Rapid Approximation of Low-Thrust Spacecraft Reachable Sets within Complex Two-Body and Cislunar Dynamics
Abstract
:1. Introduction
2. Indirect Multi-Stage Formulation of Optimal Control Problems
2.1. Indirect Multi-Stage Formulation
2.2. Two-Body Equations of Motion
2.3. Circular Restricted Three-Body Problem (CR3BP)
2.4. Formulation of Minimum-Time Optimal Control Problems
2.5. Incorporating Uncertainties in Initial Boundary Conditions
3. Reachable Set Approximation Algorithm
Algorithm 1: Reachable set determination |
Result: Reachable Trajectories Initial Conditions; Constant Parameters; Number of Segments; Segment Duration; Number of sampled reachable points; ; ; |
4. Two-Body Dynamics Results
4.1. Reachable Set Analysis for a Fixed Time Horizon
4.2. Reachable Set Comparison with the Solution from a Direct Optimization Formulation
4.3. Reachable Set Propagation and Analysis of the Required Computation Time
4.4. Reachable Set Variations with Uncertainties in Initial Boundary Conditions
5. CR3BP Dynamics Reachable Set Results
5.1. Reachability from the L1 Point (Case 1)
5.2. Reachability from the L2 Halo Orbit (Case 2)
5.3. Reachability from the Lunar Gateway 9:2 Near Rectilinear Halo Orbit (Case 3)
5.4. Connection between Reachable Sets and Invariant Manifolds in CR3BP
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Six-Dimensional Costate Sampling Algorithm
Algorithm A1: Six-dimensional costate sampling algorithm | |
Result: 6; | |
rand;; | /* Angles */ |
rand; | /* Angle */ |
References
- Bertrand, R.; Epenoy, R. New smoothing techniques for solving bang–bang optimal control problems—numerical results and statistical interpretation. Optim. Control. Appl. Methods 2002, 23, 171–197. [Google Scholar] [CrossRef]
- Trélat, E. Optimal control and applications to aerospace: Some results and challenges. J. Optim. Theory Appl. 2012, 154, 713–758. [Google Scholar] [CrossRef]
- Taheri, E.; Li, N. L2 Norm-Based Control Regularization for Solving Optimal Control Problems. IEEE Access 2023, 11, 125959–125971. [Google Scholar] [CrossRef]
- Kovryzhenko, Y.; Taheri, E. Vectorized Trigonometric Regularization for Singular Control Problems with Multiple State Path Constraints. J. Astronaut. Sci. 2023, 71, 1. [Google Scholar] [CrossRef]
- Nurre, N.P.; Taheri, E. Duty-cycle-aware low-thrust trajectory optimization using embedded homotopy. Acta Astronaut. 2023, 212, 630–642. [Google Scholar] [CrossRef]
- Allen, R.E.; Clark, A.A.; Starek, J.A.; Pavone, M. A machine learning approach for real-time reachability analysis. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 2202–2208. [Google Scholar] [CrossRef]
- Liu, E.; Yan, Y.; Yang, Y. Analysis and determination of capture area for space debris removal based on reachable domain. Adv. Space Res. 2021, 68, 1613–1626. [Google Scholar] [CrossRef]
- Vendl, J.K.; Holzinger, M.J. Cislunar periodic orbit analysis for persistent space object detection capability. J. Spacecr. Rocket. 2021, 58, 1174–1185. [Google Scholar] [CrossRef]
- Chen, Q.; Qiao, D.; Wen, C. Reachable Domain of Spacecraft after a Gravity-Assist Flyby. J. Guid. Control. Dyn. 2019, 42, 931–940. [Google Scholar] [CrossRef]
- Wu, C.Y.; Russell, R.P. Reachable set of low-delta-v trajectories following a gravity-assist flyby. J. Spacecr. Rocket. 2023, 60, 616–633. [Google Scholar] [CrossRef]
