Some Remarks on the Divisibility of the Class Numbers of Imaginary Quadratic Fields
Abstract
:1. Introduction
2. Preliminaries
2.1. Being a pth Power
2.2. Result of Y. Bugeaud and T. N. Shorey
3. Main Result
4. Proof of Main Theorem
4.1. Crucial Proposition
4.2. Proof of Theorem 3
4.3. Proof of Theorem 4
5. Numerical Examples
Funding
Conflicts of Interest
References
- Ankeny, N.; Chowla, S. On the divisibility of the class numbers of quad-ratic fields. Pac. J. Math. 1955, 5, 321–324. [Google Scholar] [CrossRef]
- Chakraborty, K.; Hoque, A.; Kishi, Y.; Pandey, P.P. Divisibility of the class numbers of imaginary quadratic fields. J. Number Theory 2018, 185, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Cohn, J.H.E. On the class number of certain imaginary quadratic fields. Proc. Am. Math. Soc. 2002, 130, 1275–1277. [Google Scholar] [CrossRef] [Green Version]
- Gross, B.H.; Rohrlich, D.E. Some results on the Mordell–Weil group of the Jacobian of the Fermat curve. Invent. Math. 1978, 44, 201–224. [Google Scholar] [CrossRef]
- Ishii, K. On the divisibility of the class number of imaginary quadratic fields. Proc. Jpn. Acad. Ser. A 2011, 87, 142–143. [Google Scholar] [CrossRef]
- Ito, A. A note on the divisibility of class numbers of imaginary quadratic fields . Proc. Jpn. Acad. Ser. A 2011, 87, 151–155. [Google Scholar] [CrossRef]
- Ito, A. Remarks on the divisibility of the class numbers of imaginary quad-ratic fields . Glasg. Math. J. 2011, 53, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Ito, A. Notes on the divisibility of the class numbers of imaginary quadratic fields . Abh. Math. Semin. Univ. Hambg. 2015, 85, 1–21. [Google Scholar] [CrossRef]
- Kishi, Y. Note on the divisibility of the class number of certain imaginary quadratic fields. Glasg. Math. J. 2009, 51, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Louboutin, S.R. On the divisibility of the class number of imaginary quadratic number fields. Proc. Am. Math. Soc. 2009, 137, 4025–4028. [Google Scholar] [CrossRef] [Green Version]
- Murty, M.R. The ABC conjecture and exponents of class groups of quadrat-ic fields. Contemp. Math. 1998, 210, 85–95. [Google Scholar]
- Murty, M.R. Exponents of class groups of quadratic fields. In Topics in Number Theory; Mathematics and Its Applications; Kluwer Academic Publishers: University Park, PA, USA; Dordrecht, The Netherlands, 1999; Volume 467, pp. 229–239. [Google Scholar]
- Soundararajan, K. Divisibility of class numbers of imaginary quad-ratic fields. J. Lond. Math. Soc. 2000, 61, 681–690. [Google Scholar] [CrossRef]
- Yamamoto, Y. On unramified Galois extensions of quadratic number fields. Osaka J. Math. 1970, 7, 57–76. [Google Scholar]
- Zhu, M.; Wang, T. The divisibility of the class number of the imaginary quadratic field ). Glasg. Math. J. 2012, 54, 149–154. [Google Scholar]
