Intelligent Agents at School—Child–Robot Interactions as an Educational Path
Abstract
:1. Introduction
2. The Context: Digital Competence under International and National Government Policies
Artificial Intelligence: Introduction in an Educational Context
3. Aims and Research Questions
- Does the evolution of policy and skill frameworks and their application support a consistent integration of coding, computational thinking, and educational robotics at school?
- Does an analysis of the theoretical themes underlying human–machine interaction provide us with elements for understanding educational robotics and design its educational use?
- Can we find elements that lead us to enhance the paths already completed in these fields for AI education?
4. Coding, Computational Thinking, and Educational Robotics in Education: An Overview
4.1. A Competencies’ Framework and Computational Thinking Strategies
4.2. Computational Thinking, Coding, and Educational Robotics at School
4.3. SWOT Analysis
5. Looking for a Different Understanding of Child–Robot Interactions
- Coding requires particular skills, such as engineering and programming, from which non-specialists are excluded;
- It is constantly evolving and, for this reason, it is difficult to understand;
- It has a commercial dimension subject to market laws and logic;
- It is made up of a set of processes and languages that are complex, even for those who create them.
5.1. Humans, Robots, and Artificial Intelligence: An Almost Ancient Story
5.1.1. “Can Machines Think?”
5.1.2. Anthropomorphizing Machines
5.2. Stance, Explanation, and HRI
5.3. Theory of Mind and Child–Robot Interactions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Floridi, L. Philosophy and Computing: An Introduction; Routledge: London, UK; New York, NY, USA, 1999. [Google Scholar]
- Ferraris, M. L’inconscio artificiale. Boll. Filos. 2021, 36, 60–68. [Google Scholar]
- Panciroli, C.; Rivoltella, P.C. Pedagogia Algoritmica: Per una Riflessione Educativa Sull’Intelligenza Artificiale; Number 227 in Orso blu; Scholé: Brescia, Italy, 2023. [Google Scholar]
- Accoto, C. Il Mondo Dato. Cinque Brevi Lezioni di Filosofia Digitale; Egea: Milano, Italy, 2017. [Google Scholar]
- Floridi, L.; Cabitza, F. Intelligenza Artificiale: L’uso delle Nuove Macchine; Bompiani: Milano, Italy, 2021. [Google Scholar]
- Di Stasio, M.; Camizzi, L.; Messini, L. Understanding languages and building literacies for citizens education. J. e-Learn. Knowl. Soc. 2022, 18, 117–127. [Google Scholar]
- Di Stasio, M.; Messini, L. Intrecci di culture: Literacies per la consapevolezza della realtà. In La Scuola Come Bene di Tutti, la Scuola per il Bene di Tutti; Pastori, G., Luisa Zecca, F.Z., Eds.; FrancoAngeli: Milan, Italy, 2022. [Google Scholar]
- Stuart, L. 21st Century Skills for 21st Century Jobs. A Report of the U.S. Department of Commerce, U.S. Department of Education, U.S. Department of Labor, National Institute for Literacy and Small Business Administration; Technical Report; Department of Commerce: Washington, DC, USA, 1999; ISBN 0-16-049964-X.
- European Commission. Recommendation of the European Parliament and of the Council of 18 December 2006 on Key Competences for Lifelong Learning; Technical Report; European Commission: Brussels, Belgium, 2006. [Google Scholar]
- European Commission. Piano D’Azione per L’Istruzione Digitale 2021–2027 Ripensare L’Istruzione e la Formazione per L’era Digitale; Technical Report; European Commission: Brussels, Belgium, 2020; Available online: https://education.ec.europa.eu/focus-topics/digital-education/action-plan (accessed on 7 July 2024).
- MIUR. Piano Nazionale Scuola Digitale; Technical Report; MIUR: Rome, Italy, 2015. Available online: https://www.miur.gov.it/scuola-digitale (accessed on 7 July 2024).
- MIUR. Indicazioni Nazionali e Nuovi Scenari; Technical Report; MIUR: Rome, Italy, 2018. Available online: https://www.miur.gov.it/documents/20182/0/Indicazioni+nazionali+e+nuovi+scenari/ (accessed on 7 July 2024).
