A Human–Robot Team Knowledge-Enhanced Large Language Model for Fault Analysis in Lunar Surface Exploration
Abstract
:1. Introduction
2. Related Work
2.1. Human–Robot Collaborative Design and Failure Recovery in Lunar Surface Exploration
2.2. Joint KG and LLM Systems
2.3. Human–Robot Interface Design in Collaboration with Intelligent Agents
3. Methodology of KG-Enhanced LLM for Lunar Surface Exploration
3.1. KG-Based P-Tuning Dataset Construction
Algorithm 1: Question and answer modeling with knowledge subgraph embedding |
Input: The question q = [x1, x2, …, xn] denotes a question consisting of n characters. Output: Obtain answer A, which is generated by embedding through a knowledge subgraph. |
|
3.2. KG Enhances LLM’s P-Tuning Approach
3.3. Multi-Level Prompt Design for Dialogue
4. Case Study
4.1. Experimental Setting
- Correctness: does the model’s response align with known correct answers or expert knowledge?
- Completeness: are there any factual errors? Does the response cover all key points of the question without omitting important information?
- Relevance: is the response highly relevant to the question? Does it avoid irrelevant or redundant information?
- Clarity: is the response clear and fluent? Does it conform to the reading habits of professionals?
- Actionability (for measure recommendations): are the provided solutions feasible and actionable for actual tasks?
4.2. Experimental Results and Analysis
4.3. Usability and Feasibility Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marov, M.Y.; Slyuta, E.N. Early steps toward the lunar base deployment: Some prospects. Acta Astronaut. 2021, 181, 28–39. [Google Scholar] [CrossRef]
- Serria, E.; Gadhafi, R.; Almaeeni, S.; Mukhtar, H.; Copiaco, A.; Abd-Alhameed, R.; Lemieux, F.; Mansoor, W. A Review of Lunar Communications and Antennas: Assessing Performance in the Context of Propagation and Radiation. Sensors 2023, 23, 9832. [Google Scholar] [CrossRef] [PubMed]
- Tonasso, R.; Tataru, D.; Rauch, H.; Pozsgay, V.; Pfeiffer, T.; Uythoven, E.; Rodríguez-Martínez, D. A lunar reconnaissance drone for cooperative exploration and high-resolution mapping of extreme locations. Acta Astronaut. 2024, 218, 1–17. [Google Scholar] [CrossRef]
- Chien, S.A.; Visentin, G.; Basich, C. Exploring beyond Earth using space robotics. Sci. Robot. 2024, 9, eadi6424. [Google Scholar] [CrossRef]
- Vaquero, T.S.; Daddi, G.; Thakker, R.; Paton, M.; Jasour, A.; Strub, M.P.; Swan, R.M.; Royce, R.; Gildner, M.; Tosi, P.; et al. EELS: Autonomous snake-like robot with task and motion planning capabilities for ice world exploration. Sci. Robot. 2024, 9, eadh8332. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.C.; Tang, D.B.; Zhu, H.H.; Nie, Q.W.; Chen, W.; Zhao, Z. An augmented reality-assisted interaction approach using deep reinforcement learning and cloud-edge orchestration for user-friendly robot teaching. Robot. Comput.-Integr. Manuf. 2024, 85, 102638. [Google Scholar] [CrossRef]
- Morrell, B.J.; da Silva, M.S.; Kaufmanna, M.; Moon, N.; Kim, T.; Lei, X.M.; Patterson, C.; Uribe, J.; Vaquero, T.S.; Correa, G.J.; et al. Robotic exploration of Martian caves: Evaluating operational concepts through analog experiments in lava tubes. Acta Astronaut. 2024, 223, 741–758. [Google Scholar] [CrossRef]
