Review of State-of-the-Art Green Monopropellants: For Propulsion Systems Analysts and Designers
Abstract
:1. Introduction
- Energetic Ionic Liquids (EILs) (or premixed oxidizer/fuel ionic aqueous solutions).
- Liquid NOx Monopropellants (either in binary compound, nitro compound, or premixed/blend form).
- Hydrogen Peroxide Aqueous Solutions (HPAS).
2. Green Monopropellants Classification
2.1. Energetic Ionic Liquids (EILs)
Ionic Oxidizer | Molecular Weight (g mol−1) | Standard Heat of Formation (kJ mol−1) | |
---|---|---|---|
HAN, hydroxyl ammonium nitrate | [NH3OH]+[NO3]− | 96.04 | −338.97 [20] |
ADN, ammonium dinitramide | [NH4]+ [N(NO2)2]− | 124.06 | −134.6 [21] as cited in [22] |
HNF, hydrazinium nitroformate | [N2H5]+ [C(NO2)3]− | 183.08 | −72.104 [20] |
AN, ammonium nitrate | [NH4]+ [NO3]− | 80.043 | −365.28 [20] |
HN, hydrazinium nitrate | [N2H5]+ [NO3]− | 95.06 | −211.36 [20] |
Ionic Fuel | |||
AA, ammonium azide | [NH4]+ [N3]− | 60.06 | 113.66 [20] |
HA, hydrazinium azide | [N2H5]+ [N3]− | 75.07 | 228.53 [20] |
HEHN,2-hydroxyethyl-hydrazinium nitrate | [HO-C2H4-N2H4]+ [NO3]− | 139.11 [23] | −388.69 [24] |
Molecular Fuel | |||
MMF, mono-methylformamide | CH3HNCHO | 59.067 | −247.4 [22] |
DMF, di-methylformamide | (CH3)2NCHO | 73.094 | −239.3 [25] as cited in [22] |
Methanol | CH3OH | 32.04 | −238.77 [20] |
Ethanol | CH3CH2OH | 46.07 | −277.755 [20] |
Glycerol | (CH2OH)2CHOH | 92.094 | −669.6 [26] |
Glycine | NH2CH2COOH | 75.07 | −528.0 [27] |
Urea | CO(NH2)2 | 60.06 | −333.43 [20] |
2.2. Liquid NOx Monopropellants
2.3. Hydrogen Peroxide Aqueous Solutions (HPAS)
3. Green Monopropellants in Multi-Mode Propulsion
4. Green Monopropellants Data and Performance Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Price, T.W.; Evans, D.D. The Status of Monopropellant Hydrazine Technology—Technical Report 32-1227; Jet Propulsion Laboratory, NASA: Pasadena, CA, USA, 1968. [Google Scholar]
- ECHA European Chemicals Agency. Candidate List of Substances of Very High Concern for Authorisation. 20 June 2011. Available online: https://echa.europa.eu/documents/10162/c5b972a9-f57f-4fd5-8177-04b4e46c5e93 (accessed on 1 April 2020).
