.; Warren, H.P.; Landi, E. Measurements of Coronal Magnetic Field Strengths in Solar Active Region Loops. Astrophys. J. Lett. 2021, 915, L24. [Google Scholar] [CrossRef]
- Antonucci, E. Solar flare spectral diagnosis: Present and future. Sol. Phys. 1989, 121, 31–60. [Google Scholar] [CrossRef]
- Del Zanna, G.; Berlicki, A.; Schmieder, B.; Mason, H.E. A Multi-Wavelength Study of the Compact M1 Flare on October 22, 2002. Sol. Phys. 2006, 234, 95–113. [Google Scholar] [CrossRef]
- Bian, N.H.; Emslie, A.G.; Stackhouse, D.J.; Kontar, E.P. The Formation of Kappa-distribution Accelerated Electron Populations in Solar Flares. Astrophys. J. 2014, 796, 142. [Google Scholar] [CrossRef]
- Del Zanna, G.; Andretta, V.; Cargill, P.J.; Corso, A.J.; Daw, A.N.; Golub, L.; Klimchuk, J.A.; Mason, H.E. High resolution soft X-ray spectroscopy and the quest for the hot (5-10 MK) plasma in solar active regions. Front. Astron. Space Sci. 2021, 8, 33. [Google Scholar] [CrossRef]
- Del Zanna, G.; Woods, T.N. Spectral diagnostics with the SDO EVE flare lines. A&A 2013, 555, A59. [Google Scholar] [CrossRef]
- Del Zanna, G.; Dere, K.P.; Young, P.R.; Landi, E. CHIANTI—An Atomic Database for Emission Lines. XVI. Version 10, Further Extensions. Astrophys. J. 2021, 909, 38. [Google Scholar] [CrossRef]
- Mondal, B.; Sarkar, A.; Vadawale, S.V.; Mithun, N.P.S.; Janardhan, P.; Del Zanna, G.; Mason, H.E.; Mitra-Kraev, U.; Narendranath, S. Evolution of Elemental Abundances during B-Class Solar Flares: Soft X-ray Spectral Measurements with Chandrayaan-2 XSM. Astrophys. J. 2021, 920, 4. [Google Scholar] [CrossRef]
- Laming, J.M. The FIP and Inverse FIP Effects in Solar and Stellar Coronae. Living Rev. Sol. Phys. 2015, 12, 2. [Google Scholar] [CrossRef]
- Doschek, G.A.; Feldman, U.; Kreplin, R.W.; Cohen, L. High-resolution X-ray spectra of solar flares. III - General spectral properties of X1-X5 type flares. Astrophys. J. 1980, 239, 725–737. [Google Scholar] [CrossRef]
- Doschek, G.A.; Tanaka, K. Transient Ionization and Solar Flare X-ray Spectra. Astrophys. J. 1987, 323, 799. [Google Scholar] [CrossRef]
- Bradshaw, S.J.; Testa, P. Quantifying the Influence of Key Physical Processes on the Formation of Emission Lines Observed by IRIS. I. Non-equilibrium Ionization and Density-dependent Rates. Astrophys. J. 2019, 872, 123. [Google Scholar] [CrossRef]
- Smith, R.K.; Hughes, J.P. Ionization Equilibrium Timescales in Collisional Plasmas. Astrophys. J. 2010, 718, 583–585. [Google Scholar] [CrossRef]
- Lee, J.Y.; Raymond, J.C.; Reeves, K.K.; Shen, C.; Moon, Y.J.; Kim, Y.H. Nonequilibrium Ionization Effects on Solar EUV and X-ray Imaging Observations. Astrophys. J. 2019, 879, 111. [Google Scholar] [CrossRef]
