Hyperelliptic Functions and Motion in General Relativity
Abstract
1. Introduction
2. Geodesic Motion around Black Holes
3. Hyperelliptic Integrals
4. Examples for Geodesic Motion
4.1. Higher Dimensional Schwarzschild Black Holes
4.2. Rotating Dyonic Black Holes
4.3. Black Rings
- 1.
- : This special case describes zero energy null geodesics, which are realistic inside the ergoregion only.
- 2.
- : This case describes geodesics in the equatorial plane of the black ring, which is also the “axis” of rotation in -direction. The equatorial plane can be divided into two parts: The plane enclosed by the black ring and the plane around the black ring
- 3.
- : Here geodesics on the “axis” of rotation in -direction are considered. The case describes a plane between two spheres which represent the horizon of the black ring.
- 1.
- (which implies and ): This case represents the motion of photons or particles around an uncharged doubly spinning black ring.
- 2.
- : In this case the motion of photons around a charged doubly spinning black ring is described.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashby, N. Relativity in the Global Positioning System. Living Rev. Relativ. 2003, 6, 1–42. [Google Scholar] [CrossRef] [PubMed]
- Will, C.M. Theory and Experiment in Gravitational Physics; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Oppenheimer, J.R.; Snyder, H. On Continued gravitational contraction. Phys. Rev. 1939, 56, 455–459. [Google Scholar] [CrossRef]
- Penrose, R. Gravitational collapse and space-time singularities. Phys. Rev. Lett. 1965, 14, 57–59. [Google Scholar] [CrossRef]
- Penrose, R. Gravitational collapse: The role of general relativity. Riv. Nuovo Cim. 1969, 1, 252–276. [Google Scholar]
- Penrose, R. "Golden Oldie": Gravitational collapse: The role of general relativity. Gen. Rel. Grav. 2002, 34, 1141–1165. [Google Scholar] [CrossRef]
- Webster, B.L.; Murdin, P. Cygnus X-1-a Spectroscopic Binary with a Heavy Companion? Nature 1972, 235, 37–38. [Google Scholar] [CrossRef]
- Bolton, C.T. Dimensions of the Binary System HDE 226868 = Cygnus X-1. Nat. Phys. Sci. 1972, 240, 124–127. [Google Scholar] [CrossRef]
- Kormendy, J.; Richstone, D. Inward bound: The Search for supermassive black holes in galactic nuclei. Ann. Rev. Astron. Astrophys. 1995, 33, 581. [Google Scholar] [CrossRef]
- Eckart, A.; Genzel, R. Observations of stellar proper motions near the Galactic Centre. Nature 1996, 383, 415–417. [Google Scholar] [CrossRef]
- Ghez, A.M.; Klein, B.L.; Morris, M.; Becklin, E.E. High proper motion stars in the vicinity of Sgr A*: Evidence for a supermassive black hole at the center of our galaxy. Astrophys. J. 1998, 509, 678–686. [Google Scholar] [CrossRef]
- Celotti, A.; Miller, J.C.; Sciama, D.W. Astrophysical evidence for the existence of black holes: Topical review. Class. Quant. Grav. 1999, 16, A3. [Google Scholar] [CrossRef]
- Ferrarese, L.; Ford, H. Supermassive black holes in galactic nuclei: Past, present and future research. Space Sci. Rev. 2005, 116, 523–624. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1. [Google Scholar] [CrossRef]
