Dynamics of Triple Diffusive Free Convective MHD Fluid Flow: Lie Group Transformation
Abstract
:1. Introduction
2. Mathematical Model and Formulation
3. Scaling Transformations
4. Numerical Results and Discussion
5. Concluding Remarks
- The friction factor rate is enhanced in both fluid flow cases for increases in Lewis numbers and .
- The friction factor coefficient decreases with increases in buoyancy ratio parameters and , but the opposite behavior can be observed for the Nusselt and Sherwood numbers.
- In the assisting flow case, the dimensionless concentration rises as the Lewis number rises; for buoyancy, the opposing flow case also remains the same.
- The magnetic field parameter decreased the velocity distribution by the effect of Lorentz force.
- In both assisting and opposing flow instances, the Prandtl number increases the skin friction coefficient in assisting flow and decreases it in opposing flow in heat and mass transfer rates.
6. Limitations and Future Scope
6.1. Limitations
- The flow was considered as not time-dependent and incompressible.
- The turbulence due to the hematite nanoparticles interaction was neglected.
- Away from the object’s surface, viscous effects can be considered negligible, and potential flow can be assumed.
- The viscosity, conductivity, and density properties were constant.
6.2. Future Scope
- Triple diffusion analysis can include variable viscosity and nonlinear convection flow properties.
- Variable conductivity and unsteady nonlinear flow characteristics of various flow characteristics with chemical species in the triple diffusion process.
- The investigations mentioned above could also be extended by using various techniques, such as mess-free methods, the finite-difference scheme, the spectral element method, the finite element method, the Keller-box method, homotopy analysis, and spectral methods.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rohsenow, W.; Hartnett, J.; Cho, Y. Handbook of Heat Transfer, 3rd ed.; Mcgraw-Hill: New York, NY, USA, 1998; ISBN 9780070535558. [Google Scholar]
- Bird, B.; Stewart, W.; Lightfoot, E.; Edwin, N. Transport Phenomena, 2nd ed.; John Wiley: New York, NY, USA, 2002; p. 895. ISBN 0-471-41077-2. [Google Scholar]
- Animasaun, I.L.; Shah, N.A.; Wakif, A.; Mahanthesh, B.; Sivaraj, R.; Koriko, O.K. Ratio of Momentum Diffusivity to Thermal Diffusivity: Introduction, Meta-Analysis, and Scrutinization, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2022. [Google Scholar]
- Priest, E.R. Solar Magnetohydrodynamics; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Laughlin, D.R. A Magnetohydrodynamic Angular Motion Sensor for Anthropomorphic Test Device Instrumentation. J. Passeng. Cars 1989, 98, 1648–1682. [Google Scholar]
- Jang, J.; Lee, S.S. Theoretical and Experimental Study of MHD (Magnetohydrodynamic) Micropump. Sens. Actuators A Phys. 2000, 80, 84–89. [Google Scholar] [CrossRef]
- Louis, J.; Lothrop, J.; Brogan, T. Fluid Dynamic Studies with a Magnetohydrodynamic Generator. Phys. Fluids 1964, 7, 362–374. [Google Scholar] [CrossRef]
- Massoudi, M.D.; Ben Hamida, M.B.; Almeshaal, M.A. Free Convection and Thermal Radiation of Nanofluid Inside Nonagon Inclined Cavity Containing a Porous Medium Influenced by Magnetic Field with Variable Direction in the Presence of Uniform Heat Generation/Absorption. Int. J. Numer. Methods Heat Fluid Flow 2021, 31, 933–958. [Google Scholar] [CrossRef]
- Dhia Massoudi, M.; Ben Hamida, M.B.; Mohammed, H.A.; Almeshaal, M.A. MHD Heat Transfer in W-Shaped Inclined Cavity Containing a Porous Medium Saturated with Ag/Al2O3 Hybrid Nanofluid in the Presence of Uniform Heat Generation/Absorption. Energies 2020, 13, 3457. [Google Scholar] [CrossRef]