- Mayer, A.; Wieling, W. Green Propulsion Research at TNO the Netherlands. Trans. Inst. Aviation. 2018, 4, 1–24. [Google Scholar]
- Uramachi, H.; Shiraiwa, D.; Takai, T.; Tanaka, N.; Kaneko, T.; Furukawa, K. Green Propulsion Systems for Satellites—Development of Thrusters and Propulsion Systems using Low-toxicity Propellants. Mitsubishi Heavy Ind. Tech. Rev. 2019, 56, 1–7. [Google Scholar]
- Jankovsky, R.S. HAN-Based Monopropellant Assessment for Spacecraft—NASA Technical Memorandum 107287. In Proceedings of the 32nd Joint Propulsion Conference AIAA/ASME/SAE/ASEE, Lake Buena Vista, FL, USA, 1–3 July 1996. [Google Scholar]
- United Nations. Globally Harmonized System of Classification and Labeling of Chemicals (GHS), 4th ed.; United Nations: New York, NY, USA, 2011. [Google Scholar]
- Batonneau, Y.; Kappenstein, C.; Keim, W. Catalytic decomposition of energetic compounds: Gas generator, propulsion. In Handbook of Heterogeneous Catalysis, 2nd ed.; VCh-Wiley: Weinheim, Germany, 2008; pp. 2647–2680. [Google Scholar]
- Batonneau, Y.; Brahmi, R. Application of Ionic Liquids to Space Propulsion. In Applications of Ionic Liquids in Science and Technology; InTech: Poitiers, France, 2011; pp. 447–466. [Google Scholar]
- Gohardani, A.S.; Stanojev, J.; Demairé, A.; Anflo, K.; Persson, M.; Wingborg, N.; Nilsson, C. Green space propulsion: Opportunities and prospects. Prog. Aerosp. Sci. 2014, 71, 128–149. [Google Scholar] [CrossRef]
- Amrousse, R.; Katsumi, T.; Itouyama, N.; Azuma, N.; Kagawa, H.; Hatai, K.; Ikeda, H.; Hori, K. New HAN-based mixtures for reaction control system and low toxic spacecraft propulsion subsystem: Therman decomposition and possible thruster applications. Combust. Flame 2015, 162, 2686–2692. [Google Scholar] [CrossRef]
- Claßen, M.; Heimsch, S.B.; Klapötke, T.M. Synthesis and Characterization of New Azido Esters Derived from Malonic Acid, Propellants, Explosives. Pyrotechnics 2019, 44, 1515–1520. [Google Scholar] [CrossRef] [Green Version]
- Larson, A.; Wingborg, N. Green Propellants Based on Ammonium Dinitramide (ADN). In Advances in Spacecraft Technologies; InTech: Poitiers, France, 2011; pp. 139–156. [Google Scholar]
- Tsay, M.; Lafko, D.; Zwahlen, J.; William, C. Development of Busek 0.5N Monopropellant Thruster. In Proceedings of the 27th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 10–15 August 2013. [Google Scholar]
- Meinhardt, D.; Brewster, G.; Christofferson, S.; Wucherer, E. Development and Testing of New HAN-based Monopropellants in Small Rocket Thrusters. In Proceedings of the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH, USA, 13–15 July 1998. [Google Scholar]
- Masse, R.K.; Overly, J.A.; Allen, M.Y.; Spores, R.A. A New State-of-the-Art in AF-315E Thruster Technologies. In Proceedings of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Atlanta, GA, USA, 30 July–1 August 2012. [Google Scholar]
- Ertl, G.; Knözinger, H.; Schüth, F.; Weitkamp, J. Handbook of Heterogeneous Catalysis, 2nd ed.; Wiley-VCH Verlag GmbH& Co.: Weinheim, Germany, 2008; Volume 1. [Google Scholar]
- Wade, L.G. Encyclopædia Britannica, Encyclopædia Britannica, Inc. 13 December 2019. Available online: https://www.britannica.com/science/alcohol (accessed on 24 April 2020).
- Lide, D.R. Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- National Center for Biotechnology Information. PubChem Database. 18 April 2020. Available online: https://pubchem-ncbi-nlm-nih-gov.tudelft.idm.oclc.org (accessed on 25 April 2020).
- Purdue School of Aeronautics and Astronautics. Propulsion Web Page—Heats of Formation and Chemical Compositions. 1998. Available online: https://engineering.purdue.edu/~propulsi/propulsion/comb/propellants.html (accessed on 24 April 2020).
- Kon’kova, T.S.; Matyushin, Y.N.; Miroshnichenko, E.A.; Vorob’ev, A.B. Thermochemical properties of dinitramidic acid salts. Russ. Chem. Bull. 2009, 58, 2020–2027. [Google Scholar] [CrossRef]
- Wingborg, N. Heat of Formation of ADN-Based Liquid Monopropellants, Propellants, Explosives. Pyrotechnics 2019, 44, 1090–1095. [Google Scholar] [CrossRef]
- Swami, U.; Senapathi, K.; Srinivasulu, K.M. Energetic ionic liquid hydroxyethylhydrazinium nitrate as an alternative monopropellant. Combust. Flame 2020, 215, 93–102. [Google Scholar] [CrossRef]
- Swami, U.; Senapathi, K.; Srinivasulu, K.; Desingu, J.; Chowdhury, A. Ignition Delays of Mixtures of the Non-Hypergolic Energetic Ionic Liquid Hydroxyethylhydrazinium Nitrate Blended with Unsymmetrical Dimethylhydrazine, Propellants, Explosives. Pyrotechnics 2019, 44, 1139–1146. [Google Scholar] [CrossRef]
- CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, USA, 2003.
