SpaceLight: A Framework for Enhanced On-Orbit Navigation Imagery
Abstract
:1. Introduction
- Proposing the first-ever framework for enhancing space navigation images. This paper pioneers the integration of on-orbit navigation images into image enhancement research and solves important issues in visual navigation engineering. It introduces an innovative framework that combines a spacecraft semantic parsing attention network with a structural recovery enhancement network to effectively restore detailed and structured navigation images
- Pioneering Application of Spacecraft Semantic Parsing Network. The introduction of a novel approach using a spacecraft semantic parsing network to generate attention-guided maps. These maps serve as inputs to the enhancement network, improving the utilization of prior information for more effective enhancement.
- Define the global structural loss in navigation image enhancement. It involves initially pre-enhancing the original image using gamma correction, followed by the extraction of its Laplacian pyramid to construct the global structure loss function. This approach enables the network to effectively recover the structure of extremely dark images.
2. Related Work
3. The Proposed Method
3.1. Spacecraft Semantic Parsing Network
3.2. On-Orbit Navigation Image Enhancement Network
4. Experiment
4.1. Datasets
- (1)
- Spacecraft Semantic Segmentation Datasets:
- (a)
- The dataset includes a total of 3307 images, with a ratio of 9:1 between virtual images and those captured in a laboratory setting.
- (b)
- The dataset is randomly partitioned into a validation set (10%) and a training set (90%).
- (2)
- Navigation Image Enhancement Datasets:
- (a)
- Training Datasets:Comprising unpaired images that are extremely dark or extremely bright.
- Train A consists of 1427 images, with laboratory-captured images and Unity-generated virtual images combined in a 3:1 ratio.
- Train B: Comprising 1020 images.
- (b)
- Test Datasets:The test dataset combines 7741 laboratory-captured images and 73 real on-orbit navigation images, totaling 5 datasets, all with a resolution of 2248 × 2048.
- Test A: Laboratory-Captured DatasetComprises 627 images captured under low-light conditions simulating an approach towards satellites.
- Test B: Laboratory-Captured DatasetComprises 3231 images capturing a rotating satellite under oblique illumination from a faint light source.
- Test C: Laboratory-Captured DatasetComprises 449 images capturing the proximity approach of satellites under changing illumination conditions.
- Test D: Laboratory-Captured DatasetComprises 3434 images capturing the proximity approach of rotating satellites under varying illumination conditions.
- Test E: On-Orbit Navigation Imaging DatasetComprises 73 images captured by a spacecraft in low Earth orbit, featuring various imaging environments including Earth’s illuminated regions, shadowed regions, and the transitional zone between illuminated and shadowed areas.
4.2. Implementation Details
4.3. Evaluation Metrics
5. Results Analysis
5.1. Quantitative Comparison
5.2. Qualitative Comparison
5.3. Ablation Study
5.4. Applications
5.5. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flores-Abad, A.; Ma, O.; Pham, K.; Ulrich, S. A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci. 2014, 68, 1–26. [Google Scholar] [CrossRef]