- Koriko, O.K.; Adegbie, K.S.; Shah, N.A.; Animasaun, I.L.; Olotu, M.A. Numerical solutions of the partial differential equations for investigating the significance of partial slip due to lateral velocity and viscous dissipation: The case of blood-gold Carreau nanofluid and dusty fluid. Numer. Methods Partial Differ. Eq. 2021, 1–29. [Google Scholar] [CrossRef]
- He, J.-H.; Lee, E.W.M. New Analytical Methods for Cleaning up the Solution of Nonlinear Equations. Comput. Math. Appl. 2009, 58, 2081–2083. [Google Scholar] [CrossRef] [Green Version]
- Massoudi, M.D.; Ben Hamida, M.B.; Almeshaal, M.A.; Rothan, Y.A.; Hajlaoui, K. Numerical Analysis of Magneto-Natural Convection and Thermal Radiation of SWCNT Nanofluid Inside T-Inverted Shaped Corrugated Cavity Containing Porous Medium. Int. J. Numer. Methods Heat Fluid Flow 2022, 32, 1092–1114. [Google Scholar] [CrossRef]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; The Mathematical Gazette 74(469); Springer: New York, NY, USA, 1989; Volume 81, ISBN 978-1-4757-4309-8. [Google Scholar] [CrossRef]
- Kunzinger, M. An Introduction to Symmetry Group Analysis of Differential Equations. arXiv 2015, arXiv:1506.07131. [Google Scholar]
- Uddin, M.; Khan, W.A.; Ismail, A.I. Scaling Group Transformation for MHD Boundary Layer Slip Flow of A Nanofluid over A Convectively Heated Stretching Sheet with Heat Generation. Math. Probl. Eng. 2012, 2012, 934964. [Google Scholar] [CrossRef]
- Rehman, K.U.; Shatanawi, W.; Abodayeh, K.; Shatnawi, T.A. A Group Theoretic Analysis of Mutual Interactions of Heat and Mass Transfer in a Thermally Slip Semi-Infinite Domain. Appl. Sci. 2022, 12, 2000. [Google Scholar] [CrossRef]
- Ferdows, M.; Uddin, M.J.; Afify, A.A. Scaling Group Transformation for MHD Boundary Layer Free Convective Heat and Mass Transfer Flow Past a Convectively Heated Nonlinear Radiating Stretching Sheet. Int. J. Heat Mass Transf. 2013, 56, 181–187. [Google Scholar] [CrossRef]
- Zeb, S.; Khan, S.; Ullah, Z.; Yousaf, M.; Khan, I.; Alshammari, N.; Alam, N.; Hamadneh, N.N. Lie Group Analysis of Double Diffusive MHD Tangent Hyperbolic Fluid Flow Over a Stretching Sheet. Math. Probl. Eng. 2022, 2022, 9919073. [Google Scholar] [CrossRef]
- Fareo, A.G. A Note on the Transformation of Boundary Value Problems to Initial Value Problems: The Iterative Transformation Method. Appl. Math. Comput. 2022, 415, 126692. [Google Scholar] [CrossRef]
- Hanafi, H.; Shafie, S. Unsteady Free Convection MHD Flow over a Vertical Cone in Porous Media with Variable Heat and Mass Flux in Presence of Chemical Reaction. J. Adv. Res. Fluid Mech. Therm. Sci. 2002, 92, 1–12. [Google Scholar] [CrossRef]
- Shah, N.A.; Zafar, A.A.; Akhtar, S. General solution for MHD-free convection flow over a vertical plate with ramped wall temperature and chemical reaction. Arab. J. Math. 2018, 7, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Zulkiflee, F.; Shafie, S.; Mohamad, A.Q. Radiation Effect on Free Convection Flow between Oscillating Parallel Plates with Mass Diffusion. Malays. J. Fundam. Appl. Sci. 2021, 17, 1–6. [Google Scholar] [CrossRef]
- Dawar, A.; Wakif, A.; Thumma, T.; Shah, N.A. Towards a new MHD non-homogeneous convective nanofluid flow model for simulating a rotating inclined thin layer of sodium alginate-based Iron oxide exposed to incident solar energy. Int. Commun. Heat Mass Transf. 2022, 130, 105800. [Google Scholar] [CrossRef]
- Venkata Ramudu, A.C.; Anantha Kumar, K.; Sugunamma, V.; Sandeep, N. Impact of Soret and Dufour on MHD Casson Fluid Flow Past a Stretching Surface with Convective–Diffusive Conditions. J. Therm. Anal. Calorim. 2022, 147, 2653–2663. [Google Scholar] [CrossRef]
- Fetecau, C.; Shah, N.A.; Vieru, D. General Solutions for Hydromagnetic Free Convection Flow over an Infinite Plate with Newtonian Heating, Mass Diffusion and Chemical Reaction. Commun. Theor. Phys. 2017, 68, 768–782. [Google Scholar] [CrossRef]