- Kirk, D.E. Optimal Control Theory: An Introduction; Prentice-Hall Networks Series; Prentice-Hall: Englewood Cliffs, NJ, USA, 1970. [Google Scholar]
- Crandall, M.G.; Evans, L.C.; Lions, P.L. Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 1984, 282, 487–502. [Google Scholar] [CrossRef]
- Borrelli, F.; Bemporad, A.; Morari, M. Predictive Control for Linear and Hybrid Systems, 1st ed.; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar] [CrossRef]
- Wallace, S.W. (Ed.) Applications of Stochastic Programming; MPS-SIAM Series on Optimization; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2005. [Google Scholar]
- Chen, Q.; Qiao, D.; Wen, C. Minimum-Fuel Low-Thrust Trajectory Optimization via Reachability Analysis and Convex Programming. J. Guid. Control. Dyn. 2021, 44, 1036–1043. [Google Scholar] [CrossRef]
- Vinter, R. A Characterization of the Reachable Set for Nonlinear Control Systems. SIAM J. Control. Optim. 1980, 18, 599–610. [Google Scholar] [CrossRef]
- Jiang, X.; Xia, G.; Feng, Z.; Zheng, W.X.; Su, R. Reachable Set Estimation of Multi-Agent Systems: An Approximate Consensus Perspective. IEEE Trans. Control. Netw. Syst. 2023, 11, 353–363. [Google Scholar] [CrossRef]
- Mitchell, I.; Bayen, A.; Tomlin, C. A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans. Autom. Control 2005, 50, 947–957. [Google Scholar] [CrossRef]
- Girard, A.; Guernic, C.L. Efficient Reachability Analysis for Linear Systems using Support Functions. IFAC Proc. Vol. 2008, 41, 8966–8971. [Google Scholar] [CrossRef]
- Asarin, E.; Dang, T.; Girard, A. Reachability Analysis of Nonlinear Systems Using Conservative Approximation. In Hybrid Systems: Computation and Control; Goos, G., Hartmanis, J., Van Leeuwen, J., Maler, O., Pnueli, A., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2623, pp. 20–35. [Google Scholar] [CrossRef]
- Bansal, S.; Tomlin, C.J. Deepreach: A deep learning approach to high-dimensional reachability. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1817–1824. [Google Scholar] [CrossRef]
- Xue, D.; Li, J.; Baoyin, H.; Jiang, F. Reachable Domain for Spacecraft with a Single Impulse. J. Guid. Control. Dyn. 2010, 33, 934–942. [Google Scholar] [CrossRef]
- Zhang, G.; Cao, X.; Ma, G. Reachable domain of spacecraft with a single tangent impulse considering trajectory safety. Acta Astronaut. 2013, 91, 228–236. [Google Scholar] [CrossRef]
- Chen, Q.; Qiao, D.; Shang, H.; Liu, X. A new method for solving reachable domain of spacecraft with a single impulse. Acta Astronaut. 2018, 145, 153–164. [Google Scholar] [CrossRef]
- Duan, J.; Liu, Y.; Ding, R. Simple Method to Determine Reachable Domain of Spacecraft with a Single Impulse. J. Guid. Control. Dyn. 2019, 42, 168–174. [Google Scholar] [CrossRef]
- Wen, C.; Zhao, Y.; Shi, P. Precise Determination of Reachable Domain for Spacecraft with Single Impulse. J. Guid. Control. Dyn. 2014, 37, 1767–1779. [Google Scholar] [CrossRef]
- Li, X.; He, X.; Zhong, Q.; Song, M. Reachable domain for satellite with two kinds of thrust. Acta Astronaut. 2011, 68, 1860–1864. [Google Scholar] [CrossRef]
- Vinh, N.X.; Gilbert, E.G.; Howe, R.M.; Sheu, D.; Lu, P. Reachable domain for interception at hyperbolic speeds. Acta Astronaut. 1995, 35, 1–8. [Google Scholar] [CrossRef]
- Wen, C.; Zhao, Y.; Shi, P.; Hao, Z. Orbital Accessibility Problem for Spacecraft with a Single Impulse. J. Guid. Control. Dyn. 2014, 37, 1260–1271. [Google Scholar] [CrossRef]