- Sidaoui, A.; Daher, N.; Asmar, D. Human-Robot Interaction via a Joint-Initiative Supervised Autonomy (JISA) Framework. J. Intell. Robot. Syst. 2022, 104, 51. [Google Scholar] [CrossRef]
- Rimani, J.; Viola, N.; Lizy-Destrez, S. Simulating Operational Concepts for Autonomous Robotic Space Exploration Systems: A Framework for Early Design Validation. Aerospace 2023, 10, 408. [Google Scholar] [CrossRef]
- Bi, J.H.; Jin, A.; Chen, C.; Ying, S. Enhanced Interactive Rendering for Rovers of Lunar Polar Region and Martian Surface. Remote Sens. 2024, 16, 1270. [Google Scholar] [CrossRef]
- Mazarico, E.; Barker, M.K.; Jagge, A.M.; Britton, A.W.; Lawrence, S.J.; Bleacher, J.E.; Petro, N.E. Sunlit pathways between south pole sites of interest for lunar exploration. Acta Astronaut. 2023, 204, 49–57. [Google Scholar] [CrossRef]
- Rimani, J.; Bucchioni, G.; Ryals, A.D.; Viola, N.; Lizy-Destrez, S. Integrated Conceptual Design and Parametric Control Assessment for a Hybrid Mobility Lunar Hopper. Aerospace 2023, 10, 669. [Google Scholar] [CrossRef]
- Wright, J.L.; Lakhmani, S.G.; Chen, J.Y.C. Bidirectional Communications in Human-Agent Teaming: The Effects of Communication Style and Feedback. Int. J. Hum.-Comput. Interact. 2022, 38, 1972–1985. [Google Scholar] [CrossRef]
- Karakikes, M.; Nathanael, D. The effect of cognitive workload on decision authority assignment in human-robot collaboration. Cogn. Technol. Work 2023, 25, 31–43. [Google Scholar] [CrossRef]
- Liu, P.F.; Qian, L.; Zhao, X.W.; Tao, B. Joint Knowledge Graph and Large Language Model for Fault Diagnosis and Its Application in Aviation Assembly. IEEE Trans. Ind. Inform. 2024, 20, 8160–8169. [Google Scholar] [CrossRef]
- Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901. [Google Scholar]
- Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright, C.L.; Mishkin, P.; Zhang, C.; Agarwal, S.; Slama, K.; Ray, A.; et al. Training language models to follow instructions with human feedback. In Proceedings of the 36th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, LA, USA, 28 November–9 December 2022. [Google Scholar]
- GLM, T.; Zeng, A.; Xu, B.; Wang, B.; Zhang, C.; Yin, D.; Zhang, D.; Rojas, D.; Feng, G.; Zhao, H. Chatglm: A family of large language models from glm-130b to glm-4 all tools. arXiv 2024, arXiv:2406.12793. [Google Scholar]
- Wang, C.; Liu, Y.Y.; Guo, T.Z.; Li, D.P.; He, T.; Li, Z.; Yang, Q.W.; Wang, H.H.; Wen, Y.Y. Systems engineering issues for industry applications of large language model. Appl. Soft. Comput. 2024, 151, 111165. [Google Scholar] [CrossRef]
- Peng, C.Y.; Xia, F.; Naseriparsa, M.; Osborne, F. Knowledge Graphs: Opportunities and Challenges. Artif. Intell. Rev. 2023, 56, 13071–13102. [Google Scholar] [CrossRef]
- Zhou, B.; Li, X.Y.; Liu, T.Y.; Xu, K.Z.; Liu, W.; Bao, J.S. CausalKGPT: Industrial structure causal knowledge-enhanced large language model for cause analysis of quality problems in aerospace product manufacturing. Adv. Eng. Inform. 2024, 59, 102333. [Google Scholar] [CrossRef]
