Spillovers Between Euronext Stock Indices: The COVID-19 Effect
Abstract
:1. Introduction
2. Literature Review
2.1. Impact of the COVID-19 Pandemic on Financial Markets
2.2. Evidence of Interdependence and Financial Contagion
3. Results and Discussion
3.1. Removing Autoregressive Effects and Conditional Heteroscedasticity
3.2. Estimation of Copula Models
4. Materials and Methods
4.1. Limitations of the ARCH and ARMA-GARCH Models
- (i)
- Conditional mean is represented by the ARMA model, formalized in (2);
- (ii)
- Conditional variance is represented by the GARCH model, formalized in (1).
4.2. Copula Models
4.3. Sample, Data and Procedures
- (1)
- Remove autoregressive and conditional heteroscedastic effects using ARMA-GARCH models, obtaining the filtered returns of the financial index time series. The AIC criterion is used to select the most appropriate model for each index;
- (2)
- Divide each series into the pre-pandemic subperiod and the post-pandemic subperiod. Transform the respective filtered returns into uniform margins for each subperiod;
- (3)
- Estimate the Kendall’s tau ( correlation coefficient (as a measure of dependence that can overcome some of the limitations of linear correlation) and the copulas for both subperiods of each index from the uniform distributions;
- (4)
- Select the best model to infer the influence relationships between the indices through the AIC criterion.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahelegbey, D. F., Giudici, P., & Hashem, S. Q. (2021). Network VAR models to measure financial contagion. The North American Journal of Economics and Finance, 55, 101318. [Google Scholar] [CrossRef]
- Alfaro, L., Chari, A., Greenland, A. N., & Schott, P. K. (2020). Aggregate and firm-level stock returns during pandemics, in real time. Working Paper No. 26950. National Bureau of Economic Research. Available online: https://www.nber.org/system/files/working_papers/w26950/w26950.pdf (accessed on 3 February 2025).
- Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. [Google Scholar] [CrossRef]
- Boubaker, A., & Salma, J. (2011). Detecting financial markets contagion using copula functions. International Journal of Management Science and Engineering Management, 6(6), 443–449. [Google Scholar] [CrossRef]
- Costinot, A., Roncalli, T., & Teiletche, J. (2000). Revisiting the dependence between financial markets with copulas. SSRN. [Google Scholar] [CrossRef]
- Czado, C. (2019). Multivariate distributions and copulas. In Analyzing dependent data with vine copulas (Vol. 222). Lecture Notes in Statistics. Springer. [Google Scholar] [CrossRef]
- Diebold, F. X. (1986). Modeling the persistence of the conditional variances: A comment. Econometric Reviews, 5(1), 51–56. [Google Scholar] [CrossRef]
- Ding, W., Levine, R., Lin, C., & Xie, W. (2021). Corporate immunity to the COVID-19 pandemic. Journal of Financial Economics, 141(2), 802–830. [Google Scholar] [CrossRef]
- Eichengreen, B., Rose, A., & Wyplosz, C. (1996). Contagious currency crises. Working Paper No. 5681. National Bureau of Economic Research. Available online: https://www.nber.org/system/files/working_papers/w5681/w5681.pdf (accessed on 3 February 2025).