- Lu, L.; Li, H.; Zhou, W.; Liu, J. Design and analysis of a direct transfer trajectory from a near rectilinear halo orbit to a low lunar orbit. Adv. Space Res. 2021, 67, 1143–1154. [Google Scholar] [CrossRef]
- Wen, C.; Sun, Y.; Peng, C.; Qiao, D. Reachable Domain Under J2 Perturbation for Satellites with a Single Impulse. J. Guid. Control. Dyn. 2023, 46, 64–79. [Google Scholar] [CrossRef]
- Wen, C.; Gao, Y. Reachability Study for Spacecraft Maneuvering from a Distant Retrograde Orbit in the Earth-Moon System. In AIAC18: 18th Australian International Aerospace Congress (2019): HUMS—11th Defence Science and Technology (DST) International Conference on Health and Usage Monitoring (HUMS 2019): ISSFD—27th International Symposium on Space Flight Dynamics (ISSFD); Engineers Australia, Royal Aeronautical Society: Melbourne, Australia, 2019; pp. 1666–1673. [Google Scholar]
- Komendera, E.; Scheeres, D.; Bradley, E. Intelligent Computation of Reachability Sets for Space Missions. In Proceedings of the Twenty-Fourth Innovative Applications of Artificial Intelligence Conference, Toronto, ON, Canada, 22–26 July 2012; Volume 26, pp. 2299–2304. [Google Scholar] [CrossRef]
- Chernick, M.; D’Amico, S. Closed-Form Optimal Impulsive Control of Spacecraft Formations Using Reachable Set Theory. J. Guid. Control. Dyn. 2021, 44, 25–44. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, G.; Geng, Y. Reachable domain with a single coplanar impulse considering the target-visit constraint. Adv. Space Res. 2022, 69, 3847–3855. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, G. Continuous-Thrust Reachable Set for Linear Relative Motion Near Elliptical Orbits. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 9117–9127. [Google Scholar] [CrossRef]
- Pang, B.; Wen, C. Reachable Set of Spacecraft With Finite Thrust Based on Grid Method. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 2720–2731. [Google Scholar] [CrossRef]
- Lee, S.; Hwang, I. Reachable set computation for spacecraft relative motion with energy-limited low-thrust. Aerosp. Sci. Technol. 2018, 77, 180–188. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, F. Analytical Optimal Solution for the Reachable Domain of Low-Thrust Spacecraft. J. Spacecr. Rocket. 2023, 61, A35788. [Google Scholar] [CrossRef]
- Surovik, D.A.; Scheeres, D.J. Adaptive Reachability Analysis to Achieve Mission Objectives in Strongly Non-Keplerian Systems. J. Guid. Control. Dyn. 2015, 38, 468–477. [Google Scholar] [CrossRef]
- Wen, C.; Qiao, D. Calculating collision probability for long-term satellite encounters through the reachable domain method. Astrodynamics 2022, 6, 141–159. [Google Scholar] [CrossRef]
- Holzinger, M.J.; Scheeres, D.J.; Erwin, R.S. On-Orbit Operational Range Computation Using Gauss’s Variational Equations with J2 Perturbations. J. Guid. Control. Dyn. 2014, 37, 608–622. [Google Scholar] [CrossRef]
- Wen, C.; Peng, C.; Gao, Y. Reachable domain for spacecraft with ellipsoidal Delta-V distribution. Astrodynamics 2018, 2, 265–288. [Google Scholar] [CrossRef]
- Holzinger, M.J.; Scheeres, D.J. Reachability Results for Nonlinear Systems with Ellipsoidal Initial Sets. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 1583–1600. [Google Scholar] [CrossRef]
- Bando, M.; Scheeres, D.J. Nonlinear Attractive and Reachable Sets Under Optimal Control in Three-Body Problem. J. Guid. Control. Dyn. 2018, 41, 1766–1775. [Google Scholar] [CrossRef]