- Shen, C.; Raymond, J.C.; Murphy, N.A. Nonequilibrium Ionization Modeling of Petschek-type Shocks in Reconnecting Current Sheets in Solar Eruptions. Astrophys. J. 2023, 943, 111. [Google Scholar] [CrossRef]
- Olluri, K.; Gudiksen, B.V.; Hansteen, V.H. Non-equilibrium Ionization Effects on the Density Line Ratio Diagnostics of O IV. Astrophys. J. 2013, 767, 43. [Google Scholar] [CrossRef]
- Olluri, K.; Gudiksen, B.V.; Hansteen, V.H.; De Pontieu, B. Synthesized Spectra of Optically Thin Emission Lines. Astrophys. J. 2015, 802, 5. [Google Scholar] [CrossRef]
- Shi, T.; Landi, E.; Manchester, W. Nonequilibrium Ionization Effects on Coronal Plasma Diagnostics and Elemental Abundance Measurements. Astrophys. J. 2019, 882, 154. [Google Scholar] [CrossRef]
- Calcines, A.; Wells, M.; O’Brien, K.; Morris, S.; Seifert, W.; Zanutta, A.; Evans, C.; Di Marcantonio, P. Design of the VLT-CUBES image slicers. Exp. Astron. 2023, 55, 267–280. [Google Scholar] [CrossRef]
- Richard, J.; Bacon, R.; Jeanneau, A. BlueMUSE: Science cases and requirements. In Proceedings of the Ground-Based and Airborne Instrumentation for Astronomy VIII, Online, 14–18 December 2020; Volume 11447, p. 114470S. [Google Scholar] [CrossRef]
- Laurent, F.; Adjali, L.; Arns, J.; Bacon, R.; Boudon, D.; Caillier, P.; Daguisé, E.; Delabre, B.; Dubois, J.P.; Godefroy, P.; et al. MUSE integral field unit: Test results on the first out of 24. In Proceedings of the Modern Technologies in Space- and Ground-Based Telescopes and Instrumentation, San Diego, CA, USA, 27 June–2 July 2010; Volume 7739, p. 77394M. [Google Scholar] [CrossRef]
- Cuevas, S.; Eikenberry, S.S.; Sánchez, B. FRIDA integral field unit manufacturing. In Proceedings of the Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation, Montréal, QC, Canada, 22–27 June 2014; Volume 9151, p. 91514N. [Google Scholar] [CrossRef]
- Laurent, F.; Boudon, D.; Kosmalski, J.; Loupias, M.; Raffault, G.; Remillieux, A.; Thatte, N.; Bryson, I.; Schnetler, H.; Clarke, F.; et al. ELT HARMONI: Image slicer preliminary design. In Proceedings of the Ground-Based and Airborne Instrumentation for Astronomy VII, Austin, TX, USA, 10–15 June 2018; Volume 10702, p. 1070296. [Google Scholar] [CrossRef]
- Brandl, B.R.; Bettonvil, F.; van Boekel, R.; Glauser, A.; Quanz, S.P.; Absil, O.; Feldt, M.; Garcia, P.J.V.; Glasse, A.; Guedel, M.; et al. Status update on the development of METIS, the mid-infrared ELT imager and spectrograph. In Proceedings of the Ground-Based and Airborne Instrumentation for Astronomy IX, Montréal, QC, Canada, 17–23 June 2022; Volume 12184, p. 1218421. [Google Scholar] [CrossRef]
- Calcines, A.; López, R.L.; Collados, M. MuSICa: The Multi-Slit Image Slicer for the est Spectrograph. J. Astron. Instrum. 2013, 2, 1350009. [Google Scholar] [CrossRef]
- Calcines, A.; López, R.L.; Collados, M. A High Resolution Integral Field Spectrograph for the European Solar Telescope. J. Astron. Instrum. 2013, 2, 1350007. [Google Scholar] [CrossRef]