- European Commission. Ethical Guidelines on the Use of Artificial Intelligence (AI) and Data in Teaching and Learning for Educators; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar] [CrossRef]
- OECD. Recommendation of the Council on Artificial Intelligence; Technical Report OECD/LEGAL/0449; OECD: Paris, France, 2019; Available online: https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449 (accessed on 7 July 2024).
- Educational, U.N. Steering AI and Advanced ICTs for Knowledge Societies: A Rights, Openness, Access, and Multi-Stakeholder Perspective. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000372132 (accessed on 7 July 2024).
- Educational, U.N. K-12 AI Curricula: A Mapping of Government-Endorsed AI Curricula. Technical Report. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000380602 (accessed on 7 July 2024).
- Mortari, L. La ricerca empirica in educazione: Questioni aperte. Studi Form./Open J. Educ. 2009, 12, 33–46. [Google Scholar]
- Damiano, L. Mente, robot ed ecologie sociali miste. Per unépistemologia sperimentale dei robot sociali. Sist. Intelligenti 2020, 1, 27–39. [Google Scholar] [CrossRef]
- Marchive, A. La Pédagogie à L’épreuve de la Didactique: Approche Historique, Perspectives théOriques et Recherches Empiriques; Paideia, Presses Universitaires de Rennes: Rennes, France, 2008. [Google Scholar]
- Dewey, J. Essays in Experimental Logic; University of Chicago Press: Chicago, IL, USA, 1916. [Google Scholar] [CrossRef]
- 21st Century Knowledge and Skills in Educator Preparation. Technical Report, American Association of Colleges of Teacher Education and the Partnership for 21st Century Skills (P21). 2010. Available online: https://files.eric.ed.gov/fulltext/ED519336.pdf (accessed on 7 July 2024).
- Dede, C. Comparing frameworks for 21st century skills. 21st Century Ski. Rethink. How Stud. Learn. 2010, 20, 51–76. [Google Scholar]
- Vuorikari, R.; Kluzer, S.; Punie, Y. DigComp 2.2: The Digital Competence Framework for Citizens; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- Law, N.; Woo, D.J.; de la Torre, J.; Wong, K. A Global Framework of Reference on Digital Literacy Skills for Indicator 4.4.2. 2018. Available online: https://uis.unesco.org/sites/default/files/documents/ip51-global-framework-reference-digital-literacy-skills-2018-en.pdf (accessed on 7 July 2024).
- Scott, C.L. The Futures of Learning 2: What Kind of Learning for the 21st Century? Educ. Res. Foresight Work. Pap. 2015, 14, 1–14. [Google Scholar]
- OECD. The Future of Education and Skills Education 2030; Technical Report; OECD: Paris, France, 2018. [Google Scholar]
- Office, I.L. Global Framework on Core Skills for Life and Work in the 21st Century; Technical Report; International Labour Office: Geneva, Switzerland, 2021. [Google Scholar]
- Bocconi, S.; Chioccariello, A.; Kampylis, P.; Dagienė, V.; Wastiau, P.; Engelhardt, K.; Earp, J.; Horvath, M.; Jasutė, E.; Malagoli, C.; et al. Reviewing Computational Thinking in Compulsory Education; Technical Report; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- Balanskat, A.; Engelhardt, K.; Licht, A.H. Strategies to Include Computational Thinking in School Curricula in Norway and Sweden- European Schoolnet’s 2018 Study Visit; Technical Report; European Schoolnet: Brussels, Belgium, 2018. [Google Scholar]
- Kampylis, P.; Dagienė, V.; Bocconi, S.; Chioccariello, A.; Engelhardt, K.; Stupurienė, G.; Masiulionytė-Dagienė, V.; Jasutė, E.; Malagoli, C.; Horvath, M.; et al. Integrating Computational Thinking into Primary and Lower Secondary Education: A Systematic Review. Educ. Technol. Soc. 2023, 26, 99–117. [Google Scholar]
- K-12 Computer Science Framework Steering Committee. K-12 Computer Science Framework; Technical Report; K-12 Computer Science Framework Steering Committee: New York, NY, USA, 2016. [Google Scholar]
