Trajectory Design of Potentially Hazardous Asteroid Exploration with Reusable Probes from Cislunar Space
Abstract
:1. Introduction
2. Problem Descriptions
2.1. Orbital Dynamics
- (1)
- For the reusable probes
- (2)
- For the DSS
- (3)
- For the PHAs
2.2. Mission Constraints
2.3. Performance Indices
3. Trajectory Analysis
3.1. Simplified Orbital Dynamics
- (1)
- The two-body patched conics
- (2)
- The planar bicircular restricted four-body dynamics
3.2. Analysis of Orbital Energy for Escape from the Cislunar Space
- 1.
- Direct escape
- 2.
- Perigee escape
- 3.
- Perilune escape
3.3. Analysis of Trajectories Reaching the Perilune and the Perigee from the DRO
- (1)
- Case 1
- (2)
- Case 2
- (3)
- Case 3
4. Trajectory Design
4.1. Constructing Earth–PHAs–Earth Interplanetary Trajectories Database
4.2. Constructing DSS−Perilune−Perigee Trajectory Database
4.3. Generating Round-Trip Trajectories
4.4. Allocating Round-Trip Trajectories
5. Trajectory Solutions
5.1. Solutions Designed in This Study and Submitted in the Competition
5.2. Representative Trajectories
- (1)
- Representative trajectory I: the minimum-ΔV round trip exploring two PHAs
- (2)
- Representative trajectory II: the round trip exploring the PHA with a large inclination relative to the lunar orbital plane
- (3)
- Representative trajectory III: the round trip with a single PLF to escape from (or return to) cislunar space
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Ephemerides of the Sun and the Moon
Body | Sun | Moon |
---|---|---|
Epoch (MJD) | 60|676 | 60|676 |
Semi-major axis/km | 149|735|127.038|2 | 391|655.927|755|148 |
Eccentricity | 0.017|566|762|041 | 0.0 |
Inclination/(°) | 23.436|367|962|048 | 28.443|269|963|777|8 |
Right ascension of ascending node/(°) | 359.998|706|334|837 | 0.097|374|581|344|85 |
Argument of perigee/(°) | 283.150|652|210|347 | 0.0 |
Mean anomaly/(°) | 357.320|625|735|227 | 293.398|038|326|058 |
Appendix B. Ephemeris of the DSS
1.004416792940519 | |||||
0.318310613651114 | 0.636620862942161 | 0.954929789574872 | |||
−0.181970920960444 | 0.002999214058291 | −0.001841735804046 | |||
−0.000339694958002 | 0.000008393690079 | −0.000000619177065 | |||
0.318309134645416 | 0.636617759107742 | 0.954929213968546 | |||
0.000472036321598 | 0.000015290593321 | 0.000003018234912 | |||
0.244768639552355 | 0.002960758097617 | 0.002650026675994 | |||
0.318309196516475 | 0.636621150278213 | 0.954929177067250 | |||
0.000644080485616 | 0.000042417828521 | 0.000013643834980 | |||
0.363941953749817 | −0.011999166419257 | 0.011049154388712 | |||
0.318310565837136 | 0.636620009522340 | 0.954930966495610 | |||
0.489537961370538 | 0.011846929325199 | 0.015903320386205 | |||
0.000853780144252 | 0.000007209074015 | 0.000053373319044 |
Appendix C. Ephemerides of the Asteroids “2001 WN5” and “2009 WZ104”
Asteroid Name | “2001 WN5” | “2009 WZ104” |
---|---|---|
Epoch (modified Julian day MJD) | 59,600 | 59,600 |
Semi-major axis/km | 1.712 | 0.8554 |
Eccentricity | 0.4672 | 0.1927 |
Inclination/(°) | 1.92 | 9.83 |
Right ascension of ascending node/(°) | 277.42 | 263.260 |
Argument of perigee/(°) | 44.60 | 10.550 |
Mean anomaly/(°) | 30.39 | 265.48 |
References
- Zhang, Y.; Michel, P. Shapes, structures, and evolution of small bodies. Astrodyn 2021, 5, 293–329. [Google Scholar] [CrossRef]
- Kawaguchi, J. The Hayabusa mission–its seven years flight. In Proceedings of the 2011 Symposium on VLSI Circuits-Digest of Technical Papers, Kyoto, Japan, 15–17 June 2011. [Google Scholar]
- Watanabe, S.-I.; Tsuda, Y.; Yoshikawa, M.; Tanaka, S.; Saiki, T.; Nakazawa, S. Hayabusa2 mission overview. Space Sci. Rev. 2017, 208, 3–16. [Google Scholar] [CrossRef]