- Calcines, A.; López, R.L.; Collados, M.; Vega Reyes, N. MuSICa image slicer prototype at 1.5-m GREGOR solar telescope. In Proceedings of the Ground-Based and Airborne Instrumentation for Astronomy V, Montréal, QC, Canada, 22–27 June 2014; Volume 9147, p. 91473I. [Google Scholar] [CrossRef]
- Dubbeldam, C.M.; Robertson, D.J.; Ryder, D.A.; Sharples, R.M. Prototyping of diamond machined optics for the KMOS and JWST NIRSpec integral field units. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Orlando, FL, USA, 24–31 May 2006; Volume 6273, p. 62733F. [Google Scholar] [CrossRef]
- Lee, D.; Wells, M.; Dickson, C.J.; Shore, P.; Morantz, P. Development of diamond machined mirror arrays for integral field spectroscopy. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Orlando, FL, USA, 24–31 May 2006; Volume 6273, p. 62731Y. [Google Scholar] [CrossRef]
- Witt, E.M.; Fleming, B.T.; Green, J.C.; France, K.; Williams, J.; Sukegawa, T.; Siegmund, O.; Chafetz, D.; Tecza, M.; Levy, A.; et al. INFUSE: Assembly and alignment of a rocket-borne FUV integral field spectrograph. In Proceedings of the UV, X-ray, and Gamma-Ray Space Instrumentation for Astronomy XXII, San Diego, CA, USA, 1–5 August 2021; Volume 11821, p. 118210F. [Google Scholar] [CrossRef]
- Calcines Rosario, A.; Matthews, S.; Reid, H. Exploring the application of image slicers for the EUV for the next generation of solar space missions. In Proceedings of the Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray, Montréal, QC, Canada, 1–5 August 2022; Volume 12181, p. 121810K. [Google Scholar] [CrossRef]
- De Pontieu, B.; Martínez-Sykora, J.; Testa, P.; Winebarger, A.R.; Daw, A.; Hansteen, V.; Cheung, M.C.M.; Antolin, P. The Multi-slit Approach to Coronal Spectroscopy with the Multi-slit Solar Explorer (MUSE). Astrophys. J. 2020, 888, 3. [Google Scholar] [CrossRef]
- Calcines, A.; Bourgenot, C.; Sharples, R. Design of freeform diffraction gratings: Performance, limitations and potential applications. In Proceedings of the Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, Austin, TX, USA, 10–15 June 2018; Volume 10706, p. 107064Z. [Google Scholar] [CrossRef]
- Bourgenot, C.; Robertson, D.J.; Stelter, D.; Eikenberry, S. Towards freeform curved blazed gratings using diamond machining. In Proceedings of the Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II, Edinburgh, UK, 26 June–1 July 2016; Volume 9912, p. 99123M. [Google Scholar] [CrossRef]
- Shimizu, T.; Imada, S.; Kawate, T.; Ichimoto, K.; Suematsu, Y.; Hara, H.; Katsukawa, Y.; Kubo, M.; Toriumi, S.; Watanabe, T.; et al. The Solar-C_EUVST mission. In Proceedings of the UV, X-ray, and Gamma-Ray Space Instrumentation for Astronomy XXI, San Diego, CA, USA, 11–15 August 2019; Volume 11118, p. 1111807. [Google Scholar] [CrossRef]