- Hagihara, Y. Theory of the Relativistic Trajectories in a Gravitational Field of Schwarzschild. Jpn. J. Astron. Geophys. 1931, 8, 67. [Google Scholar]
- Carter, B. Global structure of the Kerr family of gravitational fields. Phys. Rev. 1968, 174, 1559–1571. [Google Scholar] [CrossRef]
- Bardeen, J. Timelike and null geodesics in the Kerr metric. In Black Holes; DeWitt, C., DeWitt, B., Eds.; Gordon and Breach: New York, NY, USA, 1973; p. 215. [Google Scholar]
- Chandrasekhar, S. The Mathematical Theory of Black Holes; Clarendon Press: Oxford, UK, 1985. [Google Scholar]
- Perlick, V. Gravitational lensing from a spacetime perspective. Living Rev. Rel. 2004, 7, 9. [Google Scholar]
- Kraniotis, G.V. Periapsis and gravitomagnetic precessions of stellar orbits in Kerr and Kerr-de Sitter black hole spacetimes. Class. Quant. Grav. 2007, 24, 1775–1808. [Google Scholar] [CrossRef]
- Kagramanova, V.; Kunz, J.; Hackmann, E.; Lämmerzahl, C. Analytic treatment of complete and incomplete geodesics in Taub-NUT space-times. Phys. Rev. D 2010, 81, 124044. [Google Scholar] [CrossRef]
- Grunau, S.; Kagramanova, V. Geodesics of electrically and magnetically charged test particles in the Reissner-Nordström space-time: Analytical solutions. Phys. Rev. D 2011, 83, 044009. [Google Scholar] [CrossRef]
- Hackmann, E.; Hartmann, B.; Lämmerzahl, C.; Sirimachan, P. Test particle motion in the space-time of a Kerr black hole pierced by a cosmic string. Phys. Rev. D 2010, 82, 044024. [Google Scholar] [CrossRef]
- Kraniotis, G.V. Precise analytic treatment of Kerr and Kerr-(anti) de Sitter black holes as gravitational lenses. Class. Quant. Grav. 2011, 28, 085021. [Google Scholar] [CrossRef]
- Kagramanova, V.; Reimers, S. Analytic treatment of geodesics in five-dimensional Myers-Perry space–times. Phys. Rev. D 2012, 86, 084029. [Google Scholar] [CrossRef]
- Hackmann, E.; Xu, H. Charged particle motion in Kerr-Newmann space-times. Phys. Rev. D 2013, 87, 124030. [Google Scholar] [CrossRef]
- Diemer, V.; Smolarek, E. Dynamics of test particles in thin-shell wormhole spacetimes. Class. Quant. Grav. 2013, 30, 175014. [Google Scholar] [CrossRef]
- Diemer, V.; Kunz, J. Supersymmetric rotating black hole spacetime tested by geodesics. Phys. Rev. D 2014, 89, 084001. [Google Scholar] [CrossRef]
- Grunau, S.; Khamesra, B. Geodesic motion in the (rotating) black string spacetime. Phys. Rev. D 2013, 87, 124019. [Google Scholar] [CrossRef]
- Grenzebach, A.; Perlick, V.; Lämmerzahl, C. Photon Regions and Shadows of Kerr-Newman-NUT Black Holes with a Cosmological Constant. Phys. Rev. D 2014, 89, 124004. [Google Scholar] [CrossRef]
- Diemer, V.; Kunz, J.; Lämmerzahl, C.; Reimers, S. Dynamics of test particles in the general five-dimensional Myers-Perry spacetime. Phys. Rev. D 2014, 89, 124026. [Google Scholar] [CrossRef]
- Flathmann, K.; Grunau, S. Analytic solutions of the geodesic equation for Einstein-Maxwell-dilaton-axion black holes. Phys. Rev. D 2015, 92, 104027. [Google Scholar] [CrossRef]
- Kraniotis, G.V. Gravitational lensing and frame dragging of light in the Kerr-Newman and the Kerr-Newman-(anti) de Sitter black hole spacetimes. Gen. Rel. Grav. 2014, 46, 1818. [Google Scholar] [CrossRef]