- National Institute of Standards and Technology—NIST Chemistry WebBook SRD 69, Glycerine. 2018. Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C56815&Units=SI&Mask=1#ref-2 (accessed on 24 April 2020).
- National Institute of Standards and Technology—NIST Chemistry WebBook SRD69, Glycine. 2018. Available online: https://webbook.nist.gov/cgi/cbook.cgi?Source=1959TAK%2FCHI84-88&Units=SI&Mask=1E9F (accessed on 24 April 2020).
- Decker, M.M.; Klein, N.; Freedman, E.; Leveritt, C.S.; Wojciechowski, J.Q. HAN- Based Liquid Gun Propellants: Physical Properties—BRL-TR-2864; US Army Ballistic Research Laboratories: Aberdeen Proving Ground, MD, USA, 1987. [Google Scholar]
- Jet Propulsion Laboratory. Liquid Propellant 1846 Handbook; U.S. Department of the Army, ARDEC: Picatinny Arsenal, NJ, USA, 1994.
- Masse, R.K.; Allen, M.; Driscoll, E.; Spores, R.A. AF-M315E Propulsion System Advances & Improvements. In Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, USA, 25–27 July 2016. [Google Scholar]
- NASA. Green Propellant Infusion Mission (GPIM) Overview, NASA. 5 December 2019. Available online: https://www.nasa.gov/mission_pages/tdm/green/overview.html (accessed on 24 April 2020).
- Igarashi, S.; Yamamoto, K.; Fukuchi, A.B. Development Status of a 0.5N-Class Low-Cost Thruster for Small Satellites. In Proceedings of the AIAA Propulsion and Energy Forum Joint Propulsion Conference, Cincinnati, OH, USA, 9–11 July 2018. [Google Scholar]
- Igarashi, S.; Matsuura, Y. Development Status of a Hydrazine Alternative and Low-cost Thruster Using HAN/HN-Based Green Propellant. In Proceedings of the 53rd AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, GA, USA, 10–12 July 2017. [Google Scholar]
- Tummala, A.R.; Dutta, A. An Overview of Cube-Satellite Propulsion Technologies and Trends. Aerospace 2017, 58, 1–30. [Google Scholar]
- Masse, R.; Spores, R.A.; Kimbrel, S.; Allen, M.; Lorimor, E.; Myers, P. GPIM AF-M315E Propulsion System. In Proceedings of the 51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, FL, USA, 27–29 July 2015. [Google Scholar]
- Hori, K.; Katsumi, T.; Sawai, S.; Azuma, N.; Hatai, K.; Nakatsuka, J. HAN-Based Green Propellant, SHP163—Its R&D and Test in Space, Propellants, Explosives. Pyrotechnics 2019, 44, 1080–1083. [Google Scholar]
- Amrousse, R.; Katsumi, T.; Azuma, N.; Hori, K. Hydroxylammonium nitrate (HAN)-based green propellant as alternative energy resource for potential hydrazine substitution: From lab scale to pilot plant scale-up. Combust. Flame 2017, 176, 334–348. [Google Scholar] [CrossRef]
- Azuma, N.; Hori, K.; Katsumi, T.; Amrousse, R.; Nagata, T.; Hatai, K. Research and Development on Thrusters with HAN (Hydroxyl Ammonium Nitrate) Based Monopropellant. In Proceedings of the 5th EUCASS, Munich, Germany, 1–5 July 2013. [Google Scholar]
- Togo, S.; Hori, K.; Shibamoto, H. Improvement of HAN-based Liquid Monopropellant Combustion Characteristics. In Proceedings of the HEMS, Belokurikha, Russia, 5–9 September 2004. [Google Scholar]
- Katsumi, T.; Kodama, H.; Ogawa, H.; Tsuboi, N.; Sawai, S.; Hori, K. Combustion Characteristics of HAN-Based Liquid Monopropellant. Sci. Tech. Energetic Mater. 2009, 70, 27–32. [Google Scholar] [CrossRef]
- Fukuchi, A.; Inamoto, T.; Miyazaki, S.; Maruizumi, H.; Kohono, H. HAN/HN-based Monopropellant Thrusters. In Proceedings of the 26th International Symposium on Space Technology and Science, Hamamatsu, Japan, 1–8 June 2008. [Google Scholar]
- Igarashi, S.; Fukuchi, A.; Azuma, N.; Hatai, K.; Kagawa, H.; Ikeda, H. Development of a high-performance HAN/HN-based low-toxicity Monopropellant. Trans. JSASS Aerosp. Tech. Jpn. 2016, 14, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Igarashi, S.; Matsuura, Y.; Hatai, K.; Ikeda, H. Safe 0.5N Green Monopropellant Thruster for Small Satellite Propulsion Systems. In Proceedings of the AIAA Propulsion and Energy Forum, Indianapolis, IN, USA, 19–22 August 2019. [Google Scholar]