- Corso, A.J.; Pelizzo, M.G. Extreme ultraviolet multilayer nanostructures and their application to solar plasma observations: A review. J. Nanosci. Nanotechnol. 2019, 19, 532–545. [Google Scholar] [CrossRef]
- Hu, M.H.; Le Guen, K.; André, J.M.; Jonnard, P.; Meltchakov, E.; Delmotte, F.; Galtayries, A. Structural properties of Al/Mo/SiC multilayers with high reflectivity for extreme ultraviolet light. Opt. Express 2010, 18, 20019–20028. [Google Scholar] [CrossRef] [PubMed]
- Corso, A.J.; Del Zanna, G.; Polito, V. Future perspectives in solar hot plasma observations in the soft X-rays. Exp. Astron. 2021, 51, 453–474. [Google Scholar] [CrossRef]
- Reid, H.A.S.; Musset, S.; Ryan, D.F.; Andretta, V.; Auchère, F.; Baker, D.; Benvenuto, F.; Browning, P.; Buchlin, É.; Calcines Rosario, A.; et al. The Solar Particle Acceleration Radiation and Kinetics (SPARK) Mission Concept. Aerospace 2023, 10, 1034. [Google Scholar] [CrossRef]
Ion | λ (Å) | log T | AR Core | M2 Flare | Notes |
---|---|---|---|---|---|
Ni xv | 178.89 | 6.5 | 15 | 1.2 × 102 | |
Fe xxi | 178.90 | 7.1 | - | 4.8 × 102 (145) | ** Flare Ne |
Fe xi | 179.76 | 6.1 | 130 (40) | 9.0 × 102 (276) | ** Ne |
Fe xxiii | 180.04 | 7.2 | - | 8.8 × 102 (270) | * Flare |
Fe xi | 180.40 | 6.1 | 1.4 × 103 (429) | 3.1 × 103 (950) | ** (bl Fe x) |
Ca xv | 181.90 | 6.5 | - | 4.2 × 102 (156) | *** Ne |
Fe xi | 182.17 | 6.1 | 120 (47) | 1.1 × 103 (429) | *** Ne |
Ca xv | 182.86 | 6.5 | - | 6.4 × 102 (310) | *** Ne |
Fe x | 184.54 | 6.0 | 220 (175) | 5.5 × 102 (439) | *** Coronal B |
Fe xi | 184.79 | 6.1 | 76 (64) | 5.0 × 102 (424) | *** Ne |
Fe xii | 186.89 | 6.2 | 600 (395) | 2790 (1836) | (bl) ** Ne |
Fe xxi | 187.93 | 7.1 | - | 3.8 × 103 (1172) | *** Flare (bl Ar xiv) |
Ar xiv | 187.96 | 6.5 | 21 | 3.4 × 102 | ** Ne, FIP |
Fe xi | 188.22 | 6.1 | 710 (160) | 1.6 × 103 (362) | *** |
Ar xv | 221.15 | 6.5 | 73 (13) | 3.4 × 103 (584) | *** FIP |
Fe xxiii | 221.34 | 7.2 | - | 5.6 × 102 (100) | Flare |
S xii | 221.43 | 6.4 | 90 (16) | 4.1 × 102 (75) | ** FIP |
Fe xv | 233.87 | 6.5 | 260 (247) | 3.0 × 103 (2850) | ** Ne |
Fe ix | 241.74 | 5.9 | 120 (189) | 120 (189) | *** Ne |
Fe xxi | 242.05 | 7.1 | - | 4.1 × 103 (6540) | *** Flare Ne |
He ii | 243.03 | ||||
Ar xiv | 243.75 | 6.4 | 43 | 5.3 × 102 | FIP (bl) |
Fe xv | 243.79 | 6.5 | 880 (1502) | 6.5 × 103 (11095) | (bl Ar xiv) |
Fe ix | 244.91 | 5.9 | 80 (141) | 2.3 × 102 (406) | *** Ne |
Fe xxi | 246.95 | 7.1 | - | 6.5 × 102 (1205) | *** Flare |
Fe xxii | 247.19 | 7.1 | - | 8.0 × 103 (14887) | *** Flare |
Ar xiii | 248.68 | 6.2 | 7 (13) | 1.1 × 102 (209) | ** FIP |
Ni xvii | 249.19 | 6.6 | 840 (1598) | 9.3 × 103 (17690) | *** Flare |
Fe xii | 249.39 | 6.2 | 65 (124) | 2.4 × 102 (457) | |