- Kulumani, S.; Lee, T. Systematic Design of Optimal Low-Thrust Transfers for the Three-Body Problem. J. Astronaut. Sci. 2019, 66, 1–31. [Google Scholar] [CrossRef]
- Kousik, S.; Vaskov, S.; Bu, F.; Johnson-Roberson, M.; Vasudevan, R. Bridging the gap between safety and real-time performance in receding-horizon trajectory design for mobile robots. Int. J. Robot. Res. 2020, 39, 1419–1469. [Google Scholar] [CrossRef]
- Kousik, S.; Holmes, P.; Vasudevan, R. Safe, aggressive quadrotor flight via reachability-based trajectory design. In Proceedings of the Dynamic Systems and Control Conference, Park City, UT, USA, 8–11 October 2019; American Society of Mechanical Engineers: New York, NY, USA, 2019; Volume 59162. [Google Scholar]
- Bird, T.J.; Pangborn, H.C.; Jain, N.; Koeln, J.P. Hybrid zonotopes: A new set representation for reachability analysis of mixed logical dynamical systems. Automatica 2023, 154, 111107. [Google Scholar] [CrossRef]
- Taheri, E.; Junkins, J.L. How Many Impulses Redux. J. Astronaut. Sci. 2020, 67, 257–334. [Google Scholar] [CrossRef]
- Patel, P.R.; Scheeres, D.J. No Initial Guess Required: Rapidly Computing the Feasible Set of Fuel-Optimal Electric Propulsion Trajectories. In Proceedings of the 33rd AAS/AIAA Space Flight Mechanics Meeting, Austin, TX, USA, 15–19 January 2023; pp. 1–21. [Google Scholar]
- Patel, P.R.; Scheeres, D.J. Rapidly and Automatically Estimating Reachability of Electric Propulsion Spacecraft. In Proceedings of the 23rd Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, HI, USA, 27–30 September 2022; pp. 1–15. [Google Scholar]
- Bowerfind, S.; Taheri, E. Application of Indirect Multi-Stage Reachable Set Determination Algorithm for Low-Thrust Spacecraft Trajectory Optimization. In Proceedings of the AIAA SCITECH 2024 Forum, Orlando, FL, USA, 8–12 January 2024; p. 0632. [Google Scholar] [CrossRef]
- Bryson, A.E.; Ho, Y.C. Applied Optimal Control: Optimization, Estimation, and Control, Revised ed.; Cambridge University Press: Cambridge, UK, 1975. [Google Scholar]
- Bate, R.R.; Mueller, D.D.; White, J.E. Fundamentals of Astrodynamics; Dover Publications: New York, NY, USA, 1971. [Google Scholar]
- Taheri, E.; Junkins, J.L. Generic smoothing for optimal bang-off-bang spacecraft maneuvers. J. Guid. Control. Dyn. 2018, 41, 2470–2475. [Google Scholar] [CrossRef]
- Taheri, E.; Li, N.I.; Kolmanovsky, I. Co-state initialization for the minimum-time low-thrust trajectory optimization. Adv. Space Res. 2017, 59, 2360–2373. [Google Scholar] [CrossRef]
- Junkins, J.L.; Taheri, E. Exploration of Alternative State Vector Choices for Low-Thrust Trajectory Optimization. J. Guid. Control. Dyn. 2019, 42, 47–64. [Google Scholar] [CrossRef]
- Patel, P.R.; Scheeres, D.J. Reachable and Fuel-Optimal Trajectory Estimates for Electric Propulsion Spacecraft. In Proceedings of the 2023 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2023; pp. 1–11. [Google Scholar]
- Patel, P.R.; Scheeres, D.J. Rapid and Automatic Reachability Estimation of Electric Propulsion Spacecraft. J. Astronaut. Sci. 2023, 70, 45. [Google Scholar] [CrossRef]
- Thangavelu, C. Transfers between Near Rectilinear Halo Orbits and Low Lunar Orbits. Master’s Thesis, University of Colorado, Boulder, CO, USA, 2019. [Google Scholar]
