Coordinated Trajectory Planning of Discrete-Serpentine Heterogeneous Multi-Arm Space Robot for Capturing Tumbling Targets Using Manipulability Optimization
Abstract
1. Introduction
2. Modeling of the Target Satellite and Space Robotic System
2.1. Dynamics of an Uncontrolled Target Satellite
2.2. Kinematics of the Discrete-Serpentine Heterogeneous Multi-Arm Space Robot
3. Manipulability Analysis
3.1. Definition of Manipulability Measure for Mission Arms
3.2. Manipulability Optimization of Mission Arms
4. Coordinated Capturing-Monitoring Trajectory Planning Based on Manipulability Optimization
4.1. Cooperative Motion Planning Strategy
4.2. Trajectory Planning for the End-Effector
4.3. Joint Motion Optimization
5. Simulation Study
5.1. Parameters of the Simulation Model
5.2. Target Satellite Capturing-Monitoring Simulation
5.2.1. Parameter Initialization
5.2.2. Simulation Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, J.; Zhao, C.; Wang, K.; Zhao, H.; Zhang, F. Design and analysis of n(3-RRU) deployable and reconfigurable serial-parallel manipulator for on-orbit manipulation and capture. Aerosp. Sci. Technol. 2024, 146, 108942. [Google Scholar] [CrossRef]
- Li, W.; Cheng, D.; Liu, X.; Wang, Y.; Shi, W.; Tang, Z.; Gao, F.; Zeng, F.; Chai, H.; Luo, W.; et al. On-orbit service (OOS) of spacecraft: A review of engineering developments. Prog. Aeosp. Sci. 2019, 108, 32–120. [Google Scholar] [CrossRef]
- Moghaddam, B.M.; Chhabra, R. On the guidance, navigation and control of in-orbit space robotic missions: A survey and prospective vision. Acta Astronaut. 2021, 184, 70–100. [Google Scholar] [CrossRef]
- Cuadrat-Grzybowski, M.; Gill, E. Generation of secondary space debris risks from net capturing in active space debris removal missions. Aerospace 2024, 11, 236. [Google Scholar] [CrossRef]
- D’Ambrosio, M.; Capra, L.; Brandonisio, A.; Silvestrini, S.; Lavagna, M. Redundant space manipulator autonomous guidance for in-orbit servicing via deep reinforcement learning. Aerospace 2024, 11, 341. [Google Scholar] [CrossRef]
- Robinson, G.; Davies, J.B.C. Continuum robots—A state of the art. In Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, MI, USA, 10–15 May 1999; pp. 2849–2854. [Google Scholar]
- Fallahiarezoodar, N.; Zhu, Z.H. Review of autonomous space robotic manipulators for on-orbit servicing and active debris removal. Space Sci. Technol. 2025, 5, 291. [Google Scholar] [CrossRef]
- Flores-Abad, A.; Ma, O.; Pham, K.; Ulrich, S. A review of space robotics technologies for on-orbit servicing. Prog. Aeosp. Sci. 2014, 68, 1–26. [Google Scholar] [CrossRef]
- Papadopoulos, E.; Dubowsky, S. On the nature of control algorithms for free-floating space manipulators. IEEE Trans. Robot. Autom. 1991, 7, 750–758. [Google Scholar] [CrossRef]
- Dubowsky, S.; Papadopoulos, E. The kinematics, dynamics, and control of free-flying and free-floating space robotic systems. IEEE Trans. Robot. Autom. 1993, 9, 531–543. [Google Scholar] [CrossRef]
- Yoshida, K.; Dimitrov, D.; Nakanishi, H. On the Capture of Tumbling Satellite by a Space Robot. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 4127–4132. [Google Scholar]
- Aghili, F. A Prediction and Motion-Planning Scheme for Visually Guided Robotic Capturing of Free-Floating Tumbling Objects With Uncertain Dynamics. IEEE Trans. Robot. 2012, 28, 634–649. [Google Scholar] [CrossRef]
- Zhang, L. Configuration optimization for free-floating space robot capturing tumbling target. Aerospace 2022, 9, 69. [Google Scholar] [CrossRef]
- Peng, J.; Xu, W.; Pan, E.; Yan, L.; Liang, B.; Wu, A. Dual-arm coordinated capturing of an unknown tumbling target based on efficient parameters estimation. Acta Astronaut. 2019, 162, 589–607. [Google Scholar] [CrossRef]
- Xu, W.; Yan, L.; Hu, Z.; Liang, B. Area-oriented coordinated trajectory planning of dual-arm space robot for capturing a tumbling target. Chin. J. Aeronaut. 2019, 32, 2151–2163. [Google Scholar] [CrossRef]