Fe xvi | 251.06 | 6.5 | 650 (1234) | 1.0 × 104 (18979) | |
Fe xiii | 251.95 | 6.2 | 460 (864) | 1.7 × 103 (3194) | |
Fe xiv | 252.20 | 6.4 | 280 (524) | 1.8 × 103 (3367) | |
Fe xxii | 253.17 | 7.1 | - | 3.9 × 103 (7177) | *** Flare |
Fe xvii | 254.88 | 6.6 | - | 3.5 × 103 (6140) | *** Flare |
Fe xxiv | 255.11 | 7.3 | - | 4.8 × 104 (83656) | *** Flare |
He ii | 256.3 | (bl) | |||
S xiii | 256.68 | 6.5 | 1.1 × 103 (1797) | 8.6 × 103 (14055) | ** FIP |
Fe x | 257.26 | 6.0 | 140 (222) | 150 (238) | *** coronal B |
Fe xiv | 257.39 | 6.4 | 420 (663) | 2.1 × 103 (3317) | |
Fe xi | 257.55 | 6.1 | 80 (125) | 2.3 × 102 (360) | ** Te, NMED |
Si x | 258.37 | 6.2 | 420 (628) | 1.5 × 103 (2243) | Ne |
S x | 259.50 | 6.2 | 53 (74) | 1.8 × 102 (251) | *** FIP |
Si x | 261.06 | 6.2 | 140 (175) | 4.2 × 102 (525) | Ne |
Fe xvi | 262.98 | 6.5 | 1.1 × 103 (1148) | 1.7 × 104 (17754) | |
Fe xxiii | 263.77 | 7.2 | - | 2.1 × 104 (20192) | *** Flare |
S x | 264.2 | 6.2 | 77 (71) | 257 (237) | *** FIP |
Field of view | 100″ × 100″ |
Spectral window 1 | 178–184 Å |
Spectral window 2 | 246–258 Å |
Spectral resolution | 0.05 Å FWHM |
Spatial resolution | <3″ |
Spectral resolving power (R) | 3560–5160 |
Temporal resolution (high signal) | <3 s |
Temporal resolution (low signal) | <30 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calcines Rosario, A.; Auchère, F.; Corso, A.J.; Del Zanna, G.; Dudík, J.; Gissot, S.; Hayes, L.A.; Kerr, G.S.; Kintziger, C.; Matthews, S.A.; et al. Spectral Imager of the Solar Atmosphere: The First Extreme-Ultraviolet Solar Integral Field Spectrograph Using Slicers. Aerospace 2024, 11, 208. https://doi.org/10.3390/aerospace11030208
Calcines Rosario A, Auchère F, Corso AJ, Del Zanna G, Dudík J, Gissot S, Hayes LA, Kerr GS, Kintziger C, Matthews SA, et al. Spectral Imager of the Solar Atmosphere: The First Extreme-Ultraviolet Solar Integral Field Spectrograph Using Slicers. Aerospace. 2024; 11(3):208. https://doi.org/10.3390/aerospace11030208
Chicago/Turabian StyleCalcines Rosario, Ariadna, Frederic Auchère, Alain Jody Corso, Giulio Del Zanna, Jaroslav Dudík, Samuel Gissot, Laura A. Hayes, Graham S. Kerr, Christian Kintziger, Sarah A. Matthews, and et al. 2024. "Spectral Imager of the Solar Atmosphere: The First Extreme-Ultraviolet Solar Integral Field Spectrograph Using Slicers" Aerospace 11, no. 3: 208. https://doi.org/10.3390/aerospace11030208
APA StyleCalcines Rosario, A., Auchère, F., Corso, A. J., Del Zanna, G., Dudík, J., Gissot, S., Hayes, L. A., Kerr, G. S., Kintziger, C., Matthews, S. A., Musset, S., Orozco Suárez, D., Polito, V., Reid, H. A. S., & Ryan, D. F. (2024). Spectral Imager of the Solar Atmosphere: The First Extreme-Ultraviolet Solar Integral Field Spectrograph Using Slicers. Aerospace, 11(3), 208. https://doi.org/10.3390/aerospace11030208