- Peng, J.; Xu, W.; Yan, L.; Pan, E.; Liang, B.; Wu, A.G. A pose measurement method of a space noncooperative target based on maximum outer contour recognition. IEEE Trans. Aerosp. Electron. Syst. 2019, 56, 512–526. [Google Scholar] [CrossRef]
- Shao, Y.; Wu, A.; Li, S.; Shu, L.; Wan, X.; Shao, Y.; Huo, J. Satellite Component Semantic Segmentation: Video Dataset and Real-time Pyramid Attention and Decoupled Attention Network. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 7315–7333. [Google Scholar] [CrossRef]
- Palmerini, G.B. Combining thermal and visual imaging in spacecraft proximity operations. In Proceedings of the 2014 13th International Conference on Control Automation Robotics and Vision (ICARCV), Singapore, 10–12 December 2014; pp. 383–388. [Google Scholar] [CrossRef]
- Zhang, Z.; Deng, L.; Feng, J.; Chang, L.; Li, D.; Qin, Y. A survey of precision formation relative state measurement technology for distributed spacecraft. Aerospace 2022, 9, 362. [Google Scholar] [CrossRef]
- Volpe, R.; Sabatini, M.; Palmerini, G.B. Reconstruction of the Shape of a Tumbling Target from a Chaser in Close Orbit. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–11. [Google Scholar] [CrossRef]
- Miao, L.; Zhou, D.; Li, X. Spatial non-cooperative object detection based on deep learning. In Proceedings of the 2021 China Automation Congress (CAC), Beijing, China, 22–24 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 116–121. [Google Scholar]
- Peng, J.; Xu, W.; Yuan, H. An efficient pose measurement method of a space non-cooperative target based on stereo vision. IEEE Access 2017, 5, 22344–22362. [Google Scholar] [CrossRef]
- Islam, S.M.; Mondal, H.S. Image enhancement based medical image analysis. In Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6–8 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- You, Q.; Wan, C.; Sun, J.; Shen, J.; Ye, H.; Yu, Q. Fundus image enhancement method based on CycleGAN. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 4500–4503. [Google Scholar]
- Krishnan, H.; Lakshmi, A.A.; Anamika, L.; Athira, C.; Alaikha, P.; Manikandan, V. A novel underwater image enhancement technique using ResNet. In Proceedings of the 2020 IEEE 4th Conference on Information &Communication Technology (CICT), Chennai, India, 3–5 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. [Google Scholar]
- Li, H.; Zhuang, P.; Wei, W.; Li, J. Underwater image enhancement based on dehazing and color correction. In Proceedings of the 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), Xiamen, China, 16–18 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1365–1370. [Google Scholar]
- Kaplan, N.; Erer, I.; Gulmus, N. Remote sensing image enhancement via bilateral filtering. In Proceedings of the 2017 8th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, 19–22 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 139–142. [Google Scholar]
- Liu, P.; Wang, H.; Li, J.; Dong, W.; Zhang, J. Study of Enhanced Multi-spectral Remote-sensing-satellite Image Technology Based on Improved Retinex-Net. In Proceedings of the 2022 2nd International Conference on Algorithms, High Performance Computing and Artificial Intelligence (AHPCAI), Guangzhou, China, 21–23 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 484–489. [Google Scholar]
- Guo, X.; Hu, Q. Low-light image enhancement via breaking down the darkness. Int. J. Comput. Vis. 2023, 131, 48–66. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, Z.; Sun, W.; Lou, M.; Lian, J.; Zhao, W.; Deng, X.; Ma, Y. A comprehensive overview of image enhancement techniques. Arch. Comput. Methods Eng. 2021, 29, 583–607. [Google Scholar] [CrossRef]