- Werling, L.; Haßler, M.; Bätz, P.; Helmut, C.; Schlechtriem, S. Experimental Performance Analysis (c* & c* efficiency) of a Premixed Green Propellant consisting of N2O and C2H4. In Proceedings of the 53rd AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, GA, USA, 10–12 July 2017. [Google Scholar]
- Spores, R.A.; Masse, R.; Kimbrel, S. GPIM AF-M315E Propulsion System. In Proceedings of the 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, San Jose, CL, USA, 15–17 July 2013. [Google Scholar]
- Thrasher, J.; Williams, S.; Takahashi, P.; Sousa, J. Pulsed Plasma Thruster Development Using A Novel HAN- Based Green Electric Monopropellant. In Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, USA, 25–27 July 2016. [Google Scholar]
- DSSP Digital Solid State Propulsion. Safety Data Sheet—Green Electrical Monopropellant (GEM Mod 3). 1 December 2015. Available online: https://dssptech.com/propellant-products (accessed on 25 April 2020).
- Berg, S.P.; Rovey, J.L. Assessment of Multi-Mode Spacecraft Micropropulsion Systems. In Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH, USA, 28–30 July 2014. [Google Scholar]
- Rovey, J.L.; Lyne, C.T.; Mundahl, A.J.; Rasmont, N. Review of Chemical-Electric Multimode Space Propulsion. In Proceedings of the AIAA Propulsion and Energy Forum, Indianapolis, IN, USA, 19–22 August 2019. [Google Scholar]
- Anflo, K.; Grönland, T.; Wingborg, N. Development and Testing of ADN-Based Monopropellants in Small Rocket Engines. In Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Las Vegas, NV, USA, 24–28 July 2000. [Google Scholar]
- Anflo, K.; Wingborg, N. Dinitramide Based Liquid Mono-Propellants. Sweden Patent WO0050363, 31 August 2000. [Google Scholar]
- Persson, M.; Anflo, K.; Friedhoff, P. Flight Heritage of Ammonium Dinitramide (ADN) Based High Performance Green Propulsion (HPGP) Systems, Propellants, Explosives. Pyrotechnics 2019, 44, 1073–1079. [Google Scholar] [CrossRef]
- Wilhelm, M.; Negri, M.; Ciezki, H.; Schlechtriem, S. Preliminary tests on thermal ignition of ADN-based liquid monopropellants. Acta Astronaut. 2019, 158, 388–396. [Google Scholar] [CrossRef]
- Anflo, K.; Crowe, B. In-Space Demonstration of an ADN-based Propulsion System. In Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, San Diego, CA, USA, 31 July–3 August 2011. [Google Scholar]
- Anflo, K.; Wingborg, N. Ammonium Dinitramide Based Liquid Monopropellants Exhibiting Improved Combustion Stability and Storage Life. Svenska Rymdaktiebolaget. Sweden Patent WO02096832, 5 December 2002. [Google Scholar]
- Larsson, A.; Wingborg, N.; Elfsberg, M.; Appelgren, P. Characterization and Electrical Ignition of ADN-Based Liquid Monopropellants—FOI-R--1639—SE; Weapons and Protection—FOI: Tumba, Sweden, 2005. [Google Scholar]
- Wingborg, N.; Eldsäter, C.; Skifs, H. Formulation and Characterization of ADN-based Liquid Monopropellants. In Proceedings of the 2nd International Conference on Green Propellants for Space Propulsion, Cagliari, Italy, 7–8 June 2004. [Google Scholar]
- Wingborg, N.; Johansson, M.; Bodin, L. Initial development of a Laboratory Rocket Thruster for ADN-Based Liquid Monopropellants—FOI-R--2123—SE; Weapons and Protection—FOI: Tumba, Sweden, 2006. [Google Scholar]
- Werling, L.; Perakis, N.; Muller, S.; Hauck, A.; Ciezki, H.; Schlechtriem, S. Hot firing of a N2O/C2H4 premixed green propellant: First combustion tests and results. In Proceedings of the Space Propulsion Conference, Rome, Italy, 2–6 May 2016. [Google Scholar]
- Palacz, T. Nitrous Oxide Application for Low-Thrust and Low-Cost Liquid Rocket Engine. In Proceedings of the 7th EUCASS, Milano, Italy, 3−6 July 2017. [Google Scholar]
- National Institute of Standards and Technology—NIST Chemistry WebBook SRD 69, Nitrous Oxide. 2018. Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=10024-97-2 (accessed on 26 April 2020).