- Rayleigh, L. On Convection Currents in a Horizontal Layer of Fluid, When the Higher Temperature is on the Underside. Appl. Math. 2015, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Tarannum, S.; Pranesh, S. Triple Diffusive Convection in Oldroyd-B Liquid. OSR J. Math. 2016, 12, 7–13. [Google Scholar] [CrossRef]
- Rionero, S. Triple Diffusive Convection in Porous Media. Acta Mech. 2013, 224, 447–458. [Google Scholar] [CrossRef]
- Patil, P.M.; Kulkarni, M.; Tonannavar, J.R. A Computational Study of the Triple-Diffusive Non-Linear Convective Nano Liquid Flow Over a Wedge under Convective Boundary Constraints. Int. Commun. Heat Mass Transf. 2021, 128, 105561. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, S.; Zhang, Q. Onset of Triple Diffusive Convection in a Maxwell Fluid Saturated Porous Layer. Appl. Math. Model. 2014, 38, 2345–2352. [Google Scholar] [CrossRef]
- Khan, Z.H.; Culham, J.R.; Khan, W.A.; Pop, I. Triple Convective Diffusion Boundary Layer Along a Vertical Plate in A Porous Medium Saturated by Water-Based Nano Fluid. Int. J. Therm. Sci. 2015, 90, 53–61. [Google Scholar] [CrossRef]
- Ghalambaz, M.; Moattar, F.; Sheremet, M.A.; Pop, I. Triple-Diffusive Natural Convection in a Square Porous Cavity. Transp. Porous Med. 2016, 111, 59–79. [Google Scholar] [CrossRef]
- Kango, S.K.; Sharma, S.; Chadha, K. Triple-Diffusive Convection in a Micropolar Rotating Ferrofluid. Int. J. Technol. 2016, 6, 123–132. [Google Scholar] [CrossRef]
- Mohan, H.; Ram, S. A Characterization Theorem in Hydromagnetic Triply- Diffusive Convection. Pelagia Res. Libr. Adv. Appl. Sci. Res. 2014, 5, 45–51. [Google Scholar]
- Umavathi, J.C.; Ali, H.M.; Patil, S.L. Triple Diffusive Mixed Convection Flow in a Duct Using Convective Boundary Conditions. Math. Methods Appl. Sci. 2020, 43, 9223–9244. [Google Scholar] [CrossRef]
- Khan, Z.H.; Khan, W.A.; Sheremet, M.A. Enhancement of Heat and Mass Transfer Rates through Various Porous Cavities for Triple Convective-Diffusive Free Convection. Energy 2020, 201, 117702. [Google Scholar] [CrossRef]
- Khan, W.; Pop, I. The Cheng-Minkowycz Problem For The Triple-Diffusive Natural Convection Boundary Layer Flow Past A Vertical Plate in a Porous Medium. J. Porous Media 2013, 16, 637–646. [Google Scholar] [CrossRef]
- Archana, M.; Gireesha, B.J.; Prasannakumara, B.C. Triple Diffusive Flow of Casson Nanofluid with Buoyancy Forces and Nonlinear Thermal Radiation over A Horizontal Plate. Arch. Thermodyn. 2019, 40, 49–69. [Google Scholar]
Ferdows et al. [17] | Present Results | |
---|---|---|
1 | 0.9547 | 0.9546 |
2 | 1.4715 | 1.4711 |
3 | 1.8691 | 1.8672 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagendramma, V.; Durgaprasad, P.; Sivakumar, N.; Rao, B.M.; Raju, C.S.K.; Shah, N.A.; Yook, S.-J. Dynamics of Triple Diffusive Free Convective MHD Fluid Flow: Lie Group Transformation. Mathematics 2022, 10, 2456. https://doi.org/10.3390/math10142456
Nagendramma V, Durgaprasad P, Sivakumar N, Rao BM, Raju CSK, Shah NA, Yook S-J. Dynamics of Triple Diffusive Free Convective MHD Fluid Flow: Lie Group Transformation. Mathematics. 2022; 10(14):2456. https://doi.org/10.3390/math10142456
Chicago/Turabian StyleNagendramma, Vellaboyina, Putta Durgaprasad, Narsu Sivakumar, Battina Madhusudhana Rao, Chakravarthula Siva Krishnam Raju, Nehad Ali Shah, and Se-Jin Yook. 2022. "Dynamics of Triple Diffusive Free Convective MHD Fluid Flow: Lie Group Transformation" Mathematics 10, no. 14: 2456. https://doi.org/10.3390/math10142456
APA StyleNagendramma, V., Durgaprasad, P., Sivakumar, N., Rao, B. M., Raju, C. S. K., Shah, N. A., & Yook, S. -J. (2022). Dynamics of Triple Diffusive Free Convective MHD Fluid Flow: Lie Group Transformation. Mathematics, 10(14), 2456. https://doi.org/10.3390/math10142456