- Yang, L.Y.; Chen, H.Y.; Li, Z.; Ding, X.; Wu, X.D. Give us the Facts: Enhancing Large Language Models With Knowledge Graphs for Fact-Aware Language Modeling. IEEE Trans. Knowl. Data Eng. 2024, 36, 3091–3110. [Google Scholar] [CrossRef]
- Pan, S.R.; Luo, L.H.; Wang, Y.F.; Chen, C.; Wang, J.P.; Wu, X.D. Unifying Large Language Models and Knowledge Graphs: A Roadmap. IEEE Trans. Knowl. Data Eng. 2024, 36, 3580–3599. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, Y.; Du, Z.; Ding, M.; Qian, Y.; Yang, Z.; Tang, J. GPT understands, too. AI Open 2024, 5, 208–215. [Google Scholar] [CrossRef]
- Chen, L.; Xu, J.H.; Wu, T.Y.; Liu, J. Information Extraction of Aviation Accident Causation Knowledge Graph: An LLM-Based Approach. Electronics 2024, 13, 3936. [Google Scholar] [CrossRef]
- Zhou, B.; Bao, J.S.; Chen, Z.Y.; Liu, Y.H. KGAssembly: Knowledge graph-driven assembly process generation and evaluation for complex components. Int. J. Comput. Integr. Manuf. 2022, 35, 1151–1171. [Google Scholar] [CrossRef]
- Endsley, M.R. From Here to Autonomy: Lessons Learned From Human-Automation Research. Hum. Factors 2017, 59, 5–27. [Google Scholar] [CrossRef]
- Chen, J.Y.C.; Barnes, M.J.; Wright, J.L.; Stowers, K.; Lakhmani, S.G. Situation awareness-based agent transparency for human-autonomy teaming effectiveness. In Proceedings of the Conference on Micro- and Nanotechnology (MNT) Sensors, Systems, and Applications IX, Anaheim, CA, USA, 9–13 April 2017. [Google Scholar]
- Zhang, T.; Pang, Y.; Zeng, T.; Wang, G.X.; Yin, S.; Xu, K.; Mo, G.D.; Zhang, X.W.; Wang, L.S.; Yang, S.; et al. Robotic drilling for the Chinese Chang’E 5 lunar sample-return mission. Int. J. Robot. Res. 2023, 42, 586–613. [Google Scholar] [CrossRef]
- Ding, L.; Zhou, R.; Yuan, Y.; Yang, H.; Li, J.; Yu, T.; Liu, C.; Wang, J.; Li, S.; Gao, H.; et al. A 2-year locomotive exploration and scientific investigation of the lunar farside by the Yutu-2 rover. Sci. Robot. 2022, 7, eabj6660. [Google Scholar] [CrossRef]
- Verma, V.; Maimone, M.W.; Gaines, D.M.; Francis, R.; Estlin, T.A.; Kuhn, S.R.; Rabideau, G.R.; Chien, S.A.; McHenry, M.M.; Graser, E.J.; et al. Autonomous robotics is driving Perseverance rover’s progress on Mars. Sci. Robot. 2023, 8, eadi3099. [Google Scholar] [CrossRef]
- Fries, M.D.; Lee, C.; Bhartia, R.; Hollis, J.R.; Beegle, L.W.; Uckert, K.; Graff, T.G.; Abbey, W.; Bailey, Z.; Berger, E.L.; et al. The SHERLOC Calibration Target on the Mars 2020 Perseverance Rover: Design, Operations, Outreach, and Future Human Exploration Functions. Space Sci. Rev. 2022, 218, 46. [Google Scholar] [CrossRef]
- Lamarre, O.; Malhotra, S.; Kelly, J. Recovery policies for safe exploration of lunar permanently shadowed regions by a solar-powered rover. Acta Astronaut. 2023, 213, 708–724. [Google Scholar] [CrossRef]
- Vanegas, M.; Kotowick, K.; LaTour, P.; Curry, M.; Foley, J.; Hoffman, J.; Schreiner, S.; Setterfield, T.; Geiger, L.; Barmore, D.; et al. An Emergency Mitigation System for Safer Lunar Surface Exploration. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 42–52. [Google Scholar] [CrossRef]