- Lauretta, D.S.; Balram-Knutson, S.S.; Beshore, E.; Boynton, W.V.; D’aubigny, C.D.; DellaGiustina, D.N.; Enos, H.L.; Golish, D.R.; Hergenrother, C.W.; Howell, E.S.; et al. OSIRIS-REx: Sample return from asteroid (101955) Bennu. Space Sci. Rev. 2017, 212, 925–984. [Google Scholar] [CrossRef]
- Li, X.; Scheeres, D.J.; Qiao, D.; Liu, Z. Geophysical and orbital environments of asteroid 469219 2016 HO3. Astrodyn 2023, 7, 31–50. [Google Scholar] [CrossRef]
- Elvis, M. Let’s mine asteroids for science and profit. Nature 2012, 485, 549. [Google Scholar] [CrossRef] [PubMed]
- Gates, M.; Mazanek, D.; Muirhead, B.; Stich, S.; Naasz, B.; Chodas, P.; McDonald, M.; Reuter, J. NASA’s asteroid redirect mission concept development summary. In Proceedings of the 2015 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2015. [Google Scholar]
- Brophy, J.; Culick, F.; Friedman, L.; Allen, C.; Baughman, D.; Bellerose, J. Asteroid Retrieval Feasibility Sstudy; Keck Institute for Space Studies, California Institute of Technology, Jet Propulsion Laboratory: Pasadena, CA, USA, 2012. [Google Scholar]
- García Yárnoz, D.; Sanchez, J.P.; McInnes, C.R. Easily retrievable objects among the NEA population. Celest. Mech. Dyn. Astron. 2013, 116, 367–388. [Google Scholar] [CrossRef]
- Lladó, N.; Ren, Y.; Masdemont, J.J.; Gómez, G. Capturing small asteroids into a Sun-Earth Lagrangian point. Acta Astronaut. 2014, 95, 176–188. [Google Scholar] [CrossRef]
- Baoyin, H.; Chen, Y.; Li, J. Capturing near Earth objects. Res. Astron. Astrophys. 2010, 10, 587–598. [Google Scholar] [CrossRef]
- Hasnain, Z.; Lamb, C.A.; Ross, S. Capturing near-Earth asteroids around Earth. Acta Astronaut. 2012, 81, 523–531. [Google Scholar] [CrossRef]
- Urrutxua, H.; Scheeres, D.; Bombardelli, C.; Gonzalo, J.L.; Peláez, J. What does it take to capture an asteroid? A case study on capturing asteroid 2006 RH120. In Proceedings of the 24th AAS/AIAA Space Flight Mechanics Meeting, San Diego, CA, USA, 26–30 January 2014. [Google Scholar]
- Stickle, A.; Rainey, E.; Syal, M.B.; Owen, J.; Miller, P.; Barnouin, O.; Ernst, C. Modeling impact outcomes for the Double Asteroid Redirection Test (DART) mission. Procedia Eng. 2017, 204, 116–123. [Google Scholar] [CrossRef]
- Mengali, G.; Quarta, A.A. Rapid Solar Sail Rendezvous Missions to Asteroid 99942 Apophis. J. Spacecr. Rocket. 2009, 46, 134–140. [Google Scholar] [CrossRef]
- Quarta, A.; Mengali, G. Electric sail missions to potentially hazardous asteroids. Acta Astronaut. 2010, 66, 1506–1519. [Google Scholar] [CrossRef]
- Li, Q.; Tao, Y.; Jiang, F. Orbital Stability and Invariant Manifolds on Distant Retrograde Orbits around Ganymede and Nearby Higher-Period Orbits. Aerospace 2022, 9, 454. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, M.; Shi, Y.; Zhang, H. Midcourse correction of Earth-Moon distant retrograde orbit transfer trajectories based on high-order state transition tensors. Astrodyn 2023, 7, 335–349. [Google Scholar] [CrossRef]
- Muralidharan, V.; Howell, K.C. Stretching directions in cislunar space: Applications for departures and transfer design. Astrodyn 2023, 7, 153–178. [Google Scholar] [CrossRef]
- Lopez, F.; Mauro, A.; Mauro, S.; Monteleone, G.; Sfasciamuro, D.E.; Villa, A. A Lunar-Orbiting Satellite Constellation for Wireless Energy Supply. Aerospace 2023, 10, 919. [Google Scholar] [CrossRef]
- Strange, N.; Landau, D.; McElrath, T.; Lantoine, G.; Lam, T. Overview of mission design for NASA asteroid redirect robotic mission concept. In Proceedings of the 33rd International Electric Propulsion Conference, Washington, DC, USA, 6–10 October 2013. [Google Scholar]
- Craig, D.; Herrmann, N.; Troutman, P. The evolvable Mars campaign-study status. In Proceedings of the 2015 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2015. [Google Scholar]
