Monotonicity Results for Nabla Riemann–Liouville Fractional Differences
Abstract
:1. Introduction
- for in Theorem 1.
- for in Theorem 2.
- for in Theorem 3.
2. Preliminaries and a Lemma
3. Main Results
3.1. Monotonicity Results
3.2. Discrete Nabla Fractional and Integer Differences
4. Application: A Specific Example
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atici, F.M.; Atici, M.; Belcher, M.; Marshall, D. A new approach for modeling with discrete fractional equations. Fund. Inform. 2017, 151, 313–324. [Google Scholar]
- Atici, F.; Sengul, S. Modeling with discrete fractional equations. J. Math. Anal. Appl. 2010, 369, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.R.; Bohner, M.; Jia, B.G. Ulam-hyers stability of Caputo fractional difference equations. Math. Meth. Appl. Sci. 2019, 42, 7461–7470. [Google Scholar] [CrossRef]
- Lizama, C. The Poisson distribution, abstract fractional difference equations, and stability. Proc. Amer. Math. Soc. 2017, 145, 3809–3827. [Google Scholar] [CrossRef]
- Silem, A.; Wu, H.; Zhang, D.-J. Discrete rogue waves and blow-up from solitons of a nonisospectral semi-discrete nonlinear Schrödinger equation. Appl. Math. Lett. 2021, 116, 107049. [Google Scholar] [CrossRef]
- Atici, F.M.; Atici, M.; Nguyen, N.; Zhoroev, T.; Koch, G. A study on discrete and discrete fractional pharmacokinetics-pharmacodynamics models for tumor growth and anti-cancer effects. Comput. Math. Biophys. 2019, 7, 10–24. [Google Scholar] [CrossRef] [Green Version]
- Goodrich, C.S. On discrete sequential fractional boundary value problems. J. Math. Anal. Appl. 2012, 385, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, R.A.C.; Torres, D.F.M. Fractional h-difference equations arising from the calculus of variations. Appl. Anal. Discrete Math. 2011, 5, 110–121. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Baleanu, D. Discrete chaos in fractional delayed logistic maps. Nonlinear Dyn. 2015, 80, 1697–1703. [Google Scholar] [CrossRef]
- Srivastava, H.M. An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions. J. Adv. Engrg. Comput. 2021, 5, 135–166. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Goodrich, C.S.; Peterson, A.C. Discrete Fractional Calculus; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Abdeljawad, T. On delta and nabla caputo fractional differences and dual identities. Discrete Dyn. Nat. Soc. 2013, 2013, 12. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Jarad, F.; Atangana, A.; Mohammed, P.O. On a new type of fractional difference operators on h-step isolated time scales. J. Fract. Calc. Nonlinear Syst. 2021, 1, 46–74. [Google Scholar]
- Abdeljawad, T.; Atici, F. On the definitions of nabla fractional operators. Abstr. Appl. Anal. 2012, 2012, 1–13. [Google Scholar] [CrossRef]
- Dahal, R.; Goodrich, C.S. Mixed order monotonicity results for sequential fractional nabla differences. J. Differ. Equ. Appl. 2019, 25, 837–854. [Google Scholar] [CrossRef]
- Du, F.; Jia, B.; Erbe, L.; Peterson, A. Monotonicity and convexity for nabla fractional (q, h)-differences. J. Differ. Equ. Appl. 2016, 22, 1224–1243. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Almutairi, O.; Agarwal, R.P.; Hamed, Y.S. On convexity, monotonicity and positivity analysis for discrete fractional operators defined using exponential kernels. Fractal Fract. 2022, 6, 55. [Google Scholar] [CrossRef]
- Dahal, R.; Goodrich, C.S.; Lyons, B. Monotonicity results for sequential fractional differences of mixed orders with negative lower bound. J. Differ. Equ. Appl. 2021, 27, 1574–1593. [Google Scholar] [CrossRef]
- Goodrich, C.S. A note on convexity, concavity, and growth conditions in discrete fractional calculus with delta difference. Math. Inequal. Appl. 2016, 19, 769–779. [Google Scholar] [CrossRef]
- Goodrich, C.S. A sharp convexity result for sequential fractional delta differences. J. Differ. Equ. Appl. 2017, 23, 1986–2003. [Google Scholar] [CrossRef]
- Dahal, R.; Goodrich, C.S. A monotonicity result for discrete fractional difference operators. Arch. Math. 2014, 102, 293–299. [Google Scholar] [CrossRef]
- Atici, F.; Uyanik, M. Analysis of discrete fractional operators. Appl. Anal. Discrete Math. 2015, 9, 139–149. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T.; Hamasalh, F.K. On discrete delta Caputo-Fabrizio fractional operators and monotonicity analysis. Fractal Fract. 2021, 5, 116. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T.; Hamasalh, F.K. On Riemann–Liouville and Caputo fractional forward difference monotonicity analysis. Mathematics 2021, 9, 1303. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Baleanu, D. Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel. Chaos Solit. Fract. 2017, 116, 1–5. [Google Scholar] [CrossRef]
- Goodrich, C.S.; Lizama, C. Positivity, monotonicity, and convexity for convolution operators. Discrete Contin. Dyn. Syst. 2020, 40, 4961–4983. [Google Scholar] [CrossRef]
- Goodrich, C.S.; Lyons, B. Positivity and monotonicity results for triple sequential fractional differences via convolution. Analysis 2020, 40, 89–103. [Google Scholar] [CrossRef]
- Erbe, L.; Goodrich, C.S.; Jia, B.; Peterson, A. Monotonicity results for delta fractional differences revisited. Math. Slovaca 2017, 67, 895–906. [Google Scholar] [CrossRef]
- Abdeljawad, T. Different type kernel h-fractional differences and their fractional h-sums. Chaos Solit. Fract. 2018, 116, 146–156. [Google Scholar] [CrossRef]
- Liu, X.; Du, F.; Anderson, D.; Jia, B. Monotonicity results for nabla fractional h-difference operators. Math. Meth. Appl. Sci. 2021, 44, 1207–1218. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Al-Mdallal, Q.M.; Hajji, M.A. Arbitrary order fractional difference operators with discrete exponential kernels and applications. Discrete Dyn. Nat. Soc. 2017, 2017, 4149320. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T.; Madjidi, F. Lyapunov-type inequalities for fractional difference operators with discrete Mittag-Leffler kernel of order 2 < α < 5/2. Eur. Phys. J. Spec. Top. 2017, 226, 3355–3368. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, P.O.; Srivastava, H.M.; Baleanu, D.; Jan, R.; Abualnaja, K.M. Monotonicity Results for Nabla Riemann–Liouville Fractional Differences. Mathematics 2022, 10, 2433. https://doi.org/10.3390/math10142433
Mohammed PO, Srivastava HM, Baleanu D, Jan R, Abualnaja KM. Monotonicity Results for Nabla Riemann–Liouville Fractional Differences. Mathematics. 2022; 10(14):2433. https://doi.org/10.3390/math10142433
Chicago/Turabian StyleMohammed, Pshtiwan Othman, Hari Mohan Srivastava, Dumitru Baleanu, Rashid Jan, and Khadijah M. Abualnaja. 2022. "Monotonicity Results for Nabla Riemann–Liouville Fractional Differences" Mathematics 10, no. 14: 2433. https://doi.org/10.3390/math10142433
APA StyleMohammed, P. O., Srivastava, H. M., Baleanu, D., Jan, R., & Abualnaja, K. M. (2022). Monotonicity Results for Nabla Riemann–Liouville Fractional Differences. Mathematics, 10(14), 2433. https://doi.org/10.3390/math10142433