- Kraniotis, G. Gravitational lensing and frame dragging of light in the Kerr-Newman and the Kerr-Newman-(anti) de Sitter black hole spacetimes. Proc. Sci. 2015, PLANCK2015, 073. [Google Scholar] [CrossRef][Green Version]
- Paranjape, S.; Reimers, S. Dynamics of test particles in the five-dimensional, charged, rotating Einstein-Maxwell-Chern-Simons spacetime. Phys. Rev. D 2016, 94, 124003. [Google Scholar] [CrossRef]
- Grunau, S.; Neumann, H.; Reimers, S. Geodesic motion in the five-dimensional Myers-Perry-AdS spacetime. Phys. Rev. D 2018, 97, 044011. [Google Scholar] [CrossRef]
- Eickhoff, K.; Reimers, S. Dynamics of test particles in the five-dimensional Gödel spacetime. Phys. Rev. D 2018, 98, 044050. [Google Scholar] [CrossRef]
- Willenborg, F.; Grunau, S.; Kleihaus, B.; Kunz, J. Geodesic motion around traversable wormholes supported by a massless conformally-coupled scalar field. Phys. Rev. D 2018, 97, 124002. [Google Scholar] [CrossRef]
- Drawer, J.C.; Grunau, S. Geodesic motion around a supersymmetric AdS5 black hole. Eur. Phys. J. C 2020, 80, 536. [Google Scholar] [CrossRef]
- Baker, H.M. Abelian Functions: Abel’s Theorem and the Allied Theory of Theta Functions; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Kraniotis, G.V.; Whitehouse, S.B. Exact calculation of the perihelion precession of mercury in general relativity, the cosmological constant and jacobi’s inversion problem. Class. Quant. Grav. 2003, 20, 4817–4835. [Google Scholar] [CrossRef]
- Kraniotis, G.V. Precise relativistic orbits in Kerr and Kerr–(anti) de Sitter spacetimes. Class. Quant. Grav. 2004, 21, 4743–4769. [Google Scholar] [CrossRef]
- Kraniotis, G.V. Frame-dragging and bending of light in Kerr and Kerr-(anti) de Sitter spacetimes. Class. Quant. Grav. 2005, 22, 4391–4424. [Google Scholar] [CrossRef]
- Enolski, V.; Pronine, M.; Richter, P.H. Double Pendulum and θ-Divisor. J. Nonlinear Sci. 2003, 13, 157–174. [Google Scholar] [CrossRef]
- Hackmann, E.; Lämmerzahl, C. Complete Analytic Solution of the Geodesic Equation in Schwarzschild- (Anti-) de Sitter Spacetimes. Phys. Rev. Lett. 2008, 100, 171101. [Google Scholar] [CrossRef]
- Hackmann, E.; Lämmerzahl, C. Geodesic equation in Schwarzschild- (anti-) de Sitter space-times: Analytical solutions and applications. Phys. Rev. D 2008, 78, 024035. [Google Scholar] [CrossRef]
- Hackmann, E.; Kagramanova, V.; Kunz, J.; Lämmerzahl, C. Analytic solutions of the geodesic equation in higher dimensional static spherically symmetric space-times. Phys. Rev. D 2008, 78, 124018. [Google Scholar] [CrossRef]
- Hackmann, E.; Kagramanova, V.; Kunz, J.; Lämmerzahl, C. Analytic solutions of the geodesic equation in axially symmetric space-times. EPL 2009, 88, 30008. [Google Scholar] [CrossRef]
- Hackmann, E.; Lämmerzahl, C.; Kagramanova, V.; Kunz, J. Analytical solution of the geodesic equation in Kerr-(anti) de Sitter space-times. Phys. Rev. D 2010, 81, 044020. [Google Scholar] [CrossRef]