- Embrechts, P., Lindskog, F., & McNeil, A. (2003). Chapter 8—Modelling dependence with copulas and applications to risk management. In S. T. Rachev (Ed.), Handbook of heavy tailed distributions in finance (pp. 329–384). North-Holland. [Google Scholar] [CrossRef]
- Endri, E., Fauzi, F., & Effendi, M. S. (2024). Integration of the Indonesian stock market with eight major trading partners’ stock markets. Economies, 12(12), 350. [Google Scholar] [CrossRef]
- Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4), 987–1007. [Google Scholar] [CrossRef]
- Forbes, K. J., & Rigobon, R. (2002). No contagion, only interdependence: Measuring stock market comovements. The Journal of Finance, 57(5), 2223–2261. Available online: http://www.jstor.org/stable/3094510 (accessed on 5 February 2025). [CrossRef]
- Gomes, L. M. P., Soares, V. J. S., Gama, S. M. A., & Matos, J. A. O. (2022). Efficiency drifts in Euronext stock indices returns. International Journal Business, 27(2), 1–17. [Google Scholar] [CrossRef]
- Grima, S., Özdemir, L., Özen, E., & Romãnova, I. (2021). The Interactions between COVID-19 cases in the USA, the VIX index and major stock markets. International Journal of Financial Studies, 9(2), 26. [Google Scholar] [CrossRef]
- Horta, P., Mendes, C., & Vieira, I. (2010). Contagion effects of the subprime crisis in the European NYSE Euronext markets. Portuguese Economic Journal, 9, 115–140. [Google Scholar] [CrossRef]
- Hu, L. (2006). Dependence patterns across financial markets: A mixed copula approach. Applied Financial Economics, 16(10), 717–729. [Google Scholar] [CrossRef]
- Junior, L. S., Mullokandov, A., & Kenett, D. Y. (2015). Dependency relations among international stock market indices. Journal of Risk and Financial Management, 8(2), 227–265. [Google Scholar] [CrossRef]
- Kim, G., Silvapulle, M. J., & Silvapulle, P. (2007). Comparison of semiparametric and parametric methods for estimating copulas. Computational Statistics & Data Analysis, 51(6), 2836–2850. [Google Scholar] [CrossRef]
- Lee, H.-A., Liew, V. K.-S., Ghazali, M. F., & Riaz, S. (2023). Reaction of US and Chinese stock markets to COVID-19 news. International Journal of Financial Studies, 11(2), 59. [Google Scholar] [CrossRef]
- Mendes, B. V. M. (2005). Asymmetric extreme interdependence in emerging equity markets. Applied Stochastic Models in Business and Industry, 21(6), 483–498. [Google Scholar] [CrossRef]
- Mendes, R., Gomes, L., & Ramos, P. (2022). Financial contagion from the subprime crisis: A copula approach. Scientific Annals of Economics and Business, 69(4), 501–520. [Google Scholar] [CrossRef]
- Pardal, P., Dias, R., Šuleř, P., Teixeira, N., & Krulický, T. (2020). Integration in Central European capital markets in the context of the global COVID-19 pandemic. Equilibrium, 15(4), 627–650. [Google Scholar] [CrossRef]