- Yan, L.; Xu, W.; Hu, Z.; Liang, B. Multi-objective configuration optimization for coordinated capture of dual-arm space robot. Acta Astronaut. 2020, 167, 189–200. [Google Scholar] [CrossRef]
- Pan, G.; Jia, Q.; Chen, G.; Wang, Y.; Sun, F. Analysis and Optimization of Motion Coupling for the Coordinated Operation of Flexible Multi-Arm Space Robots. Actuators 2023, 12, 198. [Google Scholar] [CrossRef]
- Sharma, G.; Rout, B.K. Energy efficient reactionless design of multi-arm space robot for a cooperative handshake maneuver. Adv. Space Res. 2023, 71, 1752–1768. [Google Scholar] [CrossRef]
- Gao, T.; Yue, C.; Ju, X.; Lin, T. Demonstration-enhanced policy search for space multi-arm robot collaborative skill learning. Chin. J. Aeronaut. 2025, 38, 103187. [Google Scholar] [CrossRef]
- Peng, J.; Wu, H.; Zhang, C.; Chen, Q.; Meng, D.; Wang, X. Modeling, cooperative planning and compliant control of multi-arm space continuous robot for target manipulation. Appl. Math. Model. 2023, 121, 690–713. [Google Scholar] [CrossRef]
- Yeshmukhametov, A.; Koganezawa, K.; Yamamoto, Y. Design and Kinematics of Cable-Driven Continuum Robot Arm with Universal Joint Backbone. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia, 12–15 December 2018; pp. 2444–2449. [Google Scholar]
- Zonggao, M.; Han, Y.; Wenfu, X.; Zhonghua, H.; Tianliang, L.; Bin, L. Simultaneous Planning Method Considering Both Overall Configuration and End Pose for Hyper-Redundant Manipulators. IEEE Access 2019, 7, 136842–136854. [Google Scholar] [CrossRef]
- Chihi, M.; Ben Hassine, C.; Hu, Q. Segmented Hybrid Impedance Control for Hyper-Redundant Space Manipulators. Appl. Sci. 2025, 15, 1133. [Google Scholar] [CrossRef]
- Mu, Z.; Zhang, L.; Yan, L.; Li, Z.; Dong, R.; Wang, C. Hyper-redundant manipulators for operations in confined space: Typical applications, key technologies, and grand challenges. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 4928–4937. [Google Scholar] [CrossRef]
- Xidias, E.K. Time-optimal trajectory planning for hyper-redundant manipulators in 3D workspaces. Robot. Comput. Integr. Manuf. 2018, 50, 286–298. [Google Scholar] [CrossRef]
- Hu, Z.; Yuan, H.; Xu, W.; Yang, T.; Liang, B. Equivalent kinematics and pose-configuration planning of segmented hyper-redundant space manipulators. Acta Astronaut. 2021, 185, 102–116. [Google Scholar] [CrossRef]
- Ma, S.; Liang, B.; Wang, T. Dynamic analysis of a hyper-redundant space manipulator with a complex rope network. Aerosp. Sci. Technol. 2020, 100, 105768. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, W.; Dai, Y.; Xu, W. Analytical and numerical methods for the stiffness modeling of cable-Driven serpentine manipulators. Mech. Mach. Theory 2021, 156, 104179. [Google Scholar] [CrossRef]
- Hua, C.; Tian, Y.; Dai, X.; Peng, G. Study on terminal flexibility control strategy for the rope driven serpentine robotic arm. In Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA), Harbin, China, 6–9 August 2023; pp. 871–876. [Google Scholar]
- Xiang, R.; Xu, H.; Li, X.; Zhu, X.; Meng, D.; Xu, W. Compliance control of a cable-driven space manipulator based on force–position hybrid drive mode. Aerospace 2025, 12, 69. [Google Scholar] [CrossRef]
- Alattar, A.; Cursi, F.; Kormushev, P. Kinematic-model-free redundancy resolution using multi-point tracking and control for robot manipulation. Appl. Sci. 2021, 11, 4746. [Google Scholar] [CrossRef]
- Rollinson, D.; Buchan, A.; Choset, H. Virtual chassis for snake robots: Definition and applications. Adv. Robot. 2012, 26, 2043–2064. [Google Scholar] [CrossRef]
- Whitman, J.; Zevallos, N.; Travers, M.; Choset, H. Snake robot urban search after the 2017 Mexico City earthquake. In Proceedings of the IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Philadelphia, PA, USA, 6–8 August 2018; pp. 1–6. [Google Scholar]
- Marangoz, S.; Menon, R.; Dengler, N.; Bennewitz, M. DawnIK: Decentralized collision-aware inverse kinematics solver for heterogeneous multi-arm systems. In Proceedings of the IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids), Austin, TX, USA, 12–14 December 2023; pp. 1–8. [Google Scholar]
