Hyers–Ulam Stability of Order k for Euler Equation and Euler–Poisson Equation in the Calculus of Variations
Abstract
:1. Introduction
2. Hyers–Ulam Stability of Euler’s Equation
- (1)
- (2)
3. Hyers–Ulam Stability of the Euler–Poisson Equation
- (1)
- (2)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ulam, S.M. A Collection of Mathematical Problems; Interscience: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obloza, M. Hyers stability of the linear differential equation. Rocz. Nauk-Dydakt. Pr. Mat. 1993, 13, 259–270. [Google Scholar]
- Alsina, C.; Ger, R. On some inequalities and stability results related to exponential function. J. Inequal. Appl. 1998, 2, 373–380. [Google Scholar] [CrossRef]
- Takahasi, S.E.; Takagi, H.; Miura, T.; Miyajima, S. The Hyers-Ulam stability constant of first order linear differential operators. J. Math. Anal. Appl. 2004, 296, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.-M. Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 2004, 17, 1135–1140. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.-M. Hyers-Ulam stability of linear differential equations of first order, II. Appl. Math. Lett. 2006, 19, 854–858. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.-M. Hyers-Ulam stability of linear differential equations of first order, III. J. Math. Anal. Appl. 2005, 311, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Brzdek, J.; Popa, D.; Xu, B. Hyers-Ulam stability for linear equations of higher orders. Acta Math. Hung. 2008, 120, 1–8. [Google Scholar] [CrossRef]
- Rezaei, H.; Jung, S.-M.; Rassias, T. Laplace transform and Hyers-Ulam stability of linear differential equations. J. Math. Anal. Appl. 2013, 403, 244–251. [Google Scholar] [CrossRef]
- Alqifiary, Q.; Jung, S.-M. Laplace transform and generalized Hyers-Ulam stability of linear differential equations. Electron. J. Differ. Equ. 2014, 2014, 1–11. [Google Scholar]
- Cimpean, D.S.; Popa, D. On the stability of the linear differential equation of higher order with constant coefficients. Appl. Math. Comput. 2010, 217, 4141–4146. [Google Scholar] [CrossRef]
- Popa, D.; Rasa, I. Hyers-Ulam stability of the linear differential operator with non-constant coefficients. Appl. Math. Comput. 2012, 219, 1562–1568. [Google Scholar]
- Lungu, N.; Rus, I.A. On a functional Volterra-Fredholm integral equation, via Picard operators. J. Math. Ineq. 2009, 41, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Otrocol, D. Ulam stabilities of differential equation with abstract Volterra operator in a Banach space. Nonlinear Funct. Anal. Appl. 2010, 15, 613–619. [Google Scholar]
- Cadariu, L. The generalized Hyers-Ulam stability for a class of the Volterra nonlinear integral equations. Sci. Bull. Politeh. Univ. Timisoara Trans. Math. Phys. 2011, 56, 30–38. [Google Scholar]
- Ngoc, L.T.P.; Long, N.T. On nonlinear Volterra-Hammerstein integral equation in two variables. Acta Math. Sci. 2013, 33B, 484–494. [Google Scholar] [CrossRef]
- Ngoc, L.T.P.; Thuyet, T.M.; Long, N.T. A nonlinear Volterra-Hammerstein integral equation in three variables. Nonlinear Funct. Anal. Appl. 2014, 19, 193–211. [Google Scholar]
- Pachpatte, B.G. On Volterra-Fredholm integral equation in two variables. Demonstr. Math. 2007, 40, 839–852. [Google Scholar] [CrossRef]
- Pachpatte, B.G. On Fredholm type integral equation in two variables. Differ. Equ. Appl. 2009, 1, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Pachpatte, B.G. Volterra integral and integro differential equations in two variables. J. Inequal. Pure Appl. Math. 2009, 10, 108. [Google Scholar]
- Ilea, V.; Otrocol, D. Existence and Uniqueness of the Solution for an Integral Equation with Supremum, via w-Distances. Symmetry 2020, 12, 1554. [Google Scholar] [CrossRef]
- Marian, D.; Ciplea, S.A.; Lungu, N. Ulam-Hyers stability of Darboux-Ionescu problem. Carpatian J. Math. 2021, 37, 211–216. [Google Scholar] [CrossRef]
- Marian, D.; Ciplea, S.A.; Lungu, N. On a functional integral equation. Symmetry. 2021, 13, 1321. [Google Scholar] [CrossRef]
- Prastaro, A.; Rassias, T.M. Ulam stability in geometry of PDE’s. Nonlinear Funct. Anal. Appl. 2003, 8, 259–278. [Google Scholar]
- Jung, S.-M. Hyers-Ulam stability of linear partial differential equations of first order. Appl. Math. Lett. 2009, 22, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.-M.; Lee, K.-S. Hyers-Ulam stability of first order linear partial differential equations with constant coefficients. Math. Inequal. Appl. 2007, 10, 261–266. [Google Scholar] [CrossRef]
