Deep Learning-Based Remaining Useful Life Prediction Method with Transformer Module and Random Forest
Abstract
:1. Introduction
2. Data Set
2.1. Data Set
- FlowCool Presser Dropped Below Limit;
- FlowCool Presser Too High Check FlowCool Pump;
- FlowCool Leak.
2.2. Pre-Process
3. Methodology
3.1. Overall Structure
3.2. Random Forest
3.3. Transformer
4. Experimental Results
4.1. Study on the Number of Decision Trees in Random Forest
4.2. Correlation Analysis of Data Set Multidimensional Variables and Abnormal Working Conditions
4.3. Research on Hyperparameters of Transformer Prediction Model
4.4. The Complete Network Performs Prediction Tasks
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, W.A.; Randall, R.B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study. Mech. Syst. Signal Process. 2015, 64, 100–131. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Li, X. Deep learning-based prognostic approach for lithium-ion batteries with adaptive time-series prediction and on-line validation. Measurement 2020, 164, 108052. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Ma, H. Deep representation clustering-based fault diagnosis method with unsupervised data applied to rotating machinery. Mech. Syst. Signal Process. 2020, 143, 106825. [Google Scholar] [CrossRef]
- Li, X.; Fu, X.-M.; Xiong, F.-R.; Bai, X.-M. Deep learning-based unsupervised representation clustering methodology for automatic nuclear reactor operating transient identification. Knowl.-Based Syst. 2020, 204, 106178. [Google Scholar] [CrossRef]
- Zhao, T.; Li, K.; Ma, H. Study on dynamic characteristics of a rotating cylindrical shell with uncertain parameters. Anal. Math. Phys. 2022, 12, 97. [Google Scholar] [CrossRef]
- Zhao, T.Y.; Yan, K.; Li, H.W.; Wang, X. Study on theoretical modeling and vibration performance of an assembled cylindrical shell-plate structure with whirl motion. Appl. Math. Model. 2022, 110, 618–632. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Ma, H.; Luo, Z.; Li, X. Domain generalization in rotating machinery fault diagnostics using deep neural networks. Neurocomputing 2020, 403, 409–420. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Ma, H.; Luo, Z.; Li, X. Data alignments in machinery remaining useful life prediction using deep adversarial neural networks. Knowl.-Based Syst. 2020, 197, 105843. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Ma, H.; Luo, Z.; Li, X. Partial transfer learning in machinery cross-domain fault diagnostics using class-weighted adversarial networks. Neural Netw. 2020, 129, 313–322. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Ma, H.; Luo, Z.; Li, X. Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions. Reliab. Eng. Syst. Saf. 2021, 211, 107556. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Ma, H.; Luo, Z.; Li, X. Degradation alignment in remaining useful life prediction using deep cycle-consistent learning. IEEE Trans. Neural Netw. Learn. Syst. 2021. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-S.; Jiang, J.-R. Remaining useful life estimation using long short-term memory deep learning. In Proceedings of the 2018 IEEE International Conference on Applied System Invention, Chiba, Japan, 13–17 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 58–61. [Google Scholar]
- Yuan, M.; Wu, Y.; Lin, L. Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network. In Proceedings of the 2016 IEEE International Conference on Aircraft Utility Systems, Beijing, China, 10–12 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 135–140. [Google Scholar]
- Zhang, J.; Wang, P.; Yan, R.; Gao, R.X. Long short-term memory for machine remaining life prediction. J. Manuf. Syst. 2018, 48, 78–86. [Google Scholar] [CrossRef]
- Malhotra, P.; Vig, L.; Shroff, G.; Agarwal, P. Long short-term memory networks for anomaly detection in time series. Proceedings 2015, 89, 89–94. [Google Scholar]
- Zhang, G.; Bai, X.; Wang, Y. Short-time multi-energy load forecasting method based on CNN-Seq2Seq model with attention mechanism. Mach. Learn. Appl. 2021, 5, 100064. [Google Scholar] [CrossRef]
- Wang, X.; Tang, M.; Yang, T.; Wang, Z. A novel network with multiple attention mechanisms for aspect-level sentiment analysis. Knowl.-Based Syst. 2021, 227, 107196. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, M.; Zhao, L.; Zhu, X. Attention-based LSTM for aspect-level sentiment classification. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–5 November 2016; pp. 606–615. [Google Scholar]
- Li, Z.H.; Zhang, Y.; Abu-Siada, A.; Chen, X.; Li, Z.; Xu, Y.; Zhang, L.; Tong, Y. Fault diagnosis of transformer windings based on decision tree and fully connected neural network. Energies 2021, 14, 1531. [Google Scholar] [CrossRef]
- Yun, H.; Kang, T.; Jung, K. Analyzing and controlling inter-head diversity in multi-head attention. Appl. Sci. 2021, 11, 1548. [Google Scholar] [CrossRef]