- Pericoli, M., & Sbracia, M. (2003). A primer on financial contagion. Journal of Economic Surveys, 17(4), 571–608. [Google Scholar] [CrossRef]
- Rodriguez, J. C. (2007). Measuring financial contagion: A Copula approach. Journal of Empirical Finance, 14(3), 401–423. [Google Scholar] [CrossRef]
- Suriawinata, I. S., Setianingrum, P. H., Prastuti, D., Rusli, D., & Pranitasari, D. (2023). COVID-19, structural breaks, and capital market integration: Indonesian evidence. Journal STEI Ekonomi, 32, 1–15. [Google Scholar] [CrossRef]
- Tsay, R. S. (2005). Analysis of financial time series. John Wiley & Sons, Inc. ISBN 978-0-471-69074-0. [Google Scholar]
- Zeren, F., & Hizarci, A. (2020). The impact of COVID-19 coronavirus on stock markets: Evidence from selected countries. Bulletin of Accounting and Finance Reviews, 3(1), 78–84. [Google Scholar] [CrossRef]
- Zorgati, I., Lakhal, F., & Zaabi, E. (2019). Financial contagion in the subprime crisis context: A copula approach. The North American Journal of Economics and Finance, 47, 269–282. [Google Scholar] [CrossRef]
Index | AEX | CAC40 | BEL20 | PSI | ISEQ |
---|---|---|---|---|---|
AEX | |||||
CAC40 | −8.3014/N | ||||
BEL20 | −12.267/N | −7.9601/N | |||
PSI | −4.3691/N | −3.8765/N | −6.4361/N | ||
ISEQ | −1.0620/N | 1.7943/C | −4.9104/N | −0.7207/N | |
OBX | −4.1939/N | −3.5231/N | −4.7188/N | 0.4171/N | −3.5157/N |
Index | Model | Persistence | AIC |
---|---|---|---|
AEX | ARMA (5,4)-GARCH (2,2) | 0.95681 | −6.4799 |
CAC40 | ARMA (5,5)-GARCH (2,2) | 0.93965 | −6.3058 |
BEL20 | ARMA (5,5)-GARCH (2,2) | 0.96829 | −6.4828 |
PSI | ARMA (5,5)-GARCH (2,2) | 0.94682 | −6.3014 |
ISEQ | ARMA (5,5)-GARCH (2,2) | 0.95281 | −6.2141 |
OBX | ARMA (5,5)-GARCH (2,2) | 0.93817 | −6.3513 |
Lag | Ljung-Box Test | p-Value | ARCH Test | p-Value |
---|---|---|---|---|
AEX | ||||
10 | 3.46 | 0.97 | 10.43 | 0.40 |
15 | 7.92 | 0.93 | 13.51 | 0.56 |
20 | 11.82 | 0.92 | 24.08 | 0.24 |
CAC40 | ||||
10 | 0.72 | 1.00 | 9.54 | 0.48 |
15 | 7.93 | 0.93 | 11.31 | 0.73 |
20 | 10.73 | 0.95 | 16.65 | 0.68 |
BEL20 | ||||
10 | 3.86 | 0.95 | 12.48 | 0.25 |
15 | 5.47 | 0.99 | 26.73 | 0.03 |
20 | 10.87 | 0.95 | 30.25 | 0.07 |
PSI | ||||
10 | 3.12 | 0.98 | 12.89 | 0.23 |
15 | 9.01 | 0.88 | 20.32 | 0.16 |
20 | 11.94 | 0.92 | 29.24 | 0.08 |
ISEQ | ||||
10 | 7.47 | 0.68 | 6.21 | 0.80 |
15 | 11.69 | 0.70 | 22.33 | 0.10 |
20 | 13.36 | 0.86 | 25.56 | 0.18 |
OBX | ||||
10 | 6.78 | 0.75 | 17.29 | 0.07 |
15 | 10.64 | 0.78 | 20.90 | 0.14 |
20 | 13.80 | 0.84 | 27.16 | 0.13 |
Stock Indices Pairs | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subperiods | AEX/ CAC40 | AEX /BEL20 | AEX/ PSI | AEX/ ISEQ | AEX/ OBX | CAC40/ BEL20 | CAC40/ PSI | CAC40/ ISEQ | CAC40/ OBX | BEL20/ PSI | BEL20/ ISEQ | BEL20/ OBX | PSI/ ISEQ | PSI/ OBX | OBX/ ISEQ |