- Whitley, R.; Martinez, R. Options for staging orbits in cislunar space. In Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2016. [Google Scholar]
- McCarthy, B.; Howell, K. Leveraging quasi-periodic orbits for trajectory design in cislunar space. Astrodyn 2021, 5, 139–165. [Google Scholar] [CrossRef]
- Cavallari, I.; Petitdemange, R.; Lizy-Destrez, S. Transfer from a Lunar distant retrograde orbit to Mars through Lyapunov orbits. In Proceedings of the 27th International Symposium on Space Flight Dynamics, Melbourne, Australia, 24–28 February 2019. [Google Scholar]
- Zhang, G.; Pang, B.; Sun, Y.; Zhou, X.; Shang, Y.; Chen, C.; Lu, M.; Zhang, Y.; Jin, Z.; Zhang, Y.; et al. Optimal design of Mars immigration by using reusable transporters from the Earth-Moon system. Acta Astronaut. 2023, 207, 129–152. [Google Scholar] [CrossRef]
- Belbruno, E.; Miller, J. Sun-perturbed earth-to-moon transfers with ballistic capture. J. Guid. Control. Dyn. 1993, 16, 770–775. [Google Scholar] [CrossRef]
- Yamakawa, H.; Kawaguchi, J.; Ishii, N.; Matsuo, H. On Earth-Moon transfer trajectory with gravitational capture. Adv. Astronaut. Sci. 1993, 85, 397–416. [Google Scholar]
- Peng, C.; Zhang, H.; Wen, C.; Zhu, Z.; Gao, Y. Exploring More Solutions for Low-Energy Transfers to Lunar Distant Retrograde Orbits. Celest. Mech. Dyn. Astron. 2022, 134, 4. [Google Scholar] [CrossRef]
Symbol | Numerical Value | Unit | Physical Meaning |
---|---|---|---|
1.2300502 × 10−2 | — | Moon–Earth mass ratio | |
3.32946412 × 105 | DU3/TU2 | Normalized mass of the Sun | |
DU | 391,655.927755 | km | Normalized distance unit |
TU | 4.4933957 | day | Normalized time unit |
VU | 1.00882606642 | km/s | Normalized velocity unit |
Symbol | Value | Unit | Symbol | Value | Unit |
---|---|---|---|---|---|
[0, 3650] | Day | 1 | Day | ||
[0, 179] | Deg | 1 | Deg | ||
[0, 359] | Deg | 1 | Deg | ||
[0, 100] | m/s | 1 | m/s | ||
[−100, 100] | m/s | 1 | m/s |
Ranking | Team Name | J1 | J2 | J3 |
---|---|---|---|---|
1 | NSSC-BACC | 45 | 11 | 1.8025 km/s |
2 | NU-NAOC | 39 | 11 | 1.4239 km/s |
3 | BIT-CAST | 36 | 16 | 1.8724 km/s |
4 | SCU | 15 | 6 | 1.8188 km/s |
5 | NUAA-ASTL | 9 | 4 | 1.6599 km/s |
Probe No. | Number of Round Trips | Number of Explored PHAs | Average Velocity Impulses | Probe No. | Number of Round Trips | Number of Explored PHAs | Average Velocity Impulse |
---|---|---|---|---|---|---|---|
1 | 4 | 8 | 0.6266 km/s | 11 | 3 | 6 | 0.7771 km/s |
2 | 4 | 8 | 0.7081 km/s | 12 | 3 | 4 | 1.1535 km/s |
3 | 4 | 8 | 0.7051 km/s | 13 | 4 | 4 | 1.1967 km/s |
4 | 4 | 7 | 0.7388 km/s | 14 | 3 | 4 | 1.1550 km/s |
5 | 4 | 8 | 0.6610 km/s | 15 | 3 | 4 | 1.0097 km/s |
6 | 4 | 8 | 0.7325 km/s | 16 | 2 | 3 | 1.0662 km/s |
7 | 3 | 6 | 0.7215 km/s | 17 | 2 | 2 | 1.4352 km/s |
8 | 3 | 6 | 0.8838 km/s | 18 | 3 | 3 | 1.4916 km/s |
9 | 3 | 6 | 0.7343 km/s | 19 | 2 | 2 | 1.1866 km/s |
10 | 3 | 6 | 0.6715 km/s | 20 | 1 | 2 | 0.3794 km/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, C.; Zhang, R.; Gao, Y. Trajectory Design of Potentially Hazardous Asteroid Exploration with Reusable Probes from Cislunar Space. Aerospace 2024, 11, 546. https://doi.org/10.3390/aerospace11070546
Peng C, Zhang R, Gao Y. Trajectory Design of Potentially Hazardous Asteroid Exploration with Reusable Probes from Cislunar Space. Aerospace. 2024; 11(7):546. https://doi.org/10.3390/aerospace11070546
Chicago/Turabian StylePeng, Chao, Renyong Zhang, and Yang Gao. 2024. "Trajectory Design of Potentially Hazardous Asteroid Exploration with Reusable Probes from Cislunar Space" Aerospace 11, no. 7: 546. https://doi.org/10.3390/aerospace11070546
APA StylePeng, C., Zhang, R., & Gao, Y. (2024). Trajectory Design of Potentially Hazardous Asteroid Exploration with Reusable Probes from Cislunar Space. Aerospace, 11(7), 546. https://doi.org/10.3390/aerospace11070546