- Enolski, V.; Hackmann, E.; Kagramanova, V.; Kunz, J.; Lämmerzahl, C. Inversion of hyperelliptic integrals of arbitrary genus with application to particle motion in General Relativity. J. Geom. Phys. 2011, 61, 899–921. [Google Scholar] [CrossRef]
- Enolski, V.; Hartmann, B.; Kagramanova, V.; Kunz, J.; Lämmerzahl, C.; Sirimachan, P. Inversion of a general hyperelliptic integral and particle motion in Hořava–Lifshitz black hole space-times. J. Math. Phys. 2012, 53, 012504. [Google Scholar] [CrossRef]
- Walker, M.; Penrose, R. On quadratic first integrals of the geodesic equations for type [22] spacetimes. Commun. Math. Phys. 1970, 18, 265–274. [Google Scholar] [CrossRef]
- Tangherlini, F.R. Schwarzschild field in n dimensions and the dimensionality of space problem. Nuovo Cim. 1963, 27, 636–651. [Google Scholar] [CrossRef]
- Myers, R.C.; Perry, M.J. Black Holes in Higher Dimensional Space-Times. Ann. Phys. 1986, 172, 304. [Google Scholar] [CrossRef]
- Frolov, V.P.; Stojkovic, D. Quantum radiation from a five-dimensional rotating black hole. Phys. Rev. D 2003, 67, 084004. [Google Scholar] [CrossRef]
- Frolov, V.P.; Stojkovic, D. Particle and light motion in a space-time of a five-dimensional rotating black hole. Phys. Rev. D 2003, 68, 064011. [Google Scholar] [CrossRef]
- Page, D.N.; Kubiznak, D.; Vasudevan, M.; Krtous, P. Complete integrability of geodesic motion in general Kerr-NUT-AdS spacetimes. Phys. Rev. Lett. 2007, 98, 061102. [Google Scholar] [CrossRef] [PubMed]
- Kubiznak, D.; Frolov, V.P. Hidden Symmetry of Higher Dimensional Kerr-NUT-AdS Spacetimes. Class. Quant. Grav. 2007, 24, F1–F6. [Google Scholar] [CrossRef]
- Matsutani, S.; Previato, E. Jacobi inversion on strata of the Jacobian of the Crs curve yr = f(x). J. Math. Soc. Jpn. 2008, 60, 1009–1044. [Google Scholar] [CrossRef]
- Ônishi, Y. Complex Multiplication Formulae for Hyperelliptic Curves of Genus Three. Tokyo J. Math. 1998, 21, 381–431. [Google Scholar] [CrossRef]
- Mumford, D. Tata Lectures on Theta, Vol. I and II; Birkhäuser: Boston, MA, USA, 1983. [Google Scholar]
- Chow, D.D.K.; Compère, G. Dyonic AdS black holes in maximal gauged supergravity. Phys. Rev. D 2014, 89, 065003. [Google Scholar] [CrossRef]
- Flathmann, K.; Grunau, S. Analytic solutions of the geodesic equation for U(1)2 dyonic rotating black holes. Phys. Rev. D 2016, 94, 124013. [Google Scholar] [CrossRef]
- Emparan, R.; Reall, H.S. A Rotating black ring solution in five-dimensions. Phys. Rev. Lett. 2002, 88, 101101. [Google Scholar] [CrossRef]
- Pomeransky, A.A.; Sen’kov, R.A. Black ring with two angular momenta. arXiv 2006, arXiv:hep-th/0612005. [Google Scholar]
- Elvang, H. A Charged rotating black ring. Phys. Rev. D 2003, 68, 124016. [Google Scholar] [CrossRef]
- Hoskisson, J. A Charged Doubly Spinning Black Ring. Phys. Rev. D 2009, 79, 104022. [Google Scholar] [CrossRef]
- Grunau, S.; Kagramanova, V.; Kunz, J.; Lämmerzahl, C. Geodesic Motion in the Singly Spinning Black Ring Spacetime. Phys. Rev. D 2012, 86, 104002. [Google Scholar] [CrossRef]
- Grunau, S.; Kagramanova, V.; Kunz, J. Geodesic Motion in the (Charged) Doubly Spinning Black Ring Spacetime. Phys. Rev. D 2013, 87, 044054. [Google Scholar] [CrossRef]