- European Commission. Key Competences for Lifelong Learning; Technical Report; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Wing, J. Computational thinking’s influence on research and education for all. Ital. J. Educ. Technol. 2017, 25, 7–14. [Google Scholar]
- Chen, L.; Chen, P.; Lin, Z. Artificial Intelligence in Education: A Review. IEEE Access 2020, 8, 75264–75278. [Google Scholar] [CrossRef]
- Goksel, N.; Bozkurt, A. Artificial Intelligence in Education: Current Insights and Future Perspectives. In Advances in Educational Technologies and Instructional Design; IGI Global: Hershey, PA, USA, 2019; pp. 224–236. [Google Scholar] [CrossRef]
- Di Stasio, M.; Nulli, G. Nterfacce tangibili per la didattica disciplinare nel Primo Ciclo. Dalla sperimentazione alla formazione. In Interazione Bambini-Robot; Bozzi, G., Luisa Zecca, E.D., Eds.; FrancoAngeli: Milano, Italy, 2021. [Google Scholar]
- Dewey, J. Experience and Education. Educ. Forum 1986, 50, 241–252. [Google Scholar] [CrossRef]
- Papert, S. Mindstorms; Basic Books: New York, NY, USA, 1980. [Google Scholar]
- Benvenuti, M.; Cangelosi, A.; Weinberger, A.; Mazzoni, E.; Benassi, M.; Barbaresi, M.; Orsoni, M. Artificial intelligence and human behavioral development: A perspective on new skills and competences acquisition for the educational context. Comput. Hum. Behav. 2023, 148, 107903. [Google Scholar] [CrossRef]
- The Children’s Machine: Rethinking School in the Age of the Computer; A Member of the Perseus Books Group. 1993. Available online: https://lcl.media.mit.edu/resources/readings/childrens-machine.pdf (accessed on 7 July 2024).
- Merlo, D. La Robotica Educativa Nella Scuola Primaria; StreetLib: Loreto, Italy, 2017. [Google Scholar]
- Jung, S.E.; Won, E.S. Systematic Review of Research Trends in Robotics Education for Young Children. Sustainability 2018, 10, 905. [Google Scholar] [CrossRef]
- Gratani, F.; Giannandrea, L.; Renieri, A.; Annessi, M. Fostering Students’ Problem-Solving Skills through Educational Robotics in Primary School. In Studies in Computational Intelligence; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 3–14. [Google Scholar] [CrossRef]
- Nulli, G.; Miotti, B.; Stasio, M.D. Robotica Educativa e Coding: Strumenti per la Trasformazione del Curricolo; Indire, Carocci Editore: Firenze, Italy, 2022. [Google Scholar]
- Bagattini, D.; Miotti, B. Lavorare sul Genere a Scuola con Coding e Robotica Educativa; Ricerche Indire, Carocci Editore: Firenze, Italy, 2022. [Google Scholar]
- Malvezzi, M.; Alimisis, D.; Moro, M. (Eds.) Education in & with Robotics to Foster 21st-Century Skills; Springer: Berlin/Heidelberg, Germany, 2021; Volume 982. [Google Scholar]
- Lepuschitz, W.; Merdan, M.; Koppensteiner, G.; Balogh, R.; Obdržálek, D. (Eds.) Robotics in Education: RiE 2022; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; Volume 515. [Google Scholar] [CrossRef]
- Balogh, R.; Obdržálek, D.; Christoforou, E. (Eds.) Robotics in Education: Proceedings of the RiE 2023 Conference; Springer Nature: Cham, Switzerland, 2023; Volume 747. [Google Scholar] [CrossRef]
- Merdan, M.; Lepuschitz, W.; Koppensteiner, G.; Balogh, R.; Obdržálek, D. (Eds.) Robotics in Education: RiE 2021; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; Volume 1359. [Google Scholar] [CrossRef]
- Scaradozzi, D.; Guasti, L.; Stasio, M.D.; Miotti, B.; Monteriù, A.; Blikstein, P. (Eds.) Makers at School, Educational Robotics and Innovative Learning Environments: Research and Experiences from FabLearn Italy 2019, in the Italian Schools and Beyond; Springer International Publishing: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Wilfried Lepuschitz, M.M.; Koppensteiner, G.; Balogh, R.; Obdržálek, D. (Eds.) Robotics in Education: Methodologies and Technologies; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; Volume 1316. [Google Scholar] [CrossRef]