Pre-pandemic | 0.7055 | 0.6516 | 0.4755 | 0.4999 | 0.4220 | 0.6602 | 0.4866 | 0.5115 | 0.4131 | 0.4742 | 0.5102 | 0.3804 | 0.3945 | 0.3735 | 0.3178 |
Post-pandemic | 0.6336 | 0.5682 | 0.3997 | 0.4984 | 0.3846 | 0.6120 | 0.4294 | 0.5493 | 0.3741 | 0.4096 | 0.5004 | 0.3565 | 0.3396 | 0.3482 | 0.3074 |
Indices Pairs | Copulas | Dependence Parameter | Degrees of Freedom | tau Coefficient | Upper Tail Dependence | Lower Tail Dependence | AIC |
---|---|---|---|---|---|---|---|
AEX/ CAC40 | Gaussian | 0.8950 | - | 0.7057 | - | - | −2788.1390 |
0.8409 | - | 0.6359 | - | - | −1029.9690 | ||
t-Student | 0.8954 | 3.7935 | 0.7062 | 0.6267 | 0.5615 | −2907.6990 | |
0.8413 | 7.8279 | 0.6364 | 0.7993 | 0.3675 | −1047.7920 | ||
Clayton | 4.7930 | - | 0.2944 | - | 0.1726 | −2342.0800 | |
3.4590 | - | 0.3664 | - | 0.2243 | −897.5622 | ||
Gumbel | 3.1960 | - | 0.7617 | 0.6871 | - | −2658.1600 | |
2.4810 | - | 0.7127 | 0.5969 | - | −918.1527 | ||
Frank | 11.5200 | - | 0.9132 | - | - | −2525.8180 | |
8.7420 | - | 0.8856 | - | - | −930.0824 | ||
AEX/ BEL20 | Gaussian | 0.8556 | - | 0.6537 | - | - | −2271.7640 |
0.7721 | - | 0.5616 | - | - | −758.0478 | ||
t-Student | 0.8566 | 5.6497 | 0.6549 | 0.7297 | 0.4336 | −2338.9440 | |
0.7778 | 5.5199 | 0.5673 | 0.6807 | 0.4160 | −793.7489 | ||
Clayton | 3.7410 | - | 0.3484 | - | 0.2109 | −1793.1760 | |
2.6320 | - | 0.4318 | - | 0.2753 | −682.2807 | ||
Gumbel | 2.6930 | - | 0.7292 | 0.6287 | - | −2134.5630 | |
2.1200 | - | 0.6795 | 0.5283 | - | −675.8411 | ||
Frank | 9.4270 | - | 0.8939 | - | - | −2053.7060 | |
7.1950 | - | 0.8610 | - | - | −715.3086 | ||
AEX/ PSI | Gaussian | 0.6743 | - | 0.4711 | - | - | −1040.7510 |
0.5861 | - | 0.3987 | - | - | −347.7480 | ||
t-Student | 0.6774 | 9.2006 | 0.4738 | 0.7706 | 0.3066 | −1066.6860 | |
0.5881 | 9.2795 | 0.4002 | 0.7308 | 0.2741 | −360.5709 | ||
Clayton | 1.8140 | - | 0.5244 | - | 0.3554 | −772.5467 | |
1.3320 | - | 0.6002 | - | 0.4288 | −333.8631 | ||
Gumbel | 1.7870 | - | 0.6412 | 0.4404 | - | −942.9273 | |
1.5540 | - | 0.6085 | 0.3565 | - | −283.0906 | ||
Frank | 5.3460 | - | 0.8129 | - | - | −977.8034 | |
4.1840 | - | 0.7610 | - | - | −323.6561 | ||
AEX/ ISEQ | Gaussian | 0.7111 | - | 0.5036 | - | - | −1210.2510 |
0.7091 | - | 0.5018 | - | - | −582.2332 | ||
t-Student | 0.7109 | 11.3598 | 0.5034 | 0.8251 | 0.2961 | −1225.7880 | |
0.7089 | 10.5728 | 0.5016 | 0.8114 | 0.3022 | −589.2550 | ||
Clayton | 1.9990 | - | 0.5001 | - | 0.3334 | −802.8557 | |
1.9870 | - | 0.5016 | - | 0.3348 | −498.1848 | ||
Gumbel | 1.9050 | - | 0.6558 | 0.4751 | - | −1134.6680 | |
1.8600 | - | 0.6503 | 0.4624 | - | −505.5395 | ||
Frank | 5.7220 | - | 0.8252 | - | - | −1092.4490 | |
5.7130 | - | 0.8250 | - | - | −529.7518 | ||
AEX/ OBX | Gaussian | 0.6218 | - | 0.4272 | - | - | −837.4154 |
