Existence and Asymptotic Behaviors of Ground States for a Fourth-Order Nonlinear Schrödinger Equations with a Potential
Abstract
:1. Introduction
- (1)
- if , then there exists at least one non-negative minimizer of ;
- (2)
- if , then there is no minimizers of .
2. Existence of Minimizers
3. Asymptotic Behaviors of Minimizers
4. Proof of Theorem 3
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karpman, V.I. Stabilization of soliton instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations. Phys. Rev. E 1996, 53, 1336–1339. [Google Scholar] [CrossRef]
- Karpman, V.I.; Shagalov, A.G. Stability of soliton described by nonlinear Schrödinger type equations with higher-order dispersion. Phys. D 2000, 144, 194–210. [Google Scholar] [CrossRef]
- Fibich, G.; Ilan, B.; Papanicolaou, G. Self-focusing with fourth order dispersion. SIAM J. Appl. Math. 2002, 62, 1437–1462. [Google Scholar]
- Bonheure, D.; Casteras, J.-B.; Dos Santos, E.M.; Nascimento, R. Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation. SIAM J. Math. Anal. 2018, 50, 5027–5071. [Google Scholar] [CrossRef]
- Bonheure, D.; Nascimento, R. Waveguide solutions for a nonlinear Schrödinger equation with mixed dispersion. In Contributions to Nonlinear Elliptic Equations and Systems; Progr. Nonlinear Differential Equations Appl. 86; Birkhäuser/Springer: Cham, Switzerland, 2015; pp. 31–53. [Google Scholar]
- Boulenger, T.; Lenzmann, E. Blowup for biharmonic NLS. Ann. Sci. Éc. Norm. Supér. 2017, 50, 503–544. [Google Scholar] [CrossRef]
- Fernandez, A.J.; Jeanjean, L.; Mandel, R.; Mariş, M. Non-homogeneous Gagliardo-Nirenberg inequalities in RN and application to a biharmonic non-linear Schrödinger equation. J. Differ. Equ. 2022, 328, 1–65. [Google Scholar] [CrossRef]
- Luo, T.-J.; Zheng, S.-J.; Zhu, S.-H. Orbital stability of standing waves for a fourth-order nonlinear Schrödinger equation with mixed dispersions. arXiv 2019, arXiv:1904.02540. [Google Scholar]
- Bao, W.; Cai, Y. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet. Relat. Model. 2013, 6, 1–135. [Google Scholar] [CrossRef]
- Jeanjean, L.; Luo, T.-J. Sharp nonexistence results of prescribed L2-norm solutions for some class of Schrödinger-Poisson and quasi-linear equations. Z. Angew. Math. Phys. 2013, 64, 937–954. [Google Scholar] [CrossRef] [Green Version]
- Jeanjean, L.; Luo, T.-J.; Wang, Z.-Q. Multiple normalized solutions for quasi-linear Schrödinger equations. J. Differ. Equ. 2015, 259, 3894–3928. [Google Scholar] [CrossRef]
- Gasimov, Y.S.; Nachaoui, A.; Niftiyev, A.A. Non-linear eigenvalue problems for p-Laplacian with variable domain. Optim. Lett. 2010, 4, 67–84. [Google Scholar] [CrossRef]
- Guo, Y.; Seiringer, R. On the mass concentration for Bose-Einstein condensates with attractive interactions. Lett. Math. Phys. 2014, 104, 141–156. [Google Scholar] [CrossRef] [Green Version]
- Maeda, M. On the symmetry of the ground states of nonlinear Schrödinger equation with potential. Adv. Nonlinear Stud. 2010, 10, 895–925. [Google Scholar] [CrossRef]
- Zhang, J. Stability of attractive Bose-Einstein condensates. J. Stat. Phys. 2000, 101, 731–746. [Google Scholar] [CrossRef]
- Kwong, M.K. Uniqueness of positive solutions of Δu-u+up=0 in RN. Arch. Ration. Mech. Anal. 1989, 105, 243–266. [Google Scholar] [CrossRef]
- Weinstein, M.I. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 1982, 87, 567–576. [Google Scholar] [CrossRef]
- Gidas, B.; Ni, W.M.; Nirenberg, L. Symmetry of positive solutions of nonlinear elliptic equations in RN. Adv. Math. Suppl. Stud. A 1981, 7, 369–402. [Google Scholar]
- Cazenave, T. Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10; New York University, Courant Institute of Mathematical Sciences: New York, NY, USA; American Mathematical Society: Providence, RI, USA, 2003. [Google Scholar]
- Lieb, E.H.; Loss, M. Analysis: Second Edition. Graduate Studies in Mathematics. Volume 2001, 14, 348. [Google Scholar]
- Zeng, X.; Zhang, Y. Asymptotic behaviors of ground states for a modified Gross-Pitaevskii equation. Discret. Contin. Dyn. Syst. 2019, 39, 5263. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Zhang, Y. Existence and asymptotic behavior for the ground state of quasilinear elliptic equations. Adv. Nonlinear Stud. 2018, 18, 725–744. [Google Scholar] [CrossRef]
- Guo, Y.; Zeng, X.; Zhou, H.S. Concentration behavior of standing waves for almost mass critical nonlinear Schrödinger equations. Differ. Equ. 2014, 256, 2079–2100. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Luo, T. Existence and Asymptotic Behaviors of Ground States for a Fourth-Order Nonlinear Schrödinger Equations with a Potential. Mathematics 2022, 10, 2736. https://doi.org/10.3390/math10152736
He J, Luo T. Existence and Asymptotic Behaviors of Ground States for a Fourth-Order Nonlinear Schrödinger Equations with a Potential. Mathematics. 2022; 10(15):2736. https://doi.org/10.3390/math10152736
Chicago/Turabian StyleHe, Jintao, and Tingjian Luo. 2022. "Existence and Asymptotic Behaviors of Ground States for a Fourth-Order Nonlinear Schrödinger Equations with a Potential" Mathematics 10, no. 15: 2736. https://doi.org/10.3390/math10152736
APA StyleHe, J., & Luo, T. (2022). Existence and Asymptotic Behaviors of Ground States for a Fourth-Order Nonlinear Schrödinger Equations with a Potential. Mathematics, 10(15), 2736. https://doi.org/10.3390/math10152736