- Wallbank, J.; Sermon, P.; Baker, A.; Coutney, L.; Sambrook, R. Nitrous Oxide as a Green Monopropellant for Small Satellites. In Proceedings of the 2nd International Conference on Green Propellants for Space Propulsion, Sardinia, Italy, 7–8 June 2004. [Google Scholar]
- Zakirov, V.; Sweeting, M.; Goeman, V.; Lawrence, T. Surrey Research on Nitrous Oxide Catalytic Decomposition for Space Applications. In Proceedings of the 14th AIAA/USU Conference on Small Satellites, Logan, UT, USA, 21–24 August 2000. [Google Scholar]
- Haynes, W. CRC Handbook of Chemistry and Physics, 94th ed.; CRC Press LLC: Boca Raton, FL, USA, 2013. [Google Scholar]
- Kindsvater, H.M.; Kendall, K.K.; Müller, K.H.; Datner, P.P. Research on Nitromethane; Navy Department Bureau of Aeronautics: Washington, DC, USA, 1951. [Google Scholar]
- Boyer, E.; Kuo, K.K. Characteristics of Nitromethane for Propulsion Applications. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006. [Google Scholar]
- Clark, J.D. Ignition! An Informal History of Liquid Rocket Propellants; Rutgers University: New Jersey, NY, USA, 1972. [Google Scholar]
- ESA European Space Agency. European Fuel Blend Development, Estec—ESA. 14 March 2016. Available online: https://artes.esa.int/projects/european-fuel-blend-development (accessed on 4 May 2020).
- FIRESTAR Tech. LLC. Technology Updates, Firestar. Available online: http://www.firestar-engineering.com/NOFBX-MP.html (accessed on 4 May 2020).
- Mungas, G.; Vozoff, M.; Rishikof, B. NOFBX: A new non-toxic, Green Propulsion Technology with high performance and low cost. In Proceedings of the 63 International Astronautical Congress, Naples, Italy, 1–5 October 2012. [Google Scholar]
- Werling, L.; Freudenmann, D.; Ciezki, H.; Schlechtriem, S. Premixed green propellants: DLR research and test activities on nitrous oxide/hydrocarbon mixtures. In Proceedings of the New Energetics Workshop (NEW), Stockholm, Sweden, 29–30 May 2018. [Google Scholar]
- Waugh, L.; Moore, E.; Macfarlane, J.; Watts, A.; Mayer, A. Testing of a Novel Nitrous-oxide and Ethanol Fuel Blend. In Proceedings of the Space Propulsion Conference, Seville, Spain, 14–18 May 2018. [Google Scholar]
- Werling, L.; Perakis, N. Experimental Investigations based on a Demonstrator unit to analyze the Combustion Process of a Nitrous Oxide/Ethene Premixed Green (Bipropellant). In Proceedings of the 5th CEAS Air & Space Conference, Delft, The Netherlands, 7–11 September 2015. [Google Scholar]
- Mayer, A.; Waugh, I.; Poucet, M. European Fuel Blend Development Final Report—TNO 2018 R10640; TNO—Netherlands Organization for Applied Scientific Research: Rijswijk, The Netherlands, 2018. [Google Scholar]
- Mayer, A.; Wieling, W.; Watts, A.; Poucet, M.; Waugh, I.; Macfarlane, J.; Bel, F.V. European Fuel Blend Development for In-space propulsion. In Proceedings of the Space propulsion Conference, Seville, Spain, 14–18 May 2018. [Google Scholar]
- Pasini, A.; Torre, L.; Romeo, L.; Cervone, A.; d’Agostino, L. Performance Characterization of Pellet Catalytic Beds for Hydrogen Peroxide Monopropellant Rockets. J. Propuls. Power 2011, 27, 428–436. [Google Scholar] [CrossRef]
- Department of Defense Index of Specifications and Standards. MIL-PRF-16005F Performance Specification: Propellant, Hydrogen Peroxide; Department of Defense: Philadelphia, PA, USA, 2003.