- Kim, W. Low-light image enhancement: A comparative review and prospects. IEEE Access 2022, 10, 84535–84557. [Google Scholar] [CrossRef]
- Bau, D.; Strobelt, H.; Peebles, W.; Wulff, J.; Zhou, B.; Zhu, J.Y.; Torralba, A. Semantic photo manipulation with a generative image prior. arXiv 2020, arXiv:2005.07727. [Google Scholar] [CrossRef]
- Shen, Z.; Lai, W.S.; Xu, T.; Kautz, J.; Yang, M.H. Deep semantic face deblurring. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8260–8269. [Google Scholar]
- Chan, K.C.; Wang, X.; Xu, X.; Gu, J.; Loy, C.C. Glean: Generative latent bank for large-factor image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 14245–14254. [Google Scholar]
- Cap, Q.H.; Fukuda, A.; Iyatomi, H. A Practical Framework for Unsupervised Structure Preservation Medical Image Enhancement. arXiv 2023, arXiv:2304.01864. [Google Scholar]
- Li, C.; Guo, C.; Han, L.; Jiang, J.; Cheng, M.M.; Gu, J.; Loy, C.C. Low-light image and video enhancement using deep learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 9396–9416. [Google Scholar] [CrossRef]
- Parihar, A.S.; Singh, K. A study on Retinex based method for image enhancement. In Proceedings of the 2018 2nd International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 19–20 January 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 619–624. [Google Scholar]
- Pizer, S.M. Contrast-limited adaptive histogram equalization: Speed and effectiveness stephen m. pizer, r. eugene johnston, james p. ericksen, bonnie c. yankaskas, keith e. muller medical image display research group. In Proceedings of the First Conference on Visualization in Biomedical Computing, Atlanta, GA, USA, 22–25 May 1990; Volume 337, p. 2. [Google Scholar]
- Guo, X.; Li, Y.; Ling, H. LIME: Low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 2016, 26, 982–993. [Google Scholar] [CrossRef]
- Chi, J.N.; Zhang, C.; Qin, Y.J.; Wang, C.J. A novel image enhancement approach based on wavelet transformation. In Proceedings of the 2009 Chinese Control and Decision Conference, Guilin, China, 17–19 June 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 4387–4392. [Google Scholar]
- Wang, Y.; Chang, R.; He, B.; Liu, X.; Guo, J.H.; Lendasse, A. Underwater image enhancement strategy with virtual retina model and image quality assessment. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar]
- Jiao, L.; Zhao, J. A survey on the new generation of deep learning in image processing. IEEE Access 2019, 7, 172231–172263. [Google Scholar] [CrossRef]
- Ni, Z.; Yang, W.; Wang, S.; Ma, L.; Kwong, S. Towards Unsupervised Deep Image Enhancement With Generative Adversarial Network. IEEE Trans. Image Process. 2020, 29, 9140–9151. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Advances in Neural Information Processing Systems; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K., Eds.; Curran Associates, Inc.: New York, NY, USA, 2014; Volume 27. [Google Scholar]
- Liu, Z.; Yuan, T.; Lin, Y.; Zeng, B. Recent Advances of Generative Adversarial Networks. In Proceedings of the 2022 IEEE 2nd International Conference on Electronic Technology, Communication and Information (ICETCI), Changchun, China, 27–29 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 558–562. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Guo, X. Kindling the darkness: A practical low-light image enhancer. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 1632–1640. [Google Scholar]