- Ouyang, X.; Meng, D.; Wang, X.; Wang, C.; Liang, B.; Ding, N. Hybrid rigid-continuum dual-arm space robots: Modeling, coupling analysis, and coordinated motion planning. Aerosp. Sci. Technol. 2021, 116, 106861. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, Z.; Yang, X.; Zhang, X. A switchable rigid-continuum robot arm: Design and testing. In Proceedings of the International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 5162–5169. [Google Scholar]

















| Variable | Definition |
|---|---|
| B0 | The base of the DSHMASR |
| The ith link of Arm-k | |
| The ith joint of Arm-k | |
| The position vector of the base B0 | |
| The position vector of the tip of Arm-k | |
| Ek | The tip of Arm-k |
| The base’s linear velocity and angular velocity | |
| The linear velocity and angular velocity of Arm-k tip | |
| Om | The m-dimensional zero matrix |
| Em | The m-dimensional identity matrix |
| Link i | θi (°) | αi (°) | ai (mm) | di (mm) |
|---|---|---|---|---|
| 1 | −90 | 90 | 0 | d1 = 100 |
| 2 | 90 | 90 | 0 | d2 = 190 |
| 3 | −90 | 0 | a3 = 1810 | 0 |
| 4 | 0 | 0 | a4 = 1810 | 0 |
| 5 | −90 | 90 | 0 | d5 = 570 |
| 6 | 90 | 90 | 0 | d6 = 190 |
| 7 | −90 | 0 | a7 = 150 | d7 = 190 |
| Link i | θi (°) | αi (°) | ai (mm) | di (mm) |
|---|---|---|---|---|
| 1 | 180 | 90 | 0 | 0 |
| 2 | 180 | 90 | 0 | 222 |
| 3 | 180 | 90 | 0 | 0 |
| 4 | 180 | 90 | 0 | 222 |
| 29 | 180 | 90 | 0 | 0 |
| 30 | 180 | 90 | 0 | 222 |
| 31 | 180 | 90 | 0 | 0 |
| 32 | 180 | 90 | 0 | 222 |
| Variates | B0 | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Mass (kg) | 2000 | 2.5 | 2.5 | 5.6 | 5.6 | 2.5 | 2.5 | 2.5 | |
| (m) | / | 0 | 0 | 0 | 0.905 | 0 | 0 | 0 | |
| / | 0 | 0 | −0.905 | 0 | 0 | 0 | 0 | ||
| / | −0.1 | −0.095 | −0.095 | −0.095 | −0.095 | −0.095 | −0.095 | ||
| (m) | −0.9231 | 0.095 | −0.095 | 0 | 0.905 | 0.095 | −0.095 | 0 | |
| 1.9195 | 0 | 0 | −0.905 | 0 | 0 | 0 | −0.095 | ||
| −0.7729 | 0 | 0 | −0.095 | −0.095 | 0 | 0 | 0 | ||
| (kg·m2) | Ixx | 436 | 0.01 | 0.01 | 1.60 | 0.325 | 0.01 | 0.01 | 0.01 |
| Iyy | 105 | 0.01 | 0.01 | 0.325 | 1.60 | 0.01 | 0.01 | 0.01 | |
| Izz | 436 | 0.0086 | 0.0086 | 1.60 | 1.60 | 0.0086 | 0.0086 | 0.0086 | |
| Manipulability | Proportional Distribution | The Traditional Method | The Proposed Method | Improved By |
|---|---|---|---|---|
| The maximum value | w1 = 0.4, w2 = 0.6 | 7.5333 | 9.0891 | 20.65% |
| w1 = 0.5, w2 = 0.5 | 7.5333 | 10.2659 | 36.27% | |
| w1 = 0.6, w2 = 0.4 | 7.5333 | 11.4807 | 52.40% | |
| The mean value | w1 = 0.4, w2 = 0.6 | 6.0004 | 7.0155 | 16.92% |
| w1 = 0.5, w2 = 0.5 | 6.0004 | 7.4172 | 23.61% | |
| w1 = 0.6, w2 = 0.4 | 6.0004 | 7.8196 | 30.23% | |
| The final moment value | w1 = 0.4, w2 = 0.6 | 3.4634 | 5.5083 | 59.04% |
| w1 = 0.5, w2 = 0.5 | 3.4634 | 6.3485 | 83.30% | |
| w1 = 0.6, w2 = 0.4 | 3.4634 | 7.1885 | 107.56% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Li, C.; Sun, Q.; Peng, J.; Li, W. Coordinated Trajectory Planning of Discrete-Serpentine Heterogeneous Multi-Arm Space Robot for Capturing Tumbling Targets Using Manipulability Optimization. Aerospace 2025, 12, 944. https://doi.org/10.3390/aerospace12100944
Hu Z, Li C, Sun Q, Peng J, Li W. Coordinated Trajectory Planning of Discrete-Serpentine Heterogeneous Multi-Arm Space Robot for Capturing Tumbling Targets Using Manipulability Optimization. Aerospace. 2025; 12(10):944. https://doi.org/10.3390/aerospace12100944
Chicago/Turabian StyleHu, Zhonghua, Chuntao Li, Qun Sun, Jianqing Peng, and Wenshuo Li. 2025. "Coordinated Trajectory Planning of Discrete-Serpentine Heterogeneous Multi-Arm Space Robot for Capturing Tumbling Targets Using Manipulability Optimization" Aerospace 12, no. 10: 944. https://doi.org/10.3390/aerospace12100944
APA StyleHu, Z., Li, C., Sun, Q., Peng, J., & Li, W. (2025). Coordinated Trajectory Planning of Discrete-Serpentine Heterogeneous Multi-Arm Space Robot for Capturing Tumbling Targets Using Manipulability Optimization. Aerospace, 12(10), 944. https://doi.org/10.3390/aerospace12100944

