How to Measure Procedural Knowledge for Solving Biodiversity and Climate Change Challenges
Abstract
:1. Introduction
Target 4.7: “By 2030, ensure that all learners acquire the knowledge and skills needed to promote sustainable development, including, among others, through education for sustainable development and sustainable lifestyles, human rights, gender equality, promotion of a culture of peace and non-violence, global citizenship and appreciation of cultural diversity and of culture’s contribution to sustainable development”.[4]
1.1. Teacher Education and Knowledge Relevant for ESD
1.2. SD Challenges Biodiversity Loss and Climate Change and the Corresponding Fields of Action
- (i)
- refine a procedure to measure procedural knowledge of student teachers for coping with SD challenges and thereby,
- (ii)
- define a measure for such knowledge and a benchmark for its evaluation.
2. Methods
2.1. Sample Composition
2.2. Delphi Survey First Round
2.3. Think-aloud Study with Student Teachers
2.4. Delphi Survey Second Round
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Solution Strategy | Sustainable Land Use vs. Ecosystem Services | Sustainable Land Use vs. Biodiversity Conservation/Climate Protection | Ecosystem Services vs. Biodiversity Conservation/Climate Protection | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MD | p | 95% CI | MD | p | 95% CI | MD | p | 95% CI | ||||
IP-2 | −0.867 | 0.001 | −10.36 | −0.376 | −0.053 | 10.00 | −0.674 | 0.569 | 0.816 | 0.001 | 0.351 | 10.28 |
IP-3 | 0.158 | 0.248 | −0.069 | 0.385 | −0.105 | 0.992 | −0.383 | 0.173 | −0.263 | 0.062 | −0.537 | 0.011 |
IP-8 | 0.368 | 0.045 | 0.007 | 0.730 | 0.316 | 0.030 | 0.027 | 0.605 | −0.053 | 10.00 | −0.370 | 0.265 |
IP-9 | −0.368 | 0.092 | −0.783 | 00.46 | −0.447 | 0.045 | −0.886 | −0.009 | −0.079 | 0.992 | −0.287 | 0.129 |
IP-10 | 0.211 | 0.488 | −0.171 | 0.592 | −0.263 | 0.288 | −0.659 | 0.132 | −0.474 | 0.002 | −0.784 | −0.163 |
PU-6 | 0.200 | 0.488 | −0.161 | 0.561 | 0.600 | 0.006 | 0.157 | 10.043 | 0.400 | 0.085 | −0.043 | 0.843 |
PU-8 | 0.300 | 0.166 | −0.086 | 0.686 | 0.500 | 0.005 | 0.144 | 0.856 | 0.200 | 0.775 | −0.251 | 0.651 |
References
- Bertschy, F.; Künzli, C.; Lehmann, M. Teachers’ Competencies for the Implementation of Educational Offers in the Field of Education for Sustainable Development. Sustainability 2013, 5, 5067–5080. [Google Scholar] [CrossRef] [Green Version]
- UNESCO (United Nations Educational, Scientific and Cultural Organization). Roadmap for Implementing the Global Action Programme on Education for Sustainable Development; UNESCO: Paris, France, 2014. [Google Scholar]
- Barth, M.; Rieckmann, M. State of the Art in Research on Higher Education for Sustainable Development. In Routledge Handbook of Higher Education for Sustainable Development; Barth, M., Michelsen, G., Rieckmann, M., Thomas, I., Eds.; Routledge: London, UK, 2016; pp. 100–113. ISBN 9780415727303. [Google Scholar]
- United Nations (UN), General Assembly. Transforming our World: The 2030 Agenda for Sustainable Development; United Nations (UN), General Assembly: New York, NY, USA, 2015. [Google Scholar]
- Lindemann-Matthies, P.; Constantinou, C.; Junge, X.; Köhler, K.; Mayer, J.; Nagel, U.; Raper, G.; Kadji-Beltran, C. The Integration of Biodiversity Education in the Initial Education of Primary School Teachers: Four Comparative Case Studies from Europe. Environ. Educ. Res. 2009, 15, 17–37. [Google Scholar] [CrossRef]
- Rieckmann, M.; Holz, V. Verankerung von BNE in der Lehrerbildung in Deutschland. Zeitschrift für Internationale Bildungsforschung und Entwicklungspädagogik (ZEP) 2017, 40, 4–10. [Google Scholar]
- Bourn, D.; Frances, H.; Phil, B. A Review of Education for Sustainable Development and Global Citizenship Education in Teacher Education, 2017. Background Paper Prepared for the 2017/8 Global Education Monitoring Report. Available online: http://unesdoc.unesco.org/images/0025/002595/259566e.pdf (accessed on 26 June 2018).