- Pasini, A.; Pace, G.; Torre, L. Propulsive Performance of 1N 98% Hydrogen Peroxide Thruster. In Proceedings of the 51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, FL, USA, 27–29 July 2015. [Google Scholar]
- Krejci, D.; Woschnak, A.; Scharlemann, C.; Ponweiser, K. Structural Impact of Honeycomb Catalysts on Hydrogen Peroxide Decomposition for Micro Propulsion. Chem. Eng. Res. Des. 2012, 90, 2302–2315. [Google Scholar] [CrossRef]
- Cervone, A.; Torre, L.; d’Agostino, L. Development of Hydrogen Peroxide Monopropellant Rockets. In Proceedings of the 42nd AIAA/ASMESAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, CA, USA, 9–12 July 2006. [Google Scholar]
- Naseem, M.S.; Jyoti, B.; Baek, S.W.; Lee, H.J.; Cho, S.J. Hypergolic Studies of Ethanol Based Gelled Bi-Propellant System for Propulsion Application, Propellants, Explosives. Pyrotechnics 2017, 42, 676–682. [Google Scholar] [CrossRef]
- Pasini, A.; Pace, G.; Torre, L. A Light Unsaturated Hydrocarbon and Hydrogen Peroxide as Future Green Propellants for Bipropellant Thrusters. In Proceedings of the 51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, FL, USA, 27–29 July 2015. [Google Scholar]
- Bhosale, V.K.; Kulkarni, S.G.; Kukarni, P.S. Ionic Liquid and Biofuel Blend: A Low–cost and High Performance Hypergolic Fuel for Propulsion Application. Chem. Sel. 2016, 1, 1921–1925. [Google Scholar] [CrossRef]
- Bhosale, V.K.; Kulkarni, P.S. Ultrafast igniting, imidazolium based hypergolic ionic liquids with enhanced hydrophobicity. New J. Chem. 2017, 41, 1250–1258. [Google Scholar] [CrossRef]
- Bhosale, V.K.; Jeong, J.; Choi, J.; Churchill, D.G.; Lee, Y.; Kwon, S. Additive-promoted hypergolic ignition of ionic liquid with hydrogen peroxide. Combust. Flame 2020, 214, 426–436. [Google Scholar] [CrossRef]
- Rhodes, B.L.; Ronney, P.D. Dynamics of a Small-Scale Hydrogen Peroxide Vapor Propulsion System. J. Propuls. Power 2019, 35, 595–600. [Google Scholar] [CrossRef]
- Rhodes, B.L.; Ulrich, E.R.; Hsu, A.G.; Ronney, P.D. Thrust Measurement of a Hydrogen Peroxide Vapor Propulsion System. In Proceedings of the AIAA Propulsion and Energy 2020 Forum, Virtual Event. 24–28 August 2020. [Google Scholar]
- USP Technologies. H2O2 Physical Properties. 2020. Available online: http://www.h2o2.com/technical-library/physical-chemical-properties/physical-properties/default.aspx?pid=20&name=Physical-Properties (accessed on 7 May 2020).
- Nosseir, A.E.S.; Pasini, A.; Cervone, A. Modular Impulsive Green-Monopropellant Propulsion System for Micro/Nano Satellites High-Thrust Orbital Maneuvers (MIMPS-G). In Proceedings of the International Astronautical Congress, CyberSpace Edition. 12–14 October 2020. [Google Scholar]
- DAWN AEROSPACE. CubeSat Propulsion Module, Dawn Aerospace. 2020. Available online: https://www.dawnaerospace.com/products/p/cubesat-propulsion-module (accessed on 2 November 2020).