- García, A.; Hackmann, E.; Kunz, J.; Lämmerzahl, C.; Macías, A. Motion of test particles in a regular black hole space–time. J. Math. Phys. 2015, 56, 032501. [Google Scholar] [CrossRef]
- Hackmann, E.; Lämmerzahl, C.; Obukhov, Y.N.; Puetzfeld, D.; Schaffer, I. Motion of spinning test bodies in Kerr spacetime. Phys. Rev. D 2014, 90, 064035. [Google Scholar] [CrossRef]
- Hendi, S.H.; Tavakkoli, A.M.; Panahiyan, S.; Eslam Panah, B.; Hackmann, E. Simulation of geodesic trajectory of charged BTZ black holes in massive gravity. Eur. Phys. J. C 2020, 80, 524. [Google Scholar] [CrossRef]
- Grunau, S.; Kruse, M. Motion of charged particles around a scalarized black hole in Kaluza-Klein theory. Phys. Rev. D 2020, 101, 024051. [Google Scholar] [CrossRef]
- Soroushfar, S.; Saffari, R.; Kazempour, S.; Grunau, S.; Kunz, J. Detailed study of geodesics in the Kerr-Newman-(A)dS spacetime and the rotating charged black hole spacetime in f(R) gravity. Phys. Rev. D 2016, 94, 024052. [Google Scholar] [CrossRef]
- Hoseini, B.; Saffari, R.; Soroushfar, S.; Kunz, J.; Grunau, S. Analytic treatment of complete geodesics in a static cylindrically symmetric conformal spacetime. Phys. Rev. D 2016, 94, 044021. [Google Scholar] [CrossRef]
- Flathmann, K.; Wassermann, N. Geodesic equations for particles and light in the black spindle spacetime. J. Math. Phys. 2020, 61, 122504. [Google Scholar] [CrossRef]
- Chatterjee, A.K.; Flathmann, K.; Nandan, H.; Rudra, A. Analytic solutions of the geodesic equation for Reissner-Nordström–(anti–)de Sitter black holes surrounded by different kinds of regular and exotic matter fields. Phys. Rev. D 2019, 100, 024044. [Google Scholar] [CrossRef]
- Kehagias, A.; Sfetsos, K. The Black hole and FRW geometries of non-relativistic gravity. Phys. Lett. B 2009, 678, 123–126. [Google Scholar] [CrossRef]
- Lü, H.; Mei, J.; Pope, C.N. Solutions to Horava Gravity. Phys. Rev. Lett. 2009, 103, 091301. [Google Scholar] [CrossRef]
- Park, M. The Black Hole and Cosmological Solutions in IR modified Horava Gravity. JHEP 2009, 09, 123. [Google Scholar] [CrossRef]
- Boulware, D.G.; Deser, S. String Generated Gravity Models. Phys. Rev. Lett. 1985, 55, 2656. [Google Scholar] [CrossRef] [PubMed]
- Enolskii, V.; Hartmann, B.; Kagramanova, V.; Kunz, J.; Lämmerzahl, C.; Sirimachan, P. Particle motion in Horava-Lifshitz black hole space-times. Phys. Rev. D 2011, 84, 084011. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grunau, S.; Kunz, J. Hyperelliptic Functions and Motion in General Relativity. Mathematics 2022, 10, 1958. https://doi.org/10.3390/math10121958
Grunau S, Kunz J. Hyperelliptic Functions and Motion in General Relativity. Mathematics. 2022; 10(12):1958. https://doi.org/10.3390/math10121958
Chicago/Turabian StyleGrunau, Saskia, and Jutta Kunz. 2022. "Hyperelliptic Functions and Motion in General Relativity" Mathematics 10, no. 12: 1958. https://doi.org/10.3390/math10121958
APA StyleGrunau, S., & Kunz, J. (2022). Hyperelliptic Functions and Motion in General Relativity. Mathematics, 10(12), 1958. https://doi.org/10.3390/math10121958