- LeNa. Teacher Education for a Sustainable Development from Pilot Projects and Initiatives to New Structures. A Memorandum on Reorienting Teacher Education in Germany, Austria and Switzerland. Available online: https://www.leuphana.de/fileadmin/user_upload/portale/netzwerk-lena/Memorandum_LeNa_English_Stand_August_15.pdf (accessed on 14 June 2018).
- Baumert, J.; Kunter, M. Stichwort: Professionelle Kompetenz von Lehrkräften. Zeitschrift für Erziehungswissenschaft 2006, 9, 469–520. [Google Scholar] [CrossRef]
- Baumert, J.; Kunter, M. Das Kompetenzmodell von COACTIV. In Professionelle Kompetenz von Lehrkräften. Ergebnisse des Forschungsprogramms COACTIV; Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., Neubrand, M., Eds.; Waxmann: Münster, Germany, 2011; pp. 29–53. ISBN 978-3-8309-2433-3. [Google Scholar]
- Reinke, V.; Hemmer, I. Bildung für nachhaltige Entwicklung—Über welche Kompetenzen verfügen Lehrkräfte und Akteur/-innen aus den außerschulischen Einrichtungen. Zeitschrift ZLB.KU 2017, 1, 38–42. [Google Scholar]
- Weinert, F.E. Concept of Competence: A Conceptual Clarification. In Defining and Selecting Key Competencies; Rychen, D.S., Salganik, L.H., Eds.; Horgrefe & Huber: Seattle, WA, USA; Toronto, ON, Australia; Bern, Switzerland; Göttingen, Germany, 2001; pp. 45–65. ISBN 978-0889372481. [Google Scholar]
- Shulman, L.S. Knowledge and Teaching: Foundation of the New Reform. Harv. Educ. Rev. 1987, 57. [Google Scholar] [CrossRef]
- Hellberg-Rode, G.; Schrüfer, G.; Hemmer, M. Brauchen Lehrkräfte für die Umsetzung von Bildung für nachhaltige Entwicklung (BNE) spezifische professionelle Handlungskompetenzen? Theoretische Grundlagen, Forschungsdesign und erste Ergebnisse. Zeitschrift für Geographiedidaktik (ZGD) 2014, 42, 257–281. [Google Scholar]
- Hellberg-Rode, G.; Schrüfer, G. Welche spezifischen professionellen Handlungskompetenzen benötigen Lehrkräfte für die Umsetzung von Bildung für Nachhaltige Entwicklung (BNE)? Ergebnisse einer explorativen Studie. Zeitschrift für Didaktik der Biologie 2016, 20, 1–29. [Google Scholar] [CrossRef]
- Fiebelkorn, F.; Menzel, S. Student Teachers’ Understanding of the Terminology, Distribution, and Loss of Biodiversity: Perspectives from a Biodiversity Hotspot and an Industrialized Country. Res. Sci. Educ. 2013, 43, 1593–1615. [Google Scholar] [CrossRef]
- Kaiser, F.; Fuhrer, U. Wissen für ökologisches Handeln. In Die Kluft zwischen Wissen und Handeln. Empirische und theoretische Lösungansätze; Mandl, H., Gerstenmaier, J., Eds.; Hogrefe: Göttingen, Germany, 2000; pp. 51–71. ISBN 9783801713386. [Google Scholar]
- Gräsel, C. Ökologische Kompetenz: Analyse und Förderung; Ludwig-Maximilian-Universität, Fakultät für Psychologie und Pädagogik: München, Germany, 2000; in press. [Google Scholar]
- Anderson, L.W.; Krathwohl, D.R.; Airasian, P.W.; Cruikshank, K.A.; Mayer, R.E.; Pintrich, P.R.; Raths, J.; Wittrock, M.C. A Taxanomy for Learning, Teaching, and Assessing. A Revision of Bloom’s Taxanomy of Educational Objectives; David McKay Company, Inc.: New York, NY, USA, 2001; ISBN 0-8013-1903-X. [Google Scholar]
