Precision Feedback Control Design of Miniature Microwave Discharge Ion Thruster for Space Gravitational Wave Detection
Abstract
:1. Introduction
- Proposed a microwave feedback control strategy for ion thruster, built a digital control system, and analyzed the effects of quantization noise and aliasing effect on the output performance of the thruster.
- A microwave feedback-based controller is designed to achieve accurate and stable thrust output under the premise of low bandwidth. In addition, the fourth-order Butterworth low-pass filter circuit, FIR, and other filters are designed to anti-alias and process noise reduction of the acquired signal, and then the control system design is optimized.
- Based on the ground vacuum experimental platform, the proposed thruster control scheme is experimentally verified to achieve 0.1 μN resolution, 20 ms response speed, and ≤0.05 μN/Hz1/2 (10−3~1 Hz) thrust noise, which is better than the requirements for the micro-propulsion system proposed by the gravitational wave detection mission.
2. Closed-Loop Control of Thrust Based on Microwave Modulation
2.1. Thruster Microwave Modulation Strategy
2.2. Closed-Loop Control of Thrusters
2.2.1. Thruster Lead Current Control Model
2.2.2. Proportional–Integral Controller
2.3. Digital Implementation and Performance Analysis
3. Control System Optimization and Simulation Analysis
3.1. Sampling Analysis and Filter Design
3.1.1. Sampling Analysis
3.1.2. Filter Design
- Anti-alias filter
- FIR Filters
- DAC output filter
- To reduce the 12-bit DAC output ripple while ensuring a fast voltage build-up time, a first-order RC low-pass filter with a cutoff frequency of 50 Hz is adopted, and its transfer function is shown below:
3.2. Controller Optimization
3.3. Simulation Verification and Analysis
3.3.1. Anti-Aliasing Filter Verification
3.3.2. Analysis of Optimization Simulation Results
4. Experimental Results and Analysis
4.1. Thrust Response Time
4.2. Thrust Resolution
4.3. Thrust Noise
5. Conclusions
- (1)
- When the microwave ion thruster is in open-loop operation, there is a temperature drift and complex physical processes of the thruster lead to excessive low-frequency noise and fluctuations in thrust, resulting in inaccurate output.
- (2)
- Microwave power due to the regulation resolution and response speed is far superior to the voltage source, storage, and supply unit and can be used as the main means of regulation of feedback control of the micro-propulsion system.
- (3)
- Feedback control can effectively suppress the thruster output low-frequency drift, to achieve a low-noise fine and stable output of thrust.
- (4)
- The quantization noise and aliasing effect will affect the final control accuracy, and the design of the anti-aliasing filter can effectively improve the accuracy of digital control, combined with feedback control, to finally achieve the multiple performance requirements of the micro-propulsion system for gravitational wave detection.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, D.R.; Qiao, L.; Jiang, W.J.; Liu, H. Development and prospect of electric propulsion technology in China. J. Propuls. Technol. 2020, 41, 1–11. [Google Scholar] [CrossRef]