- Mani, K.V.; Cervone, A.; Topputo, F. Combined Chemical–Electric Propulsion for a Stand-Alone Mars CubeSat. J. Spacecr. Rocket. 2019, 56, 1816–1830. [Google Scholar] [CrossRef] [Green Version]
- Mani, K.V.; Topputo, F.; Cervone, A. Dual Chemical-Electric Propulsion Systems Design for Interplanetary CubeSats. In Proceedings of the ESA Space Propulsion Conference, Seville, Spain, 14–18 May 2018. [Google Scholar]
- Luchtvaart- en Ruimtevaarttechniek TU Delft. Delfi-PQ, TU Delft. Available online: https://www.tudelft.nl/lr/delfi-space/delfi-pq/ (accessed on 23 November 2020).
- Cervone, A.; Zandbergen, B.; Guerrieri, D.C.; De Athayde Costa e Silva, M.; Krusharev, I.; Van Zeijl, H. Green micro resistojet research at Delft University of Technology: New options for Cubesat propulsion. Ceas Space J. 2017, 9, 111–125. [Google Scholar] [CrossRef] [Green Version]
- Pallichadath, V.; Turmaine, L.; Melaika, A.; Gelmi, S.; Ramisa, M.V.; Rijlaarsdam, D.; Silva, M.A.C.; Guerrieri, D.; Uludag, M.S.; Zandbergen, B.; et al. In-orbit micro-propulsion demonstrator for PICO-satellite applications. Acta Astronaut. 2019, 165, 414–423. [Google Scholar] [CrossRef]
- DAWN AEROSPACE. Introducing the DAWN Mk-II Aurora. 2020. Available online: https://www.dawnaerospace.com/deliver (accessed on 23 November 2020).
Propellant | Component, wt% | |||
---|---|---|---|---|
HAN | TEAN | DEHAN | Water | |
[NH3OH]+ [NO3]− | [NH(C2H4OH)3]+ [NO3]− | [(CH3CH2)HNOH]+ [NO3]− | H2O | |
LP1846 | 60.8% | 19.2% | 0.0% | 20.0% |
LP1845 | 63.2% | 20.0% | 0.0% | 16.8% |
LP1898 | 60.7% | 0.0% | 19.3% | 20.0% |
Properties | Hydrazine | AF-M315E | SHP163 | HAN/HN-Based | |
---|---|---|---|---|---|
HNP221 | HNP225 | ||||
Theoretical Specific Impulse (s) | 239 | 260–270 | 276 | 241 | 213 |
Density (g cm−3) (@ 20 °C) | 1.0 | 1.47 | 1.4 | 1.22 | 1.16 |
Volumetric Specific Impulse (g s cm−3) | 239 | 390 | 386 | 294 | 247 |
Adiabatic Flame Temperature (K) | 1170 | 2166 | 2401 | 1394 | 990 |
Freezing Point (°C) | 1.5 | −80 | −30 | −10 |
Properties | Hydrazine | LMP-103S | AF-M315E | GEM |
---|---|---|---|---|
Theoretical Specific Impulse (s) | 236 | 252 | 266 | 283 |
Density (g cm−3) (@ 20 °C) | 1.0 | 1.24 | 1.47 | 1.51 |
Volumetric Specific Impulse (g s cm−3) | 236 | 312.48 | 391 | 427 |
Vapor Pressure PV (kPa) (@ 25 °C) | 1.91 | 15.1 | 1.4 | 1 |
Toxicity | High | Moderate | Low | Low |
Propellant. | Formulation | Theoretical Isp (s) | Density (g cm−3) * | (g s cm−3) | Tc (°C) |
---|---|---|---|---|---|
LMP-103S | (1) 63.0% (2) 18.4% (6) 18.6% | 252 | 1.24 | 312.48 | 1630 |
FLP-103 | (1) 63.4% (2) 11.2% (5) 25.4% | 254 | 1.31 | 332.74 | 1760 |
FLP-106 | (1) 64.6% (3) 11.5% (5) 23.9% | 255 | 1.357 | 344.6 | 1814 |
FLP-107 | (1) 65.4% (4) 9.3% (5) 25.3% | 258 | 1.351 | 348.5 | 1869 |
Propellant | Theoretical Isp (s) | (g cm−3) a | (g s cm−3) | Tc (°C) |