- Alexander, P.A.; Schallert, D.L.; Hare, V.C. Coming to Terms: How Researchers in Learning and Literacy talk about Knowledge. Rev. Educ. Res. 1991, 61, 315–343. [Google Scholar] [CrossRef]
- Ryle, G. The Concept of the Mind; University of Chicago Press: Chicago, IL, USA, 1949. [Google Scholar]
- Anderson, J.R. Acquisition of Cognitive Skill. Psychol. Rev. 1982, 89, 369–406. [Google Scholar] [CrossRef]
- De Jong, T.; Ferguson-Hessler, M. Types and Qualities of Knowledge. J. Educ. Psychol. 1996, 31, 105–113. [Google Scholar] [CrossRef]
- Sáenz, C. The Role of Contextual and Procedural Knowledge in Activating Mathematical Competencies (PISA). Educ. Stud. Math. 2009, 71, 123–143. [Google Scholar] [CrossRef]
- Baroody, A.J.; Feil, Y.; Johnson, A.R. An Alternative Reconceptualization of Procedural and Conceptual Knowledge. J. Res. Math. Educ. 2007, 38, 115–131. [Google Scholar]
- Rittle-Johnson, B.; Koedinger, K.R. Designing Knowledge Scaffolds to Support Mathematical Problem Solving. Cognit. Instruct. 2005, 23, 313–349. [Google Scholar] [CrossRef]
- Koch, S.; Barkmann, J.; Strack, M.; Sundawati, L.; Bögeholz, S. Knowledge of Indonesian University Students on the Sustainable Management of Natural Resources. Sustainability 2013, 5, 1443–1460. [Google Scholar] [CrossRef] [Green Version]
- Robertson, M. Sustainability Principles and Practice; Taylor and Francis: Hoboken, NJ, USA, 2014; ISBN 041584018X. [Google Scholar]
- United Nations (UN). The Sustainable Development Goals Report 2017. Available online: https://unstats.un.org/sdgs/files/report/2017/TheSustainableDevelopmentGoalsReport2017.pdf (accessed on 28 June 2018).
- Esa, N. Environmental Knowledge, Attitude and Practices of Student Teachers. Int. Res. Geogr. Environ. Educ. 2010, 19, 39–50. [Google Scholar] [CrossRef]
- Gayford, C. Biodiversity Education: A Teacher’s Perspective. Environ. Educ. Res. 2000, 6, 347–361. [Google Scholar] [CrossRef]
- Summers, M.; Kruger, C.; Childs, A.; Mant, J. Primary School Teachers’ Understanding of Environmental Issues: An Interview Study. Environ. Educ. Res. 2000, 6, 293–312. [Google Scholar] [CrossRef]
- Dikmenli, M. Biology Student Teachers’ Conceptual Frameworks in Regarding Biodiversity. Education 2010, 130, 479–490. [Google Scholar]
- Khalid, T. Pre-service Teachers’ Misconceptions Regarding Three Environmental Issues. Can. J. Environ. Educ. 2001, 6, 102–120. [Google Scholar]
- Boon, H.J. Climate Change? Who Knows? A Comparison of Secondary Students and Pre-service Teachers. Aust. J. Teach. Educ. 2010, 35, 103–120. [Google Scholar] [CrossRef]
- Boon, H.J. Teachers and the Communication of Climate Change Science: A Critical Partnership in Australia. Procedia—Soc. Behav. Sci. 2014, 116, 1006–1010. [Google Scholar] [CrossRef]
- Bögeholz, S.; Hössle, C.; Höttecke, D.; Menthe, J. Bewertungskompetenz. In Theorien in der Naturwissenschaftsdidaktischen Forschung; Krüger, D., Parchmann, I., Schecker, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 261–281. ISBN 978-3-662-56319-9. [Google Scholar]