0.5680 | - | 0.3846 | - | - | −321.4303 | ||
t-Student | 0.6214 | 7.3665 | 0.4269 | 0.6820 | 0.3104 | −867.6490 | |
0.5706 | 6.6246 | 0.3866 | 0.6095 | 0.3007 | −341.0885 | ||
Clayton | 1.4600 | - | 0.5780 | - | 0.4065 | −698.5630 | |
1.2500 | - | 0.6154 | - | 0.4444 | −343.7520 | ||
Gumbel | 1.6540 | - | 0.6232 | 0.3954 | - | −746.1579 | |
1.5260 | - | 0.6041 | 0.3447 | - | −261.4406 | ||
Frank | 4.5410 | - | 0.7798 | - | - | −753.7622 | |
4.0020 | - | 0.7501 | - | - | −298.5445 | ||
CAC40/ BEL20 | Gaussian | 0.8646 | - | 0.6649 | - | - | −2374.8960 |
0.8219 | - | 0.6141 | - | - | −943.0930 | ||
t-Student | 0.8643 | 6.1967 | 0.6645 | 0.7571 | 0.4143 | −2424.4990 | |
0.8221 | 6.3428 | 0.6144 | 0.7434 | 0.4014 | −963.2706 | ||
Clayton | 3.8870 | - | 0.3397 | - | 0.2046 | −1906.6850 | |
3.1550 | - | 0.3880 | - | 0.2407 | −788.6469 | ||
Gumbel | 2.7560 | - | 0.7338 | 0.6372 | - | −2210.1020 | |
2.3900 | - | 0.7050 | 0.5816 | - | −856.8523 | ||
Frank | 9.6640 | - | 0.8965 | - | - | −2122.5120 | |
8.2370 | - | 0.8786 | - | - | −857.5837 | ||
CAC40/ PSI | Gaussian | 0.6893 | - | 0.4842 | - | - | −1106.7890 |
0.6194 | - | 0.4252 | - | - | −400.8251 | ||
t-Student | 0.6920 | 7.2390 | 0.4865 | 0.7161 | 0.3399 | −1142.3630 | |
0.6235 | 5.2834 | 0.4286 | 0.5584 | 0.3572 | −431.2179 | ||
Clayton | 1.8960 | - | 0.5133 | - | 0.3453 | −875.8155 | |
1.5060 | - | 0.5705 | - | 0.3990 | −375.0491 | ||
Gumbel | 1.8310 | - | 0.6468 | 0.4539 | - | −1005.6440 | |
1.6540 | - | 0.6232 | 0.3954 | - | −355.5108 | ||
Frank | 5.5330 | - | 0.8193 | - | - | −1029.7910 | |
4.6500 | - | 0.7849 | - | - | −378.0829 | ||
CAC40/ ISEQ | Gaussian | 0.7238 | - | 0.5152 | - | - | −1275.4440 |
0.7593 | - | 0.5489 | - | - | −717.7577 | ||
t-Student | 0.7237 | 10.0324 | 0.5151 | 0.8065 | 0.3113 | −1294.0190 | |
0.7609 | 6.6759 | 0.5505 | 0.7279 | 0.3753 | −740.7025 | ||
Clayton | 2.0940 | - | 0.4885 | - | 0.3232 | −861.2939 | |
2.4380 | - | 0.4507 | - | 0.2909 | −640.7915 | ||
Gumbel | 1.9540 | - | 0.6615 | 0.4882 | - | −1199.8760 | |
2.0470 | - | 0.6718 | 0.5115 | - | −634.6999 | ||
Frank | 5.9370 | - | 0.8316 | - | - | −1151.1540 | |
6.6890 | - | 0.8505 | - | - | −659.1173 | ||
CAC40/ OBX | Gaussian | 0.6111 | - | 0.4186 | - | - | −800.5750 |
0.5593 | - | 0.3778 | - | - | −309.2969 | ||
t-Student | 0.6103 | 11.5257 | 0.4179 | 0.7924 | 0.2649 | −812.6181 | |
0.5584 | 5.2223 | 0.3772 | 0.4923 | 0.3257 | −337.2313 | ||
Clayton | 1.4080 | - | 0.5869 | - | 0.4153 | −650.6740 | |
1.1950 | - | 0.6260 | - | 0.4556 | −331.9872 | ||
Gumbel | 1.6170 | - | 0.6179 | 0.3816 | - | −693.6911 | |
1.5230 | - | 0.6036 | 0.3434 | - | −260.9647 | ||
Frank | 4.3810 | - | 0.7717 | - | - | −716.9635 | |
3.8670 | - | 0.7414 | - | - | −280.9884 | ||
BEL20/ PSI | Gaussian | 0.6749 | - | 0.4716 | - | - | −1043.2350 |