- Bugeaud, Y.; Shorey, T.N. On the number of solutions of the generalized Ra-manujan–Nagell equation. J. Reine Angew. Math. 2001, 539, 55–74. [Google Scholar]
- Cohn, J.H.E. Square Fibonacci numbers, etc. Fibonacci Quart. 1964, 2, 109–113. [Google Scholar]
- Schmidt, W.M. Equations over Finite Fields, an Elementary Approach; Lecture Notes in Math.; Springer: Berlin, Germany; New York, NY, USA, 1976; Volume 536. [Google Scholar]
- Evertse, J.-H.; Silverman, J.H. Uniform bounds for the number of solutions to Yn = f(X). Math. Proc. Cambridge Philos. Soc. 1986, 100, 237–248. [Google Scholar] [CrossRef]
p | q | d | p | q | d | ||||
---|---|---|---|---|---|---|---|---|---|
7 | 5 | 1 * | 11 | 5 | 27 | ||||
11 | 7 | 18 | 11 | 13 | 12 | ||||
11 | 17 | 1 * | 13 | 5 | 12 | ||||
13 | 7 | 48 | 13 | 11 | 36 | ||||
13 | 17 | 36 | 13 | 19 | 12 | ||||
17 | 5 | 30 | 17 | 7 | 24 | ||||
17 | 11 | 60 | 17 | 13 | 24 | ||||
17 | 19 | 30 | 17 | 23 | 18 | ||||
17 | 29 | 18 | 17 | 31 | 30 | ||||
19 | 5 | 15 | 19 | 7 | 60 | ||||
19 | 11 | 12 | 19 | 13 | 12 | ||||
19 | 17 | 54 | 19 | 23 | 18 | ||||
19 | 29 | 36 | 19 | 31 | 18 | ||||
19 | 37 | 18 | 19 | 41 | 2 * |
p | q | d | p | q | d | ||||
---|---|---|---|---|---|---|---|---|---|
5 | 3 | 16 | 5 | 7 | 16 | ||||
5 | 11 | 8 | 7 | 3 | 32 | ||||
7 | 5 | 48 | 7 | 11 | 8 | ||||
7 | 13 | 8 | 7 | 17 | 32 | ||||
7 | 19 | 16 | 7 | 23 | 16 | ||||
11 | 3 | −14,605 | 80 | 11 | 5 | −14,541 | −14,541 | 64 | |
11 | 7 | −14,445 | 1605 | 16 | 11 | 13 | −13,965 | 16 | |
11 | 17 | −13,485 | −13,485 | 128 | 11 | 19 | −13,197 | −13,197 | 48 |
11 | 23 | −12,525 | 16 | 11 | 29 | −11,277 | −11,277 | 32 | |
11 | 31 | −10,797 | −10,797 | 64 | 11 | 37 | 64 | ||
11 | 41 | 32 | 11 | 43 | 16 | ||||
11 | 47 | 16 | 11 | 53 | 48 | ||||
11 | 59 | 16 |
p | q | d | p | q | d | ||||
---|---|---|---|---|---|---|---|---|---|
3 | 7 | −47 | −47 | 5 | 5 | 3 | −3089 | −3089 | 40 |
5 | 7 | −2929 | −2929 | 40 | 5 | 11 | −2641 | −2641 | 20 |
5 | 13 | −2449 | −2449 | 40 | 5 | 17 | −1969 | −1969 | 20 |
5 | 19 | −1681 | −1 | 1 ** | 5 | 23 | −1009 | −1009 | 20 |
7 | 3 | −16,771 | −16,771 | 40 | 7 | 5 | −16,707 | −16,707 | 20 |
7 | 11 | −16,323 | −16,323 | 30 | 7 | 13 | −16,131 | −16,131 | 40 |
7 | 17 | −15,651 | −1739 | 20 | 7 | 19 | −15,363 | −1707 | 10 |
7 | 23 | −14,691 | −14,691 | 40 | 7 | 29 | −13,443 | −13,443 | 30 |
7 | 31 | −12,963 | −12,963 | 20 | 7 | 37 | −11,331 | −1259 | 15 |
7 | 41 | −10,083 | −10,083 | 20 | 7 | 43 | −9411 | −9411 | 30 |
7 | 47 | −7971 | −7971 | 30 | 7 | 53 | −5571 | −619 | 5 |
7 | 59 | −2883 | −3 | 1 ** | 7 | 61 | −1923 | −1923 | 10 |
p | q | d | p | q | d | ||||
---|---|---|---|---|---|---|---|---|---|
3 | 5 | −629 | −629 | 36 | 3 | 7 | −533 | −533 | 12 |
3 | 11 | −245 | −5 | 2 * | 3 | 13 | −53 | −53 | 6 |
5 | 3 | −15,589 | −15,589 | 72 | 5 | 7 | −15,429 | −15,429 | 96 |
5 | 11 | −15,141 | −309 | 12 | 5 | 13 | −14,949 | −1661 | 48 |