- Schreiber, J.-R. Competencies, Themes, Standards, Design of Lessons and Curricula. In Curriculum Framework: Education for Sustainable Development, 2nd ed.; Schreiber, J.-R., Siege, H., Eds.; Engagement Global gGmbH: Bonn, Germany, 2016; pp. 86–110. ISBN 978-3-06-230062-2. [Google Scholar]
- Overwien, B. Education for Global and Sustainable Development in Teacher Education. In Curriculum Framework: Education for Sustainable Development, 2nd ed.; Schreiber, J.-R., Siege, H., Eds.; Engagement Global gGmbH: Bonn, Germany, 2016; pp. 420–435. ISBN 978-3-06-230062-2. [Google Scholar]
- Gayford, C. Controversial Environmental Issues. A Case Study for the Professional Development of Science Teachers. Int. J. Sci. Educ. 2002, 24, 1191–1200. [Google Scholar] [CrossRef]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global Pollinator Declines: Trends, Impacts and Drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.-M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallai, N.; Salles, J.-M.; Settele, J.; Vaissière, B.E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 2009, 68, 810–821. [Google Scholar] [CrossRef] [Green Version]
- European Academies’ Science Advisory Council (EASAC). Ecosystem Services, Agriculture and Neonicotinoids; EASAC Policy Report 26; EASAC Secretariat Deutsche Akademie der Naturforscher Leopoldina: Halle, Germany, 2015. [Google Scholar]
- Hopfenmuller, S.; Steffan-Dewenter, I.; Holzschuh, A. Trait-specific Responses of Wild Bee Communities to Landscape Composition, Configuration and Local Factors. PLoS ONE 2014, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Krewenka, K.M.; Holzschuh, A.; Tscharntke, T.; Dormann, C.F. Landscape Elements as Potential Barriers and Corridors for Bees, Wasps and Parasitoids. Biol. Conserv. 2011, 144, 1816–1825. [Google Scholar] [CrossRef]
- Henry, M.; Beguin, M.; Requier, F.; Rollin, O.; Odoux, J.-F.; Aupinel, P.; Aptel, J.; Tchamitchian, S.; Decourtye, A. A Common Pesticide Decreases Foraging Success and Survival in Honey Bees. Science 2012, 336, 348–350. [Google Scholar] [CrossRef] [PubMed]
- Bundesministerium für Umwelt, Naturschutz und Nukleare Sicherheit (BMUB). Die Biene: Eines der wichtigsten Nutztiere. Umwelt im Unterricht: Materialien und Service für Lehrkräfte—BMUB-Bildungsservice. 2013. Available online: http://ag-binnenduene.de/downloads/130502_Bienen.pdf (accessed on 5 July 2016).
- Pistorius, J.; Bischoff, G.; Heimbach, U.; Stähler, M. Bee poisoning incidents in Germany in spring 2008 caused by abrasion of active substance from treated seeds during sowing of maize. In Julius-Kühn-Archiv: Vol. 423. Hazards of Pesticides to Bees. 10th International Symposium of the ICP-BR Bee Protection Group Bucharest (Romania); Oomen, P.A., Thompson, H.M., Eds.; Julius Kühn-Institut: Quedlinburg, Germany, 2008; pp. 118–126. [Google Scholar]
- Ernährung und Landwirtschaft (BMELV). Bestandsaufnahme und Perspektiven der Bienenhaltung und Imkerei in Deutschland; Bundesministerium für. 2013. Available online: https://www.bmel.de/SharedDocs/Downloads/Tier/TierzuchtTierhaltung/Bestandsaufnahme-Imkerei.pdf?__blob=publicationFile (accessed on 19 July 2016).