- Tighe, W.; Chien, K.-R.; Solis, E.; Rebello, P.; Goebel, D.; Snyder, J. Performance evaluation of the XIPS 25-cm thruster for application to NASA discovery missions. In Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, CA, USA, 10–12 July 2006; p. 4666. [Google Scholar]
- Wu, W.; Liu, W.; Qiao, D.; Jie, D. Investigation on the development of deep space exploration. Sci. China Technol. Sci. 2012, 55, 1086–1091. [Google Scholar] [CrossRef]
- Perino, M.; Fenoglio, F.; Pelle, S.; Couzin, P.; Thaeter, J.; Eilingsfeld, F.; Hufenbach, B.; Bergamasco, A. Outlook of possible European contributions to future exploration scenarios and architectures. Acta Astronaut. 2013, 88, 25–34. [Google Scholar] [CrossRef]
- Diaz, F.C.; Squire, J.P.; Carter, M.; Corrigan, A.; Dean, L.; Farrias, J.; Giambusso, M.; McCaskill, G.; Yao, T. An overview of the VASIMR® engine. In Proceedings of the 2018 Joint Propulsion Conference, Cincinnati, OH, USA, 9–11 July 2018; p. 4416. [Google Scholar]
- Luo, J.; Chen, L.-S.; Duan, H.-Z.; Gong, Y.-G.; Hu, S.; Ji, J.; Liu, Q.; Mei, J.; Milyukov, V.; Sazhin, M.; et al. TianQin: A space-borne gravitational wave detector. Class. Quantum Gravity 2016, 33, 035010. [Google Scholar] [CrossRef] [Green Version]
- Anderson, G.; Aveni, G.; Bame, D.; Barela, P.; Blackman, K.; Carmain, A.; Chen, L.; Cherng, M.; Clark, S.; Connally, M.; et al. Experimental results from the ST7 mission on LISA Pathfinder. Phys. Rev. D 2018, 98, 102005. [Google Scholar] [CrossRef] [Green Version]
- Hey, F.G. Micro Newton Thruster Development; Springer: Wiesbaden, Germany, 2018. [Google Scholar]
- Scharlemann, C.; Buldrini, N.; Killinger, R.; Jentsch, M.; Polli, A.; Ceruti, L.; Serafini, L.; DiCara, D.; Nicolini, D. Qualifciation test series of the indium needle FEEP micro-propulsion system for LISA Pathfinder. Acta Astronaut. 2011, 69, 822–832. [Google Scholar] [CrossRef]
- Xu, S.-Y.; Xu, L.-X.; Cong, L.-X.; Li, Y.-G.; Qiao, C.-F.; Taiji Scientific Collaboration. First result of orbit verification of Taiji-1 hall micro thruster. Int. J. Mod. Phys. A 2021, 36, 2140013. [Google Scholar] [CrossRef]
- Koizumi, H.; Kuninaka, H. Performance of the miniature and low power microwave discharge ion engine mu-1. In Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, TN, USA, 25–28 July 2010; p. 6617. [Google Scholar]
- Tang, M.-J.; Yang, J.; Jin, Y.-Z.; Luo, L.-T.; Feng, B.-B. Experimental study on the optimization of ion source structure of miniature electron cyclotron resonance ion thruster. J. Phys. 2015, 64, 327–333. [Google Scholar] [CrossRef]
- Yu, D.R.; Niu, X.; Wang, T.B.; Wang, S.S.; Zeng, M.; Cui, K.; Liu, H.; Tu, L.C.; Li, Z.; Huang, X.Q.; et al. Research progress of micro-propulsion technology for space gravitational wave detection mission. J. Sun Yat-Sen Univ. 2021, 60, 194–212. [Google Scholar] [CrossRef]
- Izumi, T.; Koizumi, H.; Yamagiwa, Y.; Matsui, M.; Kuninaka, H. Performance of miniature microwave discharge ion thruster for drag-free control. In Proceedings of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Atlanta, GA, USA, 30 July–1 August 2012; p. 4022. [Google Scholar]
- Wu, H.X.; Hu, J.; Xie, Y.C. Review and outlook of spacecraft intelligent autonomous control research. Space Control. Technol. Appl. 2016, 42, 1–6. [Google Scholar]
- Gou, X.Y.; Wang, L.J.; Li, M.Q.; Jiang, Q.H.; Wang, S.K. Drag-free control of Tianqin-1 satellite acceleration mode. J. Astronaut. 2021, 42, 603–610. [Google Scholar] [CrossRef]