0.5990 | - | 0.4089 | - | - | −367.6508 | ||
t-Student | 0.6775 | 6.4887 | 0.4739 | 0.6748 | 0.3497 | −1084.4770 | |
0.5999 | 7.1174 | 0.4096 | 0.6570 | 0.3054 | −384.2308 | ||
Clayton | 1.8040 | - | 0.5258 | - | 0.3566 | −809.7707 | |
1.3880 | - | 0.5903 | - | 0.4188 | −362.8322 | ||
Gumbel | 1.8040 | - | 0.6434 | 0.4457 | - | −966.0578 | |
1.5870 | - | 0.6135 | 0.3699 | - | −305.8225 | ||
Frank | 5.3300 | - | 0.8124 | - | - | −970.9994 | |
4.3260 | - | 0.7688 | - | - | −339.9377 | ||
BEL20/ ISEQ | Gaussian | 0.7239 | - | 0.5153 | - | - | −1275.6410 |
0.7103 | - | 0.5029 | - | - | −585.0522 | ||
t-Student | 0.7234 | 8.8632 | 0.5148 | 0.7809 | 0.3247 | −1299.6420 | |
0.7112 | 5.9964 | 0.5037 | 0.6689 | 0.3755 | −608.6568 | ||
Clayton | 2.0830 | - | 0.4898 | - | 0.3244 | −914.4944 | |
2.0040 | - | 0.4995 | - | 0.3329 | −506.6758 | ||
Gumbel | 1.9470 | - | 0.6607 | 0.4864 | - | −1190.1000 | |
1.8920 | - | 0.6542 | 0.4715 | - | −526.3663 | ||
Frank | 5.9190 | - | 0.8311 | - | - | −1145.0760 | |
5.7900 | - | 0.8273 | - | - | −533.6685 | ||
BEL20/ OBX | Gaussian | 0.5731 | - | 0.3885 | - | - | −680.7532 |
0.5406 | - | 0.3636 | - | - | −284.5132 | ||
t-Student | 0.5707 | 7.1039 | 0.3867 | 0.6359 | 0.2929 | −712.8526 | |
0.5369 | 5.3144 | 0.3608 | 0.4785 | 0.3119 | −307.5239 | ||
Clayton | 1.2280 | - | 0.6196 | - | 0.4488 | −601.8386 | |
1.1080 | - | 0.6435 | - | 0.4744 | −300.4890 | ||
Gumbel | 1.5520 | - | 0.6082 | 0.3557 | - | −598.3160 | |
1.4960 | - | 0.5994 | 0.3316 | - | −241.3552 | ||
Frank | 3.9640 | - | 0.7477 | - | - | −602.8683 | |
3.6690 | - | 0.7274 | - | - | −254.9061 | ||
PSI/ ISEQ | Gaussian | 0.5855 | - | 0.3982 | - | - | −718.2271 |
0.5092 | - | 0.3401 | - | - | −246.3568 | ||
t-Student | 0.5852 | 11.2549 | 0.3980 | 0.7767 | 0.2580 | −731.4442 | |
0.5112 | 5.3334 | 0.3416 | 0.4511 | 0.2977 | −273.6517 | ||
Clayton | 1.3030 | - | 0.6055 | - | 0.4342 | −561.8356 | |
1.0290 | - | 0.6603 | - | 0.4929 | −252.6712 | ||
Gumbel | 1.5760 | - | 0.6118 | 0.3655 | - | −636.3604 | |
1.4550 | - | 0.5927 | 0.3127 | - | −212.4668 | ||
Frank | 4.1150 | - | 0.7570 | - | - | −649.7576 | |
3.4660 | - | 0.7115 | - | - | −229.2870 | ||
PSI/ OBX | Gaussian | 0.5518 | - | 0.3721 | - | - | −620.1367 |
0.5243 | - | 0.3513 | - | - | −264.1531 | ||
t-Student | 0.5537 | 10.9131 | 0.3736 | 0.7547 | 0.2486 | −633.9519 | |
0.5241 | 5.5931 | 0.3512 | 0.4909 | 0.2985 | −286.5113 | ||
Clayton | 1.1930 | - | 0.6264 | - | 0.4560 | −499.3047 | |
1.0690 | - | 0.6517 | - | 0.4833 | −280.2284 | ||
Gumbel | 1.5180 | - | 0.6029 | 0.3412 | - | −539.2102 | |
1.4700 | - | 0.5951 | 0.3197 | - | −223.4428 | ||
Frank | 3.8420 | - | 0.7397 | - | - | −576.7862 | |
3.5580 | - | 0.7189 | - | - | −241.6733 | ||
ISEQ/ OBX | Gaussian | 0.4893 | - | 0.3255 | - | - | −466.1361 |