- Ching, Y.H.; Hsu, Y.C. Educational Robotics for Developing Computational Thinking in Young Learners: A Systematic Review. TechTrends 2023, 68, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Nilüfer Atman Uslu, G.Ö.Y.; Usluel, Y.K. A systematic review study on educational robotics and robots. Interact. Learn. Environ. 2023, 31, 5874–5898. [Google Scholar] [CrossRef]
- Montuori, C.; Pozzan, G.; Padova, C.; Ronconi, L.; Vardanega, T.; Arfé, B. Combined Unplugged and Educational Robotics Training to Promote Computational Thinking and Cognitive Abilities in Preschoolers. Educ. Sci. 2023, 13, 858. [Google Scholar] [CrossRef]
- Rapti, S.; Sapounidis, T. Critical thinking, Communication, Collaboration, Creativity in kindergarten with Educational Robotics: A scoping review (2012–2023). Comput. Educ. 2024, 210, 104968. [Google Scholar] [CrossRef]
- Ahmad, M.I.; Khordi-moodi, M.; Lohan, K.S. Social Robot for STEM Education. In Proceedings of the Companion of the HRI ’20, 2020 ACM/IEEE International Conference on Human-Robot Interaction, Cambridge, UK, 23–26 March 2020; pp. 90–92. [Google Scholar] [CrossRef]
- Mangina, E.; Psyrra, G.; Screpanti, L.; Scaradozzi, D. Robotics in the Context of Primary and Preschool Education: A Scoping Review. IEEE Trans. Learn. Technol. 2024, 17, 342–363. [Google Scholar] [CrossRef]
- Auyelbek, M.; Ybyraimzhanov, K.; Andasbayev, E.; Abdykerimova, E.; Turkmenbayev, A. Analysis of Studies in the Literature on Educational Robotics. J. Turk. Sci. Educ. 2022, 19, 1267–1290. [Google Scholar] [CrossRef]
- Sapounidis, T.; Alimisis, D. Educational Robotics Curricula: Current Trends and Shortcomings. In Studies in Computational Intelligence; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 127–138. [Google Scholar] [CrossRef]
- Schiavo, F.; Campitiello, L.; Todino, M.D.; Di Tore, P.A. Educational Robots, Emotion Recognition and ASD: New Horizon in Special Education. Educ. Sci. 2024, 14, 258. [Google Scholar] [CrossRef]
- Meral, M.; Altun Yalçin, S. Trends in Studies on Educational Robotics in Recent Years: A Content Analysis. Trak. Eğit. Derg. 2024, 14, 148–164. [Google Scholar] [CrossRef]
- Sullivan, F.R.; Moriarty, M.A. Robotics and Discovery Learning: Pedagogical Beliefs, Teacher Practice, and Technology Integration. J. Technol. Teach. Educ. 2009, 17, 109–142. [Google Scholar]
- Schina, D.; Esteve-González, V.; Usart, M. An overview of teacher training programs in educational robotics: Characteristics, best practices and recommendations. Educ. Inf. Technol. 2021, 26, 2831–2852. [Google Scholar] [CrossRef]
- Bocconi, S.; Chioccariello, A.; Dettori, G.; Ferrari, A.; Engelhardt, K. Developing Computational Thinking in Compulsory Education—Implications for Policy and Practice; Technical Report; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Balanskat, A.; Engelhardt, K. Computing Our Future: Computer Programming and Coding—Priorities, School Curricula and Initiatives across Europe; Technical Report; European Schoolnet: Brussels, Belgium, 2015. [Google Scholar]
- Screpanti, L.; Miotti, B.; Monteriù, A. Robotics in Education: A Smart and Innovative Approach to the Challenges of the 21st Century. In Makers at School, Educational Robotics and Innovative Learning Environments: Research and Experiences from FabLearn Italy 2019, in the Italian Schools and Beyond; Scaradozzi, D., Guasti, L., Di Stasio, M., Miotti, B., Monteriù, A., Blikstein, P., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 17–26. [Google Scholar]
- Bano, S.; Atif, K.; Mehdi, S.A. Systematic review: Potential effectiveness of educational robotics for 21st century skills development in young learners. Educ. Inf. Technol. 2023, 29, 11135–11153. [Google Scholar] [CrossRef]