- Kester, W. Analog-Digital Conversion; Analog Devices: Norwood, MA, USA, 2004. [Google Scholar]
- Bennett, W.R. Spectra of quantized signals. Bell Syst. Tech. J. 1948, 27, 446–471. [Google Scholar] [CrossRef]
- Yang, Y.; Xing, L.; Zhu, Y.Q.; Yang, W.L. Optimal design of a 2n-order unit gain Butterworth low-pass filter for voltage-controlled voltage sources. J. Electron. 2011, 39, 1894. [Google Scholar]
- Wang, L.; Wu, J. Effect of power supply noise on the performance of analog-to-digital converters. Nucl. Technol. 2020, 43, 47–53. [Google Scholar] [CrossRef]
- Cai, S.K.; Wu, M.P.; Zhang, K.D. Comparison of FIR low-pass filters in aerial gravity measurements. Phys. Chem. Explor. 2010, 34, 74–78. [Google Scholar]
- Guo, Z.H.; Luo, F.; An, Z.F. Experimental low-pass digital filtering of aerial gravity data by window function method FIR. Phys. Chem. Explor. 2007, 31, 568–571. [Google Scholar]
Description | Requirements |
---|---|
Thrust range (μN) | 1~100 |
Thrust resolution (μN) | 0.1 |
Thrust noise (μN/Hz1/2) | 0.1 |
Thrust response time (ms) | 50 |
Life (h) | 10,000 |
Description | Corresponding Value | ||||
---|---|---|---|---|---|
DAC output voltage (V) | 0.68 | 0.76 | 0.84 | 0.92 | 1.04 |
Lead current (mA) (based on measurements) | 0.83 | 0.96 | 1.04 | 1.16 | 1.37 |
Lead current (mA) (based on model) | 0.84 | 0.95 | 1.05 | 1.15 | 1.30 |
Current error (%) | 1.20 | 1.04 | 0.96 | 0.86 | 5.11 |
Parameter | Value |
---|---|
2.25 | |
2 | |
1 |
Statistical Situation | Control System Performance | ||||||
---|---|---|---|---|---|---|---|
Anti-Alias Filtering | FIR Filter | Proportionality Factor | Integral Factor | Open-Loop Bandwidth (Hz) | Phase Margin (°) | Amplitude Margin (dB) | Control Frequency (kHz) |
None | None | 0.0114 | 45.4908 | 10 | 85 | 21.5 | 2 |
√ | √ | 0.0114 | 45.4908 | 10 | 45 | 5.50 | 2 |
√ | √ | 0.1262 | 44.9895 | 10 | 60 | 6.67 | 2 |
Parameters | Value |
---|---|
Screen grid supply voltage (V) | 700 |
Accelerating gate supply voltage (V) | −150 |
Xenon flow rate (sccm) | 0.06 |
Microwave power (W) | 1~5 |
Statistics | Resolution (μN) | Response Time (ms) | Thrust Noise (μN/Hz1/2) |
---|---|---|---|
Index | 0.1 | 50 | 0.1 |
Simulation | / | 12.57 | 0.023 |
Experiment | 0.1 | 18.5 | 0.041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Pang, A.; Liu, H.; Zhou, H.; Niu, X. Precision Feedback Control Design of Miniature Microwave Discharge Ion Thruster for Space Gravitational Wave Detection. Aerospace 2022, 9, 760. https://doi.org/10.3390/aerospace9120760
Zhou J, Pang A, Liu H, Zhou H, Niu X. Precision Feedback Control Design of Miniature Microwave Discharge Ion Thruster for Space Gravitational Wave Detection. Aerospace. 2022; 9(12):760. https://doi.org/10.3390/aerospace9120760
Chicago/Turabian StyleZhou, Junjie, Aiping Pang, Hui Liu, Hongbo Zhou, and Xiang Niu. 2022. "Precision Feedback Control Design of Miniature Microwave Discharge Ion Thruster for Space Gravitational Wave Detection" Aerospace 9, no. 12: 760. https://doi.org/10.3390/aerospace9120760
APA StyleZhou, J., Pang, A., Liu, H., Zhou, H., & Niu, X. (2022). Precision Feedback Control Design of Miniature Microwave Discharge Ion Thruster for Space Gravitational Wave Detection. Aerospace, 9(12), 760. https://doi.org/10.3390/aerospace9120760