- Lore, K.G.; Akintayo, A.; Sarkar, S. LLNet: A deep autoencoder approach to natural low-light image enhancement. Pattern Recognit. 2017, 61, 650–662. [Google Scholar] [CrossRef]
- Li, C.; Guo, J.; Porikli, F.; Pang, Y. LightenNet: A convolutional neural network for weakly illuminated image enhancement. Pattern Recognit. Lett. 2018, 104, 15–22. [Google Scholar] [CrossRef]
- Yang, W.; Wang, W.; Huang, H.; Wang, S.; Liu, J. Sparse gradient regularized deep retinex network for robust low-light image enhancement. IEEE Trans. Image Process. 2021, 30, 2072–2086. [Google Scholar] [CrossRef]
- Yang, W.; Wang, S.; Fang, Y.; Wang, Y.; Liu, J. From fidelity to perceptual quality: A semi-supervised approach for low-light image enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 3063–3072. [Google Scholar]
- Jiang, Y.; Gong, X.; Liu, D.; Cheng, Y.; Fang, C.; Shen, X.; Yang, J.; Zhou, P.; Wang, Z. Enlightengan: Deep light enhancement without paired supervision. IEEE Trans. Image Process. 2021, 30, 2340–2349. [Google Scholar] [CrossRef]
- Guo, C.; Li, C.; Guo, J.; Loy, C.C.; Hou, J.; Kwong, S.; Cong, R. Zero-reference deep curve estimation for low-light image enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 1780–1789. [Google Scholar]
- Liu, R.; Ma, L.; Zhang, J.; Fan, X.; Luo, Z. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 10561–10570. [Google Scholar]
- Yu, R.; Liu, W.; Zhang, Y.; Qu, Z.; Zhao, D.; Zhang, B. Deepexposure: Learning to expose photos with asynchronously reinforced adversarial learning. Adv. Neural Inf. Process. Syst. 2018, 31, 1673–1682. [Google Scholar]
- Armstrong, W.; Draktontaidis, S.; Lui, N. Semantic Image Segmentation of Imagery of Unmanned Spacecraft Using Synthetic Data; Technical Report; Montana State University: Bozeman, MT, USA, 2021. [Google Scholar]
- Dung, H.A.; Chen, B.; Chin, T.J. A spacecraft dataset for detection, segmentation and parts recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 2012–2019. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Dong, X.; Pang, Y.A.; Wen, J.G. Fast efficient algorithm for enhancement of low lighting video. In Proceedings of the ACM SIGGRAPH 2010 Posters, New York, NY, USA, 25–29 July 2010. SIGGRAPH ’10. [Google Scholar] [CrossRef]
- Nguyen, H.; Tran, D.; Nguyen, K.; Nguyen, R. PSENet: Progressive Self-Enhancement Network for Unsupervised Extreme-Light Image Enhancement. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–7 January 2023; pp. 1756–1765. [Google Scholar]
- Ma, L.; Ma, T.; Liu, R.; Fan, X.; Luo, Z. Toward fast, flexible, and robust low-light image enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5637–5646. [Google Scholar]
- Jin, Y.; Yang, W.; Tan, R.T. Unsupervised night image enhancement: When layer decomposition meets light-effects suppression. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 404–421. [Google Scholar]
- Zhang, F.; Shao, Y.; Sun, Y.; Zhu, K.; Gao, C.; Sang, N. Unsupervised low-light image enhancement via histogram equalization prior. arXiv 2021, arXiv:2112.01766. [Google Scholar]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bovik, A. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84. [Google Scholar] [CrossRef]
SpaceLight | LIME | KinD | EnlightGAN | Night | HEP | SCI | PSENet | |
---|---|---|---|---|---|---|---|---|