- Samuel, Y.; George, J.; Samuel, J. Beyond STEM, How Can Women Engage Big Data, Analytics, Robotics and Artificial Intelligence? An Exploratory Analysis of Confidence and Educational Factors in the Emerging Technology Waves Influencing the Role of, and Impact Upon, Women. arXiv 2020, arXiv:2003.11746. [Google Scholar] [CrossRef]
- Naya-Varela, M.; Guerreiro-Santalla, S.; Baamonde, T.; Bellas, F. Robobo SmartCity: An Autonomous Driving Model for Computational Intelligence Learning Through Educational Robotics. IEEE Trans. Learn. Technol. 2023, 16, 543–559. [Google Scholar] [CrossRef]
- Stolpe, K.; Hallström, J. Artificial intelligence literacy for technology education. Comput. Educ. Open 2024, 6, 100159. [Google Scholar] [CrossRef]
- Kandlhofer, M.; Steinbauer, G.; Lassnig, J.; Menzinger, M.; Baumann, W.; Ehardt-Schmiederer, M.; Bieber, R.; Winkler, T.; Plomer, S.; Strobl-Zuchtriegl, I.; et al. EDLRIS: A European Driving License for Robots and Intelligent Systems. KI—Künstl. Intell. 2021, 35, 221–232. [Google Scholar] [CrossRef]
- Putman, H.; Putnam, H. Robots: Machines or Artificially Created Life? J. Philos. 1964, 61, 668–691. [Google Scholar] [CrossRef]
- Bartneck, C. Godspeed Questionnaire Series: Translations and Usage. In International Handbook of Behavioral Health Assessment; Krägeloh, C.U., Alyami, M., Medvedev, O.N., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–35. [Google Scholar] [CrossRef]
- Bartneck, C.; Belpaeme, T.; Eyssel, F.; Kanda, T.; Keijsers, M.; Šabanović, S. Human-Robot Interaction: An Introduction, 1st ed.; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar] [CrossRef]
- Hesse, M.B. Models and Analogies in Science, 2nd ed.; Philosophy: Notre Dame, IN, USA, 1970. [Google Scholar]
- Turing, A.M. Computing Machinery and Intelligence. Mind 1950, 59, 433–460. [Google Scholar] [CrossRef]
- Searle, J.R. Minds, brains, and programs. Behav. Brain Sci. 1980, 3, 417–424. [Google Scholar] [CrossRef]
- Dennett, D.C. Intuition Pumps and Other Tools for Thinking, 1st ed.; W. W. Norton & Company: New York, NY, USA, 2013. [Google Scholar]
- Mori, M.; MacDorman, K.F.; Kageki, N. The Uncanny Valley [From the Field]. IEEE Robot. Autom. Mag. 2012, 19, 98–100. [Google Scholar] [CrossRef]
- MacDorman, K.F.; Ishiguro, H. The uncanny advantage of using androids in cognitive and social science research. Interact. Stud. Soc. Behav. Commun. Biol. Artif. Syst. 2006, 7, 297–337. [Google Scholar] [CrossRef]
- Conti, D.; Di Nuovo, S.; Buono, S.; Di Nuovo, A. Robots in Education and Care of Children with Developmental Disabilities: A Study on Acceptance by Experienced and Future Professionals. Int. J. Soc. Robot. 2017, 9, 51–62. [Google Scholar] [CrossRef]
- Larghi, S.; Datteri, E. Educational Robotics Inclusive and Technology Education. In Proceedings of the CIFMA 2023—5th International Workshop on Cognition: Interdisciplinary Foundations, Models and Applications; Lecture Notes in Compuer Science (LNCS); Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Marchesi, S.; Ghiglino, D.; Ciardo, F.; Perez-Osorio, J.; Baykara, E.; Wykowska, A. Do We Adopt the Intentional Stance Toward Humanoid Robots? Front. Psychol. 2019, 10, 450. [Google Scholar] [CrossRef] [PubMed]
- Dennett, D.C. Intentional Systems. J. Philos. 1971, 68, 87–106. [Google Scholar] [CrossRef]
- Plantinga, A. Warrant and Proper Function; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- Di Stasio, M. Plantinga e L’argomento Teleologi: Dalla Critica a Hume al Ruolo del Concetto di “Proper Function”. Annali del dipartimento di filosofia. N. 11-2005. 2005. Available online: https://core.ac.uk/download/pdf/228528355.pdf (accessed on 7 July 2024).