- Hirabayashi, M.; Hartzell, C.M.; Bellan, P.M.; Bodewits, D.; Delzanno, G.L.; Hyde, T.; Konopka, U.; Thomas, E.; Thomas, H.M.; Hahn, I.; et al. Electrostatic dust remediation for future exploration of the Moon. Acta Astronaut. 2023, 207, 392–402. [Google Scholar] [CrossRef]
- Park, B.J.; Chung, H.J. Deep Reinforcement Learning-Based Failure-Safe Motion Planning for a 4-Wheeled 2-Steering Lunar Rover. Aerospace 2023, 10, 219. [Google Scholar] [CrossRef]
- Fink, W.; Fuhrman, C.; Zuniga, A.N.; Tarbell, M. A Hansel & Gretel breadcrumb-style dynamically deployed communication network paradigm using mesh topology for planetary subsurface exploration. Adv. Space Res. 2023, 72, 518–528. [Google Scholar] [CrossRef]
- Cilliers, J.; Hadler, K.; Rasera, J. Toward the utilisation of resources in space: Knowledge gaps, open questions, and priorities. npj Microgravity 2023, 9, 22. [Google Scholar] [CrossRef] [PubMed]
- Wan, P.X.; Huang, Z.G.; Tang, W.J.; Nie, Y.L.; Pei, D.J.; Deng, S.F.; Chen, J.; Zhou, Y.Z.; Duan, H.R.; Chen, Q.Y.; et al. Outpatient reception via collaboration between nurses and a large language model: A randomized controlled trial. Nat. Med. 2024, 30, 2878–2885. [Google Scholar] [CrossRef]
- Huang, Z.; Xu, W.; Yu, K. Bidirectional LSTM-CRF models for sequence tagging. arXiv 2015, arXiv:1508.01991. [Google Scholar]
- Li, J.C.; Luo, X.D.; Lu, G.Q. GS-CBR-KBQA: Graph-structured case-based reasoning for knowledge base question answering. Expert Syst. Appl. 2024, 257, 125090. [Google Scholar] [CrossRef]
- Buehler, M.J. MechGPT, a Language-Based Strategy for Mechanics and Materials Modeling That Connects Knowledge Across Scales, Disciplines, and Modalities. Appl. Mech. Rev. 2024, 76, 021001. [Google Scholar] [CrossRef]
- Li, H.; Yang, R.Z.; Xu, S.S.; Xiao, Y.; Zhao, H.Y. Intelligent Checking Method for Construction Schemes via Fusion of Knowledge Graph and Large Language Models. Buildings 2024, 14, 2502. [Google Scholar] [CrossRef]
- Chen, M.Z.; Tao, Z.X.; Tang, W.T.; Qin, T.X.; Yang, R.; Zhu, C.L. Enhancing emergency decision-making with knowledge graphs and large language models. Int. J. Disaster Risk Reduct. 2024, 113, 104804. [Google Scholar] [CrossRef]
- Zhu, J.; Dang, P.; Cao, Y.G.; Lai, J.B.; Guo, Y.K.; Wang, P.; Li, W.L. A flood knowledge-constrained large language model interactable with GIS: Enhancing public risk perception of floods. Int. J. Geogr. Inf. Sci. 2024, 38, 603–625. [Google Scholar] [CrossRef]
- Jiang, J.; Kahai, S.; Yang, M. Who needs explanation and when? Juggling explainable AI and user epistemic uncertainty. Int. J. Hum.-Comput. Stud. 2022, 165, 102839. [Google Scholar] [CrossRef]
- Berzuk, J.M.; Young, J.E. More than words: A Framework for Describing Human-Robot Dialog Designs. In Proceedings of the 17th Annual ACM/IEEE International Conference on Human-Robot Interaction (HRI), Sapporo, Japan, 7–10 March 2022; pp. 393–401. [Google Scholar]
- Sakai, K.; Ban, M.; Mitsuno, S.; Ishiguro, H.; Yoshikawa, Y. Leveraging the Presence of Other Robots to Promote Acceptability of Robot Persuasion: A Field Experiment. IEEE Robot. Autom. Lett. 2024, 9, 9813–9819. [Google Scholar] [CrossRef]