- Christensen, T.R.; Friborg, T.; Byrne, K.A.; Chojnicki, B.; Christensen, T.R.; Freibauer, A.; Friborg, T.; Frolking, S.; Lindroth, A.; Mailhammer, J.; et al. EU Peatlands: Current Carbon Stocks and Trace Gas Fluxes. In Report 4/2004 to ‘Concerted Action: Synthesis of the European Greenhouse Gas Budget’; Geosphere-Biosphere Centre, University of Lund: Lund, Sweden, 2004. [Google Scholar]
- Frolking, S.; Talbot, J.; Jones, M.C.; Treat, C.C.; Kauffman, J.B.; Tuittila, E.-S.; Roulet, N. Peatlands in the Earth’s 21st Century Climate System. Environ. Rev. 2011, 19, 371–396. [Google Scholar] [CrossRef]
- Romine, W.L.; Sadler, T.D.; Kinslow, A.T. Assessment of Scientific Literacy: Development and Validation of the Quantitative Assessment of Socio-Scientific Reasoning (QuASSR). J. Res. Sci. Teach. 2017, 54, 274–295. [Google Scholar] [CrossRef]
- Mang, J.; Ustjanzew, N.; Schiepe-Tiska, A.; Prenzel, M.; Sälzer, C.; Müller, K.; Gonzaléz Rodríguez, E. PISA 2012 Skalenhandbuch: Dokumentation der Erhebungsinstrumente; Waxmann: Münster, Germany; New York, NY, USA, 2018; ISBN 978-3-8309-3825-5. [Google Scholar]
- Derksen, C. Situationales und konzeptuelles Wissen zu “Biodiversität” von Lehramtsstudierenden: Eine Studie Lauten Denkens zur Weiterentwicklung eines quantitativen Messinstruments. Master’s Thesis, Georg-August-Universität Göttingen, Göttingen, Germany, 14 September 2017. [Google Scholar]
- Grube, Y. Eine Studie Lauten Denkens am Beispiel von “Klimawandel und Moornutzung” zur Weiterentwicklung eines Messinstruments. Master’s Thesis, Georg-August-University, Göttingen, Germany, 15 March 2018. [Google Scholar]
- Richter-Beuschel, L.; Derksen, C.; Bögeholz, S. Konzeptuelles Wissen angehender Lehrkräfte für Bildung für Nachhaltige Entwicklung. In Treffpunkt Biologische Vielfalt XVI—Interdisziplinärer Forschungsaustausch im Rahmen des Übereinkommens über die biologische Vielfalt—BfN-Skripten 487; Korn, H., Dünnfelder, H., Schliep, R., Eds.; Bundesamt für Naturschutz (BfN): Bonn, Germany, 2018; pp. 88–95. [Google Scholar]
- Knedeisen, C. Maßnahmen Gegen Bienensterben und Moordegradierung. Eine Delphi-Studie zum Prozeduralen Wissen. Master‘s Thesis, Georg-August-University, Göttingen, Germany, 6 September 2017. [Google Scholar]
- Häder, M. Delphi-Befragungen. Ein Arbeitsbuch; Westdeutscher Verlag: Wiesbaden, Germany, 2002; ISBN 978-3-658-01928-0. [Google Scholar]
- Niederberger, M.; Renn, O. Das Gruppendelphi-Verfahren. Vom Konzept bis zur Anwendung; Springer: Wiesbaden, Germany, 2018; ISBN 978-3-658-18755-2. [Google Scholar]
- Mayring, P. Qualitative Inhaltsanalyse: Grundlagen und Techniken; Beltz: Weinheim, Germany, 2007; ISBN 9783825282295. [Google Scholar]
- Ericsson, K.A.; Simon, H.A. Protocol Analysis: Verbal Reports as Data. A Bradford Book; MIT Press: London, UK, 1993; ISBN 9780262050470. [Google Scholar]
- Sandmann, A. Lautes Denken—Die Analyse von Denk-, Lern- und Problemlöseprozessen. In Methoden in der Naturwissenschaftsdidaktischen Forschung; Krüger, D., Parchmann, I., Schecker, H., Eds.; Springer Spektrum: Berlin, Germany, 2014; pp. 179–188. ISBN 978-3-642-37826-3. [Google Scholar]
