A Reverse Hardy–Hilbert’s Inequality Containing Multiple Parameters and One Partial Sum
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Equivalent Forms and Some Particular Inequalities
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hardy, G.H.; Littlewood, J.E.; Polya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1934. [Google Scholar]
- Krnić, M.; Pečarić, J. Extension of Hilbert’s inequality. J. Math. Anal. Appl. 2006, 324, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Wu, S.; Chen, Q. A new extension of Hardy-Hilbert’s inequality containing kernel of double power functions. Mathematics 2020, 8, 894. [Google Scholar] [CrossRef]
- Adiyasuren, V.; Batbold, T.; Azar, L.E. A new discrete Hilbert-type inequality involving partial sums. J. Inequal. Appl. 2019, 2019, 127. [Google Scholar] [CrossRef]
- Liao, J.; Wu, S.; Yang, B. A multiparameter Hardy-Hilbert-type inequality containing partial sums as the terms of series. J. Math. 2021, 2021, 5264623. [Google Scholar] [CrossRef]
- Yang, B.; Wu, S.; Huang, X. A reverse Hardy-Hilbert’s inequality involving one partial sum as the terms of double series. J. Funct. Spaces 2022, 2022, 2175463. [Google Scholar] [CrossRef]
- Wang, A.; Hong, Y.; Yang, B. On a new half-discrete Hilbert-type inequality with the multiple upper limit function and the partial sums. J. Appl. Anal. Comput. 2022, 12, 814–830. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, B. A reverse Hardy–Hilbert-type integral inequality involving one derivative function. J. Inequal. Appl. 2020, 2020, 259. [Google Scholar] [CrossRef]
- Yang, B.C. The Norm of Operator and Hilbert-Type Inequalities; Science Press: Beijing, China, 2009. [Google Scholar]
- Hong, Y.; Wen, Y. A necessary and sufficient condition of that Hilbert type series inequality with homogeneous kernel has the best constant factor. Ann. Math. 2016, 37, 329–336. [Google Scholar]
- Hong, Y. On the structure character of Hilbert’s type integral inequality with homogeneous kernel and application. J. Jilin Univ. 2017, 55, 189–194. [Google Scholar]
- Liu, Q. On a mixed Kernel Hilbert-type integral inequality and its operator expressions with norm. Math. Meth. Appl. Sci. 2021, 44, 593–604. [Google Scholar] [CrossRef]
- Yang, L.; Yang, R. Some new Hardy-Hilbert-type inequalities with multiparameters. AIMS Math. 2022, 7, 840–854. [Google Scholar] [CrossRef]
- Kuang, J.C. Applied Inequalities; Shangdong Science and Technology Press: Jinan, China, 2004. [Google Scholar]
- Kuang, J.C. Real and Functional Analysis; Higher Education Press: Beijing, China, 2015. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Wu, S.; Huang, X. A Reverse Hardy–Hilbert’s Inequality Containing Multiple Parameters and One Partial Sum. Mathematics 2022, 10, 2362. https://doi.org/10.3390/math10132362
Yang B, Wu S, Huang X. A Reverse Hardy–Hilbert’s Inequality Containing Multiple Parameters and One Partial Sum. Mathematics. 2022; 10(13):2362. https://doi.org/10.3390/math10132362
Chicago/Turabian StyleYang, Bicheng, Shanhe Wu, and Xingshou Huang. 2022. "A Reverse Hardy–Hilbert’s Inequality Containing Multiple Parameters and One Partial Sum" Mathematics 10, no. 13: 2362. https://doi.org/10.3390/math10132362
APA StyleYang, B., Wu, S., & Huang, X. (2022). A Reverse Hardy–Hilbert’s Inequality Containing Multiple Parameters and One Partial Sum. Mathematics, 10(13), 2362. https://doi.org/10.3390/math10132362