- Lungu, N.; Ciplea, S. Ulam-Hyers-Rassias stability of pseudoparabolic partial differential equations. Carpatian J. Math. 2015, 31, 233–240. [Google Scholar] [CrossRef]
- Lungu, N.; Marian, D. Ulam-Hyers-Rassias stability of some quasilinear partial differential equations of first order. Carpathian J. Math. 2019, 35, 165–170. [Google Scholar] [CrossRef]
- Lungu, N.; Popa, D. Hyers-Ulam stability of a first order partial differential equation. J. Math. Anal. Appl. 2012, 385, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Brzdek, J.; Popa, D.; Rasa, I.; Xu, B. Ulam Stability of Operators; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Tripathy, A.K. Hyers-Ulam Stability of Ordinary Differential Equations; Taylor and Francis: Boca Raton, FL, USA, 2021. [Google Scholar]
- Wang, J.; Lv, L.; Zhou, Y. Ulam stability and data dependence for fractional differential equations with Caputo derivative. Electron. J. Qual. Theory Differ. Equ. 2011, 63, 1–10. [Google Scholar] [CrossRef]
- Ibrahim, R.W. Generalized Ulam-Hyers stability for fractional differential equations. Int. J. Math. 2012, 23, 1–99. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lin, Z. Ulam’s Type Stability of Hadamard Type Fractional Integral Equations. Filomat 2014, 28, 1323–1331. [Google Scholar] [CrossRef] [Green Version]
- Abbas, S.; Benchohra, M.; Lagreg, J.E.; Alsaedi, A.; Zhou, Y. Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type. Adv. Differ. Equ. 2017, 2017, 180. [Google Scholar] [CrossRef] [Green Version]
- Benchohra, M.; Lazreg, J.E. Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative. Stud. Univ. Babes-Bolyai Math. 2017, 62, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Tunc, C.; Chen, W.; Khan, A. Existence theorems and Hyers-Ulam stability for a class of hybrid fractional differential equations with p-Laplacian operator. J. Appl. Anal. Comput. 2018, 8, 1211–1226. [Google Scholar] [CrossRef]
- Ameen, R.; Jarad, F.; Abdeljawad, T. Ulam stability for delay fractional differential equations with a generalized Caputo derivative. Filomat 2018, 32, 5265–5274. [Google Scholar] [CrossRef] [Green Version]
- Moharramniaa, A.; Eghbali, N.; Rassias, J.M. Mittag-Leffler-Hyers-Ulam stability of Prabhakar fractional integral equation. Int. J. Nonlinear Anal. Appl. 2021, 12, 25–33. [Google Scholar]
- Wang, S. The Ulam stability of fractional differential Equation with the Caputo-Fabrizio derivative. J. Funct. Spaces 2022, 2022, 7268518. [Google Scholar] [CrossRef]
- Brzdęk, J.; Eghbali, N.; Kalvandi, V. On Ulam Stability of a Generalized Delayed Differential Equation of Fractional Order. Results Math. 2022, 77, 26. [Google Scholar] [CrossRef]
- Marian, D.; Ciplea, S.A.; Lungu, N. Hyers-Ulam Stability of Euler’s Equation in the Calculus of Variations. Mathematics 2021, 9, 3320. [Google Scholar] [CrossRef]
- Krasnov, M.L.; Makarenko, G.I.; Kiselev, A.I. Problems and Exercices in the Calculus of Variations; Mir: Moscow, Russia, 1975. [Google Scholar]
- Stewart, J. Multivariable Calculus: Concepts and Contexts; Brooks/Cole, Cengage Learning: Toronto, ON, Canada, 2010. [Google Scholar]
- Ionescu, D.V. Ecuatii Diferentiale si Integrale; Editura Didactica si Pedagogica: Bucuresti, Romania, 1964. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marian, D.; Ciplea, S.A.; Lungu, N. Hyers–Ulam Stability of Order k for Euler Equation and Euler–Poisson Equation in the Calculus of Variations. Mathematics 2022, 10, 2556. https://doi.org/10.3390/math10152556
Marian D, Ciplea SA, Lungu N. Hyers–Ulam Stability of Order k for Euler Equation and Euler–Poisson Equation in the Calculus of Variations. Mathematics. 2022; 10(15):2556. https://doi.org/10.3390/math10152556
Chicago/Turabian StyleMarian, Daniela, Sorina Anamaria Ciplea, and Nicolaie Lungu. 2022. "Hyers–Ulam Stability of Order k for Euler Equation and Euler–Poisson Equation in the Calculus of Variations" Mathematics 10, no. 15: 2556. https://doi.org/10.3390/math10152556
APA StyleMarian, D., Ciplea, S. A., & Lungu, N. (2022). Hyers–Ulam Stability of Order k for Euler Equation and Euler–Poisson Equation in the Calculus of Variations. Mathematics, 10(15), 2556. https://doi.org/10.3390/math10152556