- Achterberg, N. Prozedurales Wissen von Lehramtsstudierenden zur Gestaltung Nachhaltiger Entwicklung. Erkenntnisse aus einer Studie Lauten Denkens für die Weiterentwicklung eines Messinstrumentes. Master’s Thesis, Georg-August-University, Göttingen, Germany, 16 March 2018. [Google Scholar]
- Vallor, R.; Yates, K.; Brody, M. Delphi Research Methodology Applied to Place-Based Watershed Education. Educ. Sci. 2016, 6. [Google Scholar] [CrossRef]
- Vorgrimler, D.; Wübben, D. Die Delphi-Methode und ihre Eignung als Prognoseinstrument. Wirtschaft und Statistik 2003, 8, 763–774. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: New York, NY, USA, 1988; ISBN 9780805802832, 0805802835. [Google Scholar]
- Bortz, J.; Döring, N. Forschungsmethoden und Evaluation: Für Human- und Sozialwissenschaftler, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2002; ISBN 978-3-662-07299-8. [Google Scholar]
- Lenske, G.; Thillmann, H.; Wirth, J.; Dicke, T.; Leutner, D. Pädagogisch-psychologisches Professionswissen von Lehrkräften: Evaluation des ProwiN-Tests. Zeitschrift für Erziehungswissenschaften 2015, 18, 225–245. [Google Scholar] [CrossRef]
- Gordon, T.; Pease, A. RT Delphi: An Efficient, “Round-less” Almost Real Time Delphi Method. Technol. Forecast. Soc. Chang. 2006, 73, 321–333. [Google Scholar] [CrossRef]
Working Areas (Age Groups) | |
---|---|
University | ESD—Geography Education (41–50), Geography Education (41–50), Geography Education (41–50), Biology Education (41–50), Biology and Geography Education (51–60), Science Education (31–40), Political Science Education (41–50) |
Biology (51–60) 2, Plant Ecology (>60) 2, Paleoecology and Botany (51–60) | |
Peatlands and Paleoecology (>60) 2, Climatology (41–50) | |
Soil Science (51–60), Agroecology (21–30) 1, −2, Agroecology (31–40), Agroecology (>60) 2, Agricultural Economics (41–50) | |
Human Geography—Sustainable Resource Use (51–60) | |
Risk and Sustainability Research (41–50) | |
Non-university Institutions | Research Institute: Greenhouse gas emissions of organic soils, policy advice in the field of climate-friendly use of organic soil (31–40) |
Professional Association: Representative of beekeepers (>60) 1 Ministry of Environment: Conservation management (peatland protection) (41–50), protection of species (31–40) 1 |
Solution Strategies Regarding Insects and Pollination | SD Effectivity (Mean Across Fields of Action) | Fields of Action | Overarching Topic | ||||||
---|---|---|---|---|---|---|---|---|---|
Sustainable Land Use | Ecosystem Services | Biodiversity Conservation | |||||||
M | SD | M | SD | M | SD | M | SD | ||
IP-1 Align the breeding of honeybees for resistance to disease and parasites. | 2.21 | 0.55 | 1.87 | 0.85 | 2.85 | 0.70 | 1.91 | 0.76 | Research for sustainable development |
IP-2 Individuals ask in petitions to introduce bee-friendly laws. | 2.23 | 0.71 | 2.14 | 0.82 | 2.24 | 0.78 | 2.31 | 0.85 | Environmental policy |