- Schaub, H.; Junkins, J.L. Analytical Mechanics of Space Systems, 2nd ed.; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2009. [Google Scholar] [CrossRef]
- Conway, B.A. Spacecraft Trajectory Optimization; Cambridge University Press: Cambridge, UK, 2010; Volume 29. [Google Scholar]
- Bowerfind, S.R.; Taheri, E. Rapid Determination of Low-Thrust Spacecraft Reachable Sets in Two-Body and Cislunar Problems. arXiv 2023, arXiv:2312.08191. [Google Scholar] [CrossRef]
- Taheri, E.; Kolmanovsky, I.; Atkins, E. Enhanced Smoothing Technique for Indirect Optimization of Minimum-Fuel Low-Thrust Trajectories. J. Guid. Control. Dyn. 2016, 39, 2500–2511. [Google Scholar] [CrossRef]
- Andersson, J.A.; Gillis, J.; Horn, G.; Rawlings, J.B.; Diehl, M. CasADi: A software framework for nonlinear optimization and optimal control. Math. Program. Comput. 2019, 11, 1–36. [Google Scholar] [CrossRef]
- Jones, R.; Curtis, D.; Zagaris, C. Reachable Set Approximation in Cislunar Space with Pseudospectral Method and Homotopy. In Proceedings of the 2023 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Trofimov, S.; Shirobokov, M.; Tselousova, A.; Ovchinnikov, M. Transfers from near-rectilinear halo orbits to low-perilune orbits and the Moon’s surface. Acta Astronaut. 2020, 167, 260–271. [Google Scholar] [CrossRef]
- Mingotti, G.; Sánchez, J.; McInnes, C. Combined low-thrust propulsion and invariant manifold trajectories to capture NEOs in the Sun–Earth circular restricted three-body problem. Celest. Mech. Dyn. Astron. 2014, 120, 309–336. [Google Scholar] [CrossRef]
- May, R.M. Simple mathematical models with very complicated dynamics. Nature 1976, 261, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Oblow, E. Supertracks, supertrack functions and chaos in the quadratic map. Phys. Lett. A 1988, 128, 406–412. [Google Scholar] [CrossRef]
- Koon, W.; Lo, M.; Marsden, J.; Ross, S. Dynamical Systems, the Three-Body Problem and Space Mission Design. In Interdisciplinary Applied Mathematics; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Singh, S.; Junkins, J.; Anderson, B.; Taheri, E. Eclipse-Conscious Transfer to Lunar Gateway Using Ephemeris-Driven Terminal Coast Arcs. J. Guid. Control. Dyn. 2021, 44, 1972–1988. [Google Scholar] [CrossRef]
- Blumenson, L. A derivation of n-dimensional spherical coordinates. Am. Math. Mon. 1960, 67, 63–66. [Google Scholar] [CrossRef]
Time of Flight (days) | Computation Time (seconds) |
---|---|
100 | 9.0599 |
150 | 17.3945 |
200 | 18.1148 |
250 | 21.8414 |
300 | 26.2118 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bowerfind, S.; Taheri, E. Rapid Approximation of Low-Thrust Spacecraft Reachable Sets within Complex Two-Body and Cislunar Dynamics. Aerospace 2024, 11, 380. https://doi.org/10.3390/aerospace11050380
Bowerfind S, Taheri E. Rapid Approximation of Low-Thrust Spacecraft Reachable Sets within Complex Two-Body and Cislunar Dynamics. Aerospace. 2024; 11(5):380. https://doi.org/10.3390/aerospace11050380
Chicago/Turabian StyleBowerfind, Sean, and Ehsan Taheri. 2024. "Rapid Approximation of Low-Thrust Spacecraft Reachable Sets within Complex Two-Body and Cislunar Dynamics" Aerospace 11, no. 5: 380. https://doi.org/10.3390/aerospace11050380
APA StyleBowerfind, S., & Taheri, E. (2024). Rapid Approximation of Low-Thrust Spacecraft Reachable Sets within Complex Two-Body and Cislunar Dynamics. Aerospace, 11(5), 380. https://doi.org/10.3390/aerospace11050380