5 | 17 | −14,469 | −14,469 | 96 | 5 | 19 | −14,181 | −14,181 | 96 |
5 | 23 | −13,509 | −1501 | 24 | 5 | 29 | −12,261 | −12,261 | 72 |
5 | 31 | −11,781 | −1309 | 24 | 5 | 37 | −10,149 | −10,149 | 120 |
5 | 41 | −8901 | −989 | 36 | 5 | 43 | −8229 | −8229 | 48 |
5 | 47 | −6789 | −6789 | 72 | 5 | 53 | −4389 | −4389 | 48 |
5 | 59 | −1701 | −21 | 4 * | 5 | 61 | −741 | −741 | 24 |
7 | 3 | −117,613 | −117,613 | 168 | 7 | 5 | −117,549 | −13,061 | 156 |
7 | 11 | −117,165 | −117,165 | 240 | 7 | 13 | −116,973 | −12,997 | 60 |
7 | 17 | −116,493 | −116,493 | 192 | 7 | 19 | −116,205 | −116,205 | 192 |
7 | 23 | −115,533 | −12,837 | 72 | 7 | 29 | −114,285 | −114,285 | 240 |
7 | 31 | −113,805 | −1405 | 24 | 7 | 37 | −112,173 | −112,173 | 240 |
7 | 41 | −110,925 | −493 | 12 | 7 | 43 | −110,253 | −110,253 | 288 |
7 | 47 | −108,813 | −108,813 | 240 | 7 | 53 | −106,413 | −106,413 | 216 |
7 | 59 | −103,725 | −461 | 30 | 7 | 61 | −102,765 | −102,765 | 192 |
7 | 67 | −99,693 | −11,077 | 48 | 7 | 71 | −97,485 | −97,485 | 192 |
7 | 73 | −96,333 | −96,333 | 192 | 7 | 79 | −92,685 | −92,685 | 288 |
7 | 83 | −90,093 | −90,093 | 192 | 7 | 89 | −85,965 | −85,965 | 240 |
7 | 97 | −80,013 | −80,013 | 192 | 7 | 101 | −76,845 | −76,845 | 192 |
7 | 103 | −75,213 | −8357 | 72 | 7 | 107 | −71,853 | −71,853 | 144 |
7 | 109 | −70,125 | −2805 | 48 | 7 | 113 | −66,573 | −7397 | 72 |
7 | 127 | −53,133 | −53,133 | 120 | 7 | 131 | −49,005 | −5 | 2 * |
7 | 137 | −42,573 | −42,573 | 120 | 7 | 139 | −40,365 | −4485 | 48 |
7 | 149 | −28,845 | −3205 | 24 | 7 | 151 | −26,445 | −26,445 | 96 |
7 | 157 | −19,053 | −2117 | 36 | 7 | 163 | −11,373 | −11,373 | 72 |
7 | 167 | −6093 | −677 | 30 |
p | q | d | p | q | d | ||||
---|---|---|---|---|---|---|---|---|---|
3 | 5 | −2087 | −2087 | 35 | 3 | 11 | −1703 | −1703 | 28 |
3 | 13 | −1511 | −1511 | 49 | 3 | 17 | −1031 | −1031 | 35 |
3 | 19 | −743 | −743 | 21 | 3 | 23 | −71 | −71 | 7 |
5 | 3 | −78,089 | −78,089 | 280 | 5 | 11 | −77,641 | −77,641 | 112 |
5 | 13 | −77,449 | −77,449 | 112 | 5 | 17 | −76,969 | −76,969 | 196 |
5 | 19 | −76,681 | −76,681 | 140 | 5 | 23 | −76,009 | −76,009 | 224 |
5 | 29 | −74,761 | −74,761 | 140 | 5 | 31 | −74,281 | −74,281 | 140 |
5 | 37 | −72,649 | −72,649 | 168 | 5 | 41 | −71,401 | −71,401 | 140 |
5 | 43 | −70,729 | −70,729 | 140 | 5 | 47 | −69,289 | −69,289 | 196 |
5 | 53 | −66,889 | −66,889 | 112 | 5 | 59 | −64,201 | −64,201 | 112 |
5 | 61 | −63,241 | −63,241 | 196 | 5 | 67 | −60,169 | −60,169 | 112 |
5 | 71 | −57,961 | −57,961 | 112 | 5 | 73 | −56,809 | −56,809 | 112 |
5 | 79 | −53,161 | −53,161 | 168 | 5 | 83 | −50,569 | −50,569 | 168 |
5 | 89 | −46,441 | −46,441 | 140 | 5 | 97 | −40,489 | −40,489 | 140 |
5 | 101 | −37,321 | −37,321 | 84 | 5 | 103 | −35,689 | −35,689 | 112 |
5 | 107 | −32,329 | −32,329 | 140 | 5 | 109 | −30,601 | −30,601 | 112 |