IP-3 Include contents of pollinator respective bee-related problems in curricula for schools, environment-related vocational training, and university studies. | 2.54 | 1.00 | 2.25 | 1.03 | 2.41 | 1.09 | 2.69 | 0.97 | Education for sustainable development |
IP-4 The government provides financial incentives for using bee-friendly bloomers as biomass in biogas power stations. | 2.71 | 0.74 | 2.68 | 0.96 | 2.68 | 0.69 | 2.77 | 0.66 | Agricultural policy |
IP-5 Support pollinator-friendly agriculture by purchasing ecologically produced products. | 2.93 | 0.71 | 2.88 | 0.68 | 3.00 | 0.78 | 2.93 | 0.85 | Sustainable consumption |
IP-6 The legislator prohibits application of neonicotinoids. | 3.11 | 0.82 | 3.03 | 1.04 | 3.03 | 0.81 | 3.27 | 0.81 | Environmental/agricultural policy |
IP-7 Farmers reduce their use of pesticides and fertilizers. | 3.48 | 0.56 | 3.56 | 0.60 | 3.31 | 0.66 | 3.58 | 0.68 | Sustainable production |
IP-8 Realign agricultural subsidies to stop promoting conventional and intensive agriculture. | 3.55 | 0.42 | 3.77 | 0.44 | 3.42 | 0.60 | 3.47 | 0.52 | Agricultural policy, sustainable production |
IP-9 Design a cultural landscape to serve pollinators as food source and habitat. | 3.62 | 0.37 | 3.60 | 0.51 | 3.42 | 0.60 | 3.85 | 0.37 | Sustainable management, diversity of species |
IP-10 Strengthen the protection of wild bees and other pollinating insects. | 3.71 | 0.51 | 3.49 | 0.88 | 3.78 | 0.43 | 3.86 | 0.36 | Diversity of species, sustainable manage ment/production, environmental policy |
Solution Strategies Regarding Peatland Use | SD Effectivity (Mean Across Fields of Action) | Fields of Action | Overarching Topic | ||||||
---|---|---|---|---|---|---|---|---|---|
Sustainable Land Use | Ecosystem Services | Climate Protection | |||||||
M | SD | M | SD | M | SD | M | SD | ||
PU-1 After rewetting of intensively agricultural used peatlands, farmers grow moisture-loving plants, e.g., reed. | 2.54 | 0.81 | 2.75 | 0.96 | 2.19 | 0.91 | 2.69 | 0.92 | Sustainable management/production |
PU-2 Individuals purchase products only from sustainable peat extraction. | 2.69 | 0.87 | 2.78 | 0.95 | 2.61 | 0.88 | 2.69 | 0.96 | Sustainable consumption |
PU-3 Inform the public more intensively about the important role of peatlands, e.g., via media or educational projects. | 2.70 | 0.75 | 2.75 | 0.71 | 2.57 | 0.85 | 2.78 | 0.86 | Education for sustainable development |
PU-4 Allow companies to incorporate CO2 savings from peatland conservation into the EU emissions trading. | 2.97 | 0.69 | 3.11 | 0.80 | 2.88 | 0.82 | 2.92 | 0.68 | Environmental policy |
PU-5 Investigate cultivation methods that preserve peatlands to apply them on agricultural-used peatlands. | 2.98 | 0.55 | 3.09 | 0.67 | 2.91 | 0.64 | 2.94 | 0.60 | Research for SD, sustainable management |
PU-6 Cultivate peatlands without fertilizers and pesticides. | 2.98 | 0.92 | 3.20 | 0.92 | 3.08 | 0.87 | 2.67 | 1.20 | Sustainable production |