0.4684 | - | 0.3103 | - | - | −202.3359 | ||
t-Student | 0.4855 | 7.7879 | 0.3227 | 0.6021 | 0.2457 | −491.7319 | |
0.4683 | 6.2938 | 0.3103 | 0.4879 | 0.2566 | −224.9201 | ||
Clayton | 0.9319 | - | 0.6822 | - | 0.5176 | −426.0756 | |
0.8879 | - | 0.6925 | - | 0.5297 | −219.7671 | ||
Gumbel | 1.4170 | - | 0.5863 | 0.2943 | - | −396.2354 | |
1.3870 | - | 0.5811 | 0.2790 | - | −166.7752 | ||
Frank | 3.1890 | - | 0.6864 | - | - | −412.0625 | |
3.0290 | - | 0.6699 | - | - | −183.6187 |
Panel A—Kendall’s tau Coefficient in the Pre-Pandemic Subperiod | ||||||
Index | AEX | CAC40 | BEL20 | PSI | ISEQ | OBX |
AEX | – | 0.7062 | 0.6549 | 0.4738 | 0.5034 | 0.4269 |
CAC40 | 0.7062 | – | 0.6645 | 0.4865 | 0.5151 | 0.4179 |
BEL20 | 0.6549 | 0.6645 | – | 0.4739 | 0.5148 | 0.3867 |
PSI | 0.4738 | 0.4865 | 0.4739 | – | 0.3980 | 0.3736 |
ISEQ | 0.5034 | 0.5151 | 0.5148 | 0.3980 | – | 0.3227 |
OBX | 0.4269 | 0.4179 | 0.3867 | 0.3736 | 0.3227 | – |
Panel B—Kendall’s tau Coefficient in the Post-Pandemic Subperiod | ||||||
Index | AEX | CAC40 | BEL20 | PSI | ISEQ | OBX |
AEX | – | 0.6364 | 0.5673 | 0.4002 | 0.5016 | 0.6154 |
CAC40 | 0.6364 | – | 0.6144 | 0.4286 | 0.5505 | 0.3772 |
BEL20 | 0.5673 | 0.6144 | – | 0.4096 | 0.5037 | 0.3608 |
PSI | 0.4002 | 0.4286 | 0.4096 | – | 0.3416 | 0.3512 |
ISEQ | 0.5016 | 0.5505 | 0.5037 | 0.3416 | – | 0.3103 |
OBX | 0.6154 | 0.3772 | 0.3608 | 0.3512 | 0.3103 | – |
Panel C—Variation of Kendall’s tau Coefficient Between Pre- and Post-Pandemic Subperiods | ||||||
Index | AEX | CAC40 | BEL20 | PSI | ISEQ | OBX |
AEX | – | −0.0698 | −0.0875 | −0.0735 | −0.0018 | 0.1885 |
CAC40 | −0.0698 | – | −0.0501 | −0.0580 | 0.0354 | −0.0407 |
BEL20 | −0.0875 | −0.0501 | – | −0.0643 | −0.0111 | −0.0258 |
PSI | −0.0735 | −0.0580 | −0.0643 | – | −0.0564 | −0.0224 |
ISEQ | −0.0018 | 0.0354 | −0.0111 | −0.0564 | – | −0.0125 |
OBX | 0.1885 | −0.0407 | −0.0258 | −0.0224 | −0.0125 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carneiro, L.; Gomes, L.; Lopes, C.; Pereira, C. Spillovers Between Euronext Stock Indices: The COVID-19 Effect. Int. J. Financial Stud. 2025, 13, 66. https://doi.org/10.3390/ijfs13020066
Carneiro L, Gomes L, Lopes C, Pereira C. Spillovers Between Euronext Stock Indices: The COVID-19 Effect. International Journal of Financial Studies. 2025; 13(2):66. https://doi.org/10.3390/ijfs13020066
Chicago/Turabian StyleCarneiro, Luana, Luís Gomes, Cristina Lopes, and Cláudia Pereira. 2025. "Spillovers Between Euronext Stock Indices: The COVID-19 Effect" International Journal of Financial Studies 13, no. 2: 66. https://doi.org/10.3390/ijfs13020066
APA StyleCarneiro, L., Gomes, L., Lopes, C., & Pereira, C. (2025). Spillovers Between Euronext Stock Indices: The COVID-19 Effect. International Journal of Financial Studies, 13(2), 66. https://doi.org/10.3390/ijfs13020066