- Belpaeme, T.; Baxter, P.; de Greeff, J.; Kennedy, J.; Read, R.; Looije, R.; Neerincx, M.; Baroni, I.; Zelati, M.C. Child-Robot Interaction: Perspectives and Challenges. In Social Robotics; Herrmann, G., Pearson, M.J., Lenz, A., Bremner, P., Spiers, A., Leonards, U., Eds.; Springer: Cham, Switzerland, 2013; pp. 452–459. [Google Scholar]
- Storjak, I.; Krzic, A.S.; Jagust, T. Elementary School Pupils’ Mental Models Regarding Robots and Programming. IEEE Trans. Educ. 2022, 65, 297–308. [Google Scholar] [CrossRef]
- Dio, C.D.; Manzi, F.; Peretti, G.; Cangelosi, A.; Harris, P.L.; Massaro, D.; Marchetti, A. Come i bambini pensano alla mente del robot. Il ruolo dell’attaccamento e della Teoria della Mente nell’attribuzione di stati mentali ad un agente robotico. Sist. Intelligenti 2020, 41–56. [Google Scholar] [CrossRef]
- Di Dio, C.; Manzi, F.; Peretti, G.; Cangelosi, A.; Harris, P.L.; Massaro, D.; Marchetti, A. Shall I Trust You? From Child–Robot Interaction to Trusting Relationships. Front. Psychol. 2020, 11, 469. [Google Scholar] [CrossRef] [PubMed]
- Spektor-Precel, K.; Mioduser, D. 5–7 Year Old Children’s Conceptions of Behaving Artifacts and the Influence of Constructing Their Behavior on the Development of Theory of Mind (ToM) and Theory of Artificial Mind (ToAM). Interdiscip. J. e-Ski. Lifelong Learn. 2015, 11, 329–345. [Google Scholar] [CrossRef]
- Mioduser, D.; Kuperman, A. Young Children’s Representational Structures of Robots’ Behaviors. Des. Technol. Educ. 2020, 25, 143–159. [Google Scholar]
- Blikstein, P. Maker Movement in Education: History and Prospects. In Handbook of Technology Education; Springer International: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Stasio, M.; Miotti, B. Intelligent Agents at School—Child–Robot Interactions as an Educational Path. Educ. Sci. 2024, 14, 774. https://doi.org/10.3390/educsci14070774
Di Stasio M, Miotti B. Intelligent Agents at School—Child–Robot Interactions as an Educational Path. Education Sciences. 2024; 14(7):774. https://doi.org/10.3390/educsci14070774
Chicago/Turabian StyleDi Stasio, Margherita, and Beatrice Miotti. 2024. "Intelligent Agents at School—Child–Robot Interactions as an Educational Path" Education Sciences 14, no. 7: 774. https://doi.org/10.3390/educsci14070774
APA StyleDi Stasio, M., & Miotti, B. (2024). Intelligent Agents at School—Child–Robot Interactions as an Educational Path. Education Sciences, 14(7), 774. https://doi.org/10.3390/educsci14070774