PU-7 Raise the water level of dehydrated peatlands to the water level of intact, near-nature peatlands. | 3.23 | 0.62 | 3.08 | 0.82 | 3.13 | 0.87 | 3.48 | 0.77 | Sustainable management |
PU-8 Intensify the investigation of regenerative peat substitutes. | 3.26 | 0.71 | 3.34 | 0.69 | 3.13 | 0.86 | 3.31 | 0.76 | Research for sustainable development |
PU-9 Apply existing lawsstricter, e.g., prohibit the converting of grassland into maize cultivation. | 3.27 | 0.69 | 3.50 | 0.71 | 3.28 | 0.65 | 3.03 | 0.97 | Agricultural policy |
PU-10 Provide agricultural subsidies only for sustainably managed peatlands. | 3.50 | 0.64 | 3.64 | 0.64 | 3.39 | 0.72 | 3.47 | 0.71 | Environmental policy |
Insects and Pollination | Peatland Use | ||||||
---|---|---|---|---|---|---|---|
Item | rmANOVA | p | Partial η² | Item | rmANOVA | p | Partial η² |
IP-1 | F (2, 36) = 11.73 | 0.001 | 0.395 | PU-1 1 | F (1.47, 26.36) = 3.23 | 0.069 | 0.152 |
IP-2 1 | F (1.33, 24.00) = 0.262 | 0.681 | 0.014 | PU-2 1 | F (1.47, 26.52) = 0.869 | 0.400 | 0.046 |
IP-3 | F (2, 36) = 3.60 | 0.038 | 0.167 | PU-3 | F (2, 38) = 2.08 | 0.139 | 0.099 |
IP-4 1 | F (1.47, 26.48) = 0.655 | 0.483 | 0.035 | PU-4 | F (2, 38) = 0.903 | 0.414 | 0.045 |
IP-5 | F (2, 36) = 0.486 | 0.619 | 0.026 | PU-5 1 | F (1.55, 29.44) = 0.719 | 0.462 | 0.036 |
IP-6 | F (2, 36) = 2.22 | 0.124 | 0.110 | PU-6 | F (2, 38) = 7.39 | 0.002 | 0.280 |
IP-7 | F (2, 36) = 2.73 | 0.079 | 0.132 | PU-7 1 | F (1.45, 27.55) = 2.06 | 0.156 | 0.098 |
IP-8 | F (2, 36) = 5.27 | 0.010 | 0.226 | PU-8 | F (2, 36) = 2.52 | 0.095 | 0.123 |
IP-9 | F (2, 36) = 5.90 | 0.006 | 0.247 | PU-9 | F (2, 38) = 5.47 | 0.008 | 0.224 |
IP-10 | F (2, 36) = 5.85 | 0.006 | 0.245 | PU-10 1 | F (1.38, 26.15) = 2.87 | 0.091 | 0.131 |
Sustainable Land Use | Ecosystem Services | Biodiversity Conservation | Climate Protection | |||||
---|---|---|---|---|---|---|---|---|
Insects and pollination | 0.838 | 0.800 * | 0.887 | 0.874 * | 0.758 | 0.734 * | ||
Peatland use | 0.572 | 0.456 * | 0.763 | 0.727 * | 0.764 | 0.726 * | ||
(0.633) | (0.513) * | (0.714) * | (0.780) | |||||
Both contexts | 0.852 | 0.810 * | 0.906 | 0.889 * |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richter-Beuschel, L.; Grass, I.; Bögeholz, S. How to Measure Procedural Knowledge for Solving Biodiversity and Climate Change Challenges. Educ. Sci. 2018, 8, 190. https://doi.org/10.3390/educsci8040190
Richter-Beuschel L, Grass I, Bögeholz S. How to Measure Procedural Knowledge for Solving Biodiversity and Climate Change Challenges. Education Sciences. 2018; 8(4):190. https://doi.org/10.3390/educsci8040190
Chicago/Turabian StyleRichter-Beuschel, Lisa, Ingo Grass, and Susanne Bögeholz. 2018. "How to Measure Procedural Knowledge for Solving Biodiversity and Climate Change Challenges" Education Sciences 8, no. 4: 190. https://doi.org/10.3390/educsci8040190
APA StyleRichter-Beuschel, L., Grass, I., & Bögeholz, S. (2018). How to Measure Procedural Knowledge for Solving Biodiversity and Climate Change Challenges. Education Sciences, 8(4), 190. https://doi.org/10.3390/educsci8040190