PSNR | 25.8375 2 | 25.7300 | 5.3682 | 10.9198 | 13.3153 | 12.7971 | 26.6539 1 | 22.4496 |
SSIM | 0.4842 1 | 0.2830 | 0.0147 | 0.0434 | 0.0377 | 0.0529 | 0.4267 2 | 0.1971 |
MS-SSIM | 0.7165 1 | 0.2808 | 0.0237 | 0.0469 | 0.0545 | 0.05988 | 0.5697 2 | 0.2964 |
LPIPS | 0.0393 1 | 0.2217 | 0.4183 | 0.1644 | 0.1721 | 0.0651 2 | 0.0967 | 0.1822 |
SpaceLight | LIME | KinD | EnlightGAN | Night | HEP | SCI | PSENet | |
---|---|---|---|---|---|---|---|---|
PSNR | 26.4139 1 | 24.5643 | 5.3266 | 10.9286 | 12.9719 | 12.8326 | 26.2267 2 | 21.9694 |
SSIM | 0.5575 1 | 0.2156 | 0.0122 | 0.03950 | 0.0171 | 0.0540 | 0.3550 2 | 0.1607 |
MS-SSIM | 0.7174 1 | 0.2686 | 0.0249 | 0.05020 | 0.0579 | 0.0665 | 0.5562 2 | 0.2920 |
LPIPS | 0.0435 1 | 0.2857 | 0.4471 | 0.2097 | 0.2319 | 0.0641 2 | 0.1544 | 0.2382 |
SpaceLight | LIME | KinD | EnlightGAN | Night | HEP | SCI | PSENet | |
---|---|---|---|---|---|---|---|---|
PSNR | 26.8031 1 | 23.3959 | 5.6495 | 10.9257 | 12.5737 | 12.8928 | 24.3550 2 | 20.1984 |
SSIM | 0.5582 1 | 0.2041 | 0.0153 | 0.0395 | 0.0292 | 0.0384 | 0.3039 2 | 0.1318 |
MS-SSIM | 0.7295 1 | 0.2497 | 0.0285 | 0.0545 | 0.0579 | 0.0825 | 0.5693 2 | 0.2978 |
LPIPS | 0.05831 | 0.2529 | 0.4057 | 0.1924 | 0.1972 | 0.0669 2 | 0.1445 | 0.2099 |
SpaceLight | LIME | KinD | EnlightGAN | Night | HEP | SCI | PSENet | |
---|---|---|---|---|---|---|---|---|
PSNR | 28.5612 1 | 24.5100 | 4.5959 | 10.5278 | 12.0562 | 12.6895 | 26.7876 2 | 22.5661 |
SSIM | 0.5074 1 | 0.1570 | 0.0063 | 0.0229 | 0.0092 | 0.0425 | 0.2937 2 | 0.1220 |
MS-SSIM | 0.7066 1 | 0.2700 | 0.0200 | 0.0430 | 0.0489 | 0.0611 | 0.5562 2 | 0.2874 |
LPIPS | 0.0370 1 | 0.2116 | 0.4173 | 0.1751 | 0.2189 | 0.0642 2 | 0.1168 | 0.1806 |
SpaceLight | LIME | KinD | EnlightGAN | Night | HEP | SCI | PSENet | |
---|---|---|---|---|---|---|---|---|
PSNR | 25.9703 1 | 23.9686 2 | 7.9310 | 14.3434 | 11.8444 | 14.1392 | 23.9627 | 22.7644 |
SSIM | 0.4978 | 0.4737 | 0.0103 | 0.2174 | 0.1724 | 0.2658 | 0.6510 1 | 0.5273 2 |
MS-SSIM | 0.6961 | 0.8221 | 0.1710 | 0.1778 | 0.1211 | 0.2383 | 0.7881 2 | 0.8268 1 |
LPIPS | 0.2234 2 | 0.3180 | 0.6690 | 0.2761 | 0.3107 | 0.1318 1 | 0.2568 | 0.2581 |
SpaceLight | LIME | KinD | EnlightGAN | Night | HEP | SCI | PSENet | |
---|---|---|---|---|---|---|---|---|
PSNR | 36.6030 1 | 34.2695 2 | 22.0033 | 29.5256 | 26.8166 | 25.5238 | 33.4020 | 32.9006 |
SSIM | 0.9080 1 | 0.8629 | 0.5740 | 0.5478 | 0.5138 | 0.4605 | 0.8869 2 | 0.8781 |
MS-SSIM | 0.9899 1 | 0.9867 | 0.9646 | 0.9665 | 0.9669 | 0.9640 | 0.9891 2 | 0.9887 |
LPIPS | 1.23 × 10−6 1 | 1.71 × 10−6 2 | 1.22 × 10−5 | 1.84 × 10−6 | 3.24 × 10−6 | 3.47 × 10−6 | 2.19 × 10−6 | 2.31 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Feng, J.; Chang, L.; Deng, L.; Li, D.; Si, C. SpaceLight: A Framework for Enhanced On-Orbit Navigation Imagery. Aerospace 2024, 11, 503. https://doi.org/10.3390/aerospace11070503
Zhang Z, Feng J, Chang L, Deng L, Li D, Si C. SpaceLight: A Framework for Enhanced On-Orbit Navigation Imagery. Aerospace. 2024; 11(7):503. https://doi.org/10.3390/aerospace11070503
Chicago/Turabian StyleZhang, Zhang, Jiaqi Feng, Liang Chang, Lei Deng, Dong Li, and Chaoming Si. 2024. "SpaceLight: A Framework for Enhanced On-Orbit Navigation Imagery" Aerospace 11, no. 7: 503. https://doi.org/10.3390/aerospace11070503
APA StyleZhang, Z., Feng, J., Chang, L., Deng, L., Li, D., & Si, C. (2024). SpaceLight: A Framework for Enhanced On-Orbit Navigation Imagery. Aerospace, 11(7), 503. https://doi.org/10.3390/aerospace11070503