5 | 113 | −27,049 | −27,049 | 84 | 5 | 127 | −13,609 | −13,609 | 56 |
5 | 131 | −9481 | −9481 | 84 | 5 | 137 | −3049 | −3049 | 28 |
5 | 139 | −841 | −1 | 1 ** |
p | q | d | p | q | d | ||||
---|---|---|---|---|---|---|---|---|---|
3 | 5 | −6461 | −6461 | 96 | 3 | 7 | −6365 | −6365 | 64 |
3 | 11 | −6077 | −6077 | 48 | 3 | 13 | −5885 | −5885 | 96 |
3 | 17 | −5405 | −5405 | 64 | 3 | 19 | −5117 | −5117 | 64 |
3 | 23 | −4445 | −4445 | 64 | 3 | 29 | −3197 | −3197 | 64 |
3 | 31 | −2717 | −2717 | 32 | 3 | 37 | −1085 | −1085 | 32 |
p | q | d | p | q | d | ||||
---|---|---|---|---|---|---|---|---|---|
3 | 5 | −19,583 | −19,583 | 99 | 3 | 7 | −19,487 | −19,487 | 144 |
3 | 11 | −19,199 | −19,199 | 162 | 3 | 13 | −19,007 | −19,007 | 108 |
3 | 17 | −18,527 | −18,527 | 108 | 3 | 19 | −18,239 | −18,239 | 144 |
3 | 23 | −17,567 | −17,567 | 90 | 3 | 29 | −16,319 | −16,319 | 153 |
3 | 31 | −15,839 | −15,839 | 180 | 3 | 37 | −14,207 | −14,207 | 81 |
3 | 41 | −12,959 | −12,959 | 99 | 3 | 43 | −12,287 | −12,287 | 90 |
3 | 47 | −10,847 | −10,847 | 63 | 3 | 53 | −8447 | −8447 | 99 |
3 | 59 | −5759 | −5759 | 108 | 3 | 61 | −4799 | −4799 | 63 |
3 | 67 | −1727 | −1727 | 36 |
p | q | d | p | q | d | ||||
---|---|---|---|---|---|---|---|---|---|
3 | 7 | −58,853 | −58,853 | 180 | 3 | 11 | −58,565 | −58,565 | 240 |
3 | 13 | −58,373 | −58,373 | 240 | 3 | 17 | −57,893 | −57,893 | 280 |
3 | 23 | −56,933 | −197 | 10 | 3 | 29 | −55,685 | −55,685 | 160 |
3 | 31 | −55,205 | −55,205 | 240 | 3 | 37 | −53,573 | −317 | 10 |
3 | 41 | −52,325 | −2093 | 40 | 3 | 43 | −51,653 | −51,653 | 160 |
3 | 47 | −50,213 | −50,213 | 120 | 3 | 53 | −47,813 | −47,813 | 260 |
3 | 59 | −45,125 | −5 | 2 *** | 3 | 61 | −44,165 | −365 | 20 |
3 | 67 | −41,093 | −41,093 | 240 | 3 | 71 | −38,885 | −38,885 | 160 |
3 | 73 | −37,733 | −37,733 | 160 | 3 | 79 | −34,085 | −34,085 | 200 |
3 | 83 | −31,493 | −31,493 | 120 | 3 | 89 | −27,365 | −27,365 | 120 |
3 | 97 | −21,413 | −437 | 20 | 3 | 101 | −18,245 | −18,245 | 160 |
3 | 103 | −16,613 | −16,613 | 100 | 3 | 107 | −13,253 | −13,253 | 80 |
3 | 109 | −11,525 | −461 | 30 | 3 | 113 | −7973 | −7973 | 80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.-S. Some Remarks on the Divisibility of the Class Numbers of Imaginary Quadratic Fields. Mathematics 2022, 10, 2488. https://doi.org/10.3390/math10142488
Kim K-S. Some Remarks on the Divisibility of the Class Numbers of Imaginary Quadratic Fields. Mathematics. 2022; 10(14):2488. https://doi.org/10.3390/math10142488
Chicago/Turabian StyleKim, Kwang-Seob. 2022. "Some Remarks on the Divisibility of the Class Numbers of Imaginary Quadratic Fields" Mathematics 10, no. 14: 2488. https://doi.org/10.3390/math10142488
APA StyleKim, K. -S. (2022). Some Remarks on the Divisibility of the Class Numbers of Imaginary Quadratic Fields. Mathematics, 10(14), 2488. https://doi.org/10.3390/math10142488