- Chen, J.Y.; Lakhmani, S.G.; Stowers, K.; Selkowitz, A.R.; Wright, J.L.; Barnes, M. Situation awareness-based agent transparency and human-autonomy teaming effectiveness. Theor. Issues Ergon. Sci. 2018, 19, 259–282. [Google Scholar] [CrossRef]
- Hu, Z.J.; Yang, P.; Jiang, Y.S.; Bai, Z.J. Prompting large language model with context and pre-answer for knowledge-based VQA. Pattern Recognit. 2024, 151, 110399. [Google Scholar] [CrossRef]
- Liu, X.; Ji, K.; Fu, Y.; Tam, W.L.; Du, Z.; Yang, Z.; Tang, J. P-tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks. arXiv 2021, arXiv:2110.07602. [Google Scholar]
- Li, X.L.S.; Liang, P.; Assoc Computat, L. Prefix-Tuning: Optimizing Continuous Prompts for Generation. In Proceedings of the Joint Conference of 59th Annual Meeting of the Association-for-Computational-Linguistics (ACL)/11th International Joint Conference on Natural Language Processing (IJCNLP)/6th Workshop on Representation Learning for NLP (RepL4NLP), Online, 1–6 August 2021; pp. 4582–4597. [Google Scholar]
- Endsley, M.R. Supporting Human-AI Teams:Transparency, explainability, and situation awareness. Comput. Hum. Behav. 2023, 140, 107574. [Google Scholar] [CrossRef]
Question: | Example (in Chinese) | Example(in Corresponding English) |
作为专家系统,分析人机团队执行装配目标识别失效时可能的问题? | As an expert system, analyze the possible problems that occur when human–robot teams fail to perform assembly target identification. | |
GPT-4 | 人机团队执行装配时,若目标识别失效,可能导致以下问题:
| Failure of target recognition when the human–robot teams perform assembly can lead to the following problems:
|
ChatGPT (GPT-3.5) | 当人机团队执行装配目标识别失效时,可能会遇到以下问题:
| The following problems may be encountered when human–robot teams perform assembly target recognition failures:
|
Specialized LLM (proposed) | 问题包括:
| Problems include:
|
ChatGLM-6B | 作为专家系统,分析人机团队执行装配目标识别失效时可能的问题,可以帮助制定有效的应对措施,确保任务顺利完成。可能的问题包括:
| As an expert system, analyzing the possible problems when human–robot teams perform assembly target identification failures can help develop effective countermeasures to ensure successful task completion. Possible problems include:
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Xue, S.; Zhang, H.; Wang, C.; Fu, Y. A Human–Robot Team Knowledge-Enhanced Large Language Model for Fault Analysis in Lunar Surface Exploration. Aerospace 2025, 12, 325. https://doi.org/10.3390/aerospace12040325
Wang H, Xue S, Zhang H, Wang C, Fu Y. A Human–Robot Team Knowledge-Enhanced Large Language Model for Fault Analysis in Lunar Surface Exploration. Aerospace. 2025; 12(4):325. https://doi.org/10.3390/aerospace12040325
Chicago/Turabian StyleWang, Hao, Shuqi Xue, Hongbo Zhang, Chunhui Wang, and Yan Fu. 2025. "A Human–Robot Team Knowledge-Enhanced Large Language Model for Fault Analysis in Lunar Surface Exploration" Aerospace 12, no. 4: 325. https://doi.org/10.3390/aerospace12040325
APA StyleWang, H., Xue, S., Zhang, H., Wang, C., & Fu, Y. (2025). A Human–Robot Team Knowledge-Enhanced Large Language Model for Fault Analysis in Lunar Surface Exploration. Aerospace, 12(4), 325. https://doi.org/10.3390/aerospace12040325