---|---|---|---|---|
N2O (liquid) * | 206 | 0.745 | 153.5 | 1640 |
Nitromethane ** | 289 | 1.1371 | 328.6 | 2175.85 |
NOFBXTM *** | 350 | 0.700 | 245 | 2926.85 |
HyNOx (Ethene) † | 303 | 0.879 | 266.3 | 2990.85 |
NOx/Ethanol ‡ | 331 | 0.892 | 295.3 | 2819.85 |
Properties | H2O2 Propellant Classification | ||||
---|---|---|---|---|---|
Type 70 | Type 85 | Type 90 | Type 98 | ||
Grade ES | Grade ES | Grade ES | Grade HP | Grade HP | |
Concentration % | 71.0–73.0 | 85.0–87.0 | 90.0–91.5 | 98.0–99.0 | |
Stability * | 2% | ||||
Density (g cm−3) ** | ~1.29 | ~1.34 | ~1.40 | ~1.43 | |
Freezing point (°C) | −40 | −17 | −12 | −2 | |
Boiling Point (°C) | 125 | 137 | 140 | 147 |
Class | Propellant | Theoretical Isp (s) (Vacuum) | (g cm−3) | Volumetric (g s cm−3) | Chamber Temp. Tc (K) | Conditions |
---|---|---|---|---|---|---|
(EIL) HAN-based | AF-M315E | 266 | 1.47 | 391 | 2166 | 2.0 MPa and Ae/At 50:1 |
SHP163 | 276 | 1.4 | 386 | 2401 | 1 MPa and Ae/At 100:1 | |
HNP221 | 241 | 1.22 | 294 | 1394 | ||
HNP225 | 213 | 1.16 | 245 | 990 | ||
GEM | 283 | 1.51 | 427 | ? | 2.0 MPa and Ae/At 50:1 | |
(EIL) ADN-based | LMP-103S | 252 | 1.24 | 312.48 | 1903.15 | |
FLP-103 | 254 | 1.31 | 332.74 | 2033.15 | ||
FLP-106 | 255 | 1.357 | 344.6 | 2087.15 | ||
FLP-107 | 258 | 1.351 | 348.5 | 2142.15 | ||
Liquid NOx Monopropellants | N2O | 206 | 0.745 | 153.5 | 1913.15 | 0.3 MPa and Ae/At 200:1 |
Nitromethane | 289 | 1.1371 | 328.6 | 2449 | 1.0 Mpa and Ae/At 50:1 | |
NOFBXTM | 350 | 0.700 | 245 | 3200 | 0.7 MPa and stoic O/F = 3 | |
HyNOx (NOx/ethene) | 303 | 0.879 | 266.3 | 3264 | 2.5 MPa and stoic O/F = 6 | |
NOx/ethanol | 331 | 0.892 | 295.3 | 3093 | 1 MPa and stoic. O/F = 5.73 | |
Hydrogen Peroxide Aqueous Solutions (HPAS) | HTP 98% | 186 | 1.43 | 266 | 1222 | 1 MPa and Ae/At 50:1 |
H2O2 90% | 172.13 | 1.39 | 239.3 | 1019.3 | 1 MPa and Ae/At 40:1 | |
H2O2 85% | 150.5 | 1.37 | 206.2 | 892.65 | 1 MPa and Ae/At 10:1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nosseir, A.E.S.; Cervone, A.; Pasini, A. Review of State-of-the-Art Green Monopropellants: For Propulsion Systems Analysts and Designers. Aerospace 2021, 8, 20. https://doi.org/10.3390/aerospace8010020
Nosseir AES, Cervone A, Pasini A. Review of State-of-the-Art Green Monopropellants: For Propulsion Systems Analysts and Designers. Aerospace. 2021; 8(1):20. https://doi.org/10.3390/aerospace8010020
Chicago/Turabian StyleNosseir, Ahmed E. S., Angelo Cervone, and Angelo Pasini. 2021. "Review of State-of-the-Art Green Monopropellants: For Propulsion Systems Analysts and Designers" Aerospace 8, no. 1: 20. https://doi.org/10.3390/aerospace8010020
APA StyleNosseir, A. E. S., Cervone, A., & Pasini, A. (2021). Review of State-of-the-Art Green Monopropellants: For Propulsion Systems Analysts and Designers. Aerospace, 8(1), 20. https://doi.org/10.3390/aerospace8010020