- Savini, E.; Caragea, C. Intermediate-task transfer learning with BERT for sarcasm detection. Mathematics 2022, 10, 844. [Google Scholar] [CrossRef]
- Wang, N.; Fan, X.; Fan, J.; Yan, C. Random forest winter wheat extraction algorithm based on spatial features of neighborhood samples. Mathematics 2022, 10, 2206. [Google Scholar] [CrossRef]
- Kovalnogov, V.; Fedorov, R.; Klyachkin, V.; Generalov, D.; Kuvayskova, Y.; Busygin, S. Applying the random forest method to improve burner efficiency. Mathematics 2022, 10, 2143. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Shinkevich, A.I.; Ershova, I.G.; Galimulina, F.F.; Yarlychenko, A.A. Innovative mesosystems algorithm for sustainable development priority areas identification in industry based on decision trees construction. Mathematics 2021, 9, 3055. [Google Scholar] [CrossRef]
- Al Hamad, M.; Zeki, A.M. Accuracy vs. cost in decision trees: A survey. In Proceedings of the 2018 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies, Sakhier, Bahrain, 18–20 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4. [Google Scholar]
- Zhang, W.; Li, X.; Ma, H.; Luo, Z.; Li, X. Universal domain adaptation in fault diagnostics with hybrid weighted deep adversarial learning. IEEE Trans. Ind. Inform. 2021, 17, 7957–7967. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X. Data privacy preserving federated transfer learning in machinery fault diagnostics using prior distributions. Struct. Health Monit. 2022, 21, 1329–1344. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X. Federated transfer learning for intelligent fault diagnostics using deep adversarial networks with data privacy. IEEE/ASME Trans. Mechatron. 2021, 27, 430–439. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–7 December 2017; Volume 30. [Google Scholar]
- Dai, Z.; Yang, Z.; Yang, Y.; Cohen, W.W.; Carbonell, J.; Le Quoc, V.; Salakhutdinov, R. Transformer-XL: Language modeling with longer-term dependency. In Proceedings of the ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Dai, Z.; Yang, Z.; Yang, Y.; Carbonell, J.; Le, Q.; Salakhutdinov, R. Transformer-XL: Attentive language models beyond a fixed-length context. arXiv 2019, arXiv:1901.02860. [Google Scholar]
- Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.R.; Le Quoc, V. XLNet: Generalized autoregressive pretraining for language understanding. In Proceedings of the NeurIPS 2019, Vancouver, BC, Canada, 8–14 December 2019; Volume 32. [Google Scholar]
- Arnab, A.; Dehghani, M.; Heigold, G.; Sun, C.; Lučić, M.; Schmid, C. ViViT: A video vision transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision 2021, Montreal, QC, Canada, 10–17 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 6836–6846. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision 2021, Montreal, QC, Canada, 10–17 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 10012–10022. [Google Scholar]
- Sun, Z.; Liu, C.; Qu, H.; Xie, G. A novel effective vehicle detection method based on Swin Transformer in hazy scenes. Mathematics 2022, 10, 2199. [Google Scholar] [CrossRef]
- Ju, X.; Zhao, X.; Qian, S. TransMF: Transformer-based multi-scale fusion model for crack detection. Mathematics 2022, 10, 2354. [Google Scholar] [CrossRef]
- Qi, J.; Du, J.; Siniscalchi, S.M.; Ma, X.; Lee, C.-H. Analyzing upper bounds on mean absolute errors for deep neural network-based vector-to-vector regression. IEEE Trans. Signal Process. 2020, 68, 3411–3422. [Google Scholar] [CrossRef]
ID# | Parameter Name | Type | Description |
---|---|---|---|
S1 | time | Numeric | time |
S2 | Tool | Categorical | tool id |
S3 | stage | Categorical | processing stage of wafer |
S4 | Lot | Categorical | wafer id |
S5 | runnum | Numeric | number of times tool has been run |
S6 | recipe | Categorical | describes tool settings used to process wafer |
S7 | recipe_step | Categorical | process step of a recipe |
S8 | IONGAUGEPRESSURE | Numeric (Sensor) | pressure reading for the main process chamber when under vacuum |
S9 | ETCHBEAMVOLTAGE | Numeric | voltage potential applied to the beam plate of the grid assembly |
S10 | ETCHBEAMCURRENT | Numeric | ion current impacting the beam grid determining the amounts of ions accelerated through the grid assembly to the wafer |
S13 | FLOWCOOLFLOWRATE | Numeric | rate of flow of helium through the flowcool circuit, controlled by mass flow controller |
S14 | FLOWCOOLPRESSURE | Numeric (Sensor) | resulting helium pressure in the flowcool circuit |
S15 | ETCHGASCHANNEL1-READBACK | Numeric | rate of flow of argon into the source assembly in the vacuum chamber |
S16 | ETCHPBNGAS-READBACK | Numeric | rate of flow of argon into the PBN assembly in the chamber |
S17 | FIXTURETILTANGLE | Numeric | wafer tilt angle setting |
S18 | ROTATIONSPEED | Numeric | wafer rotation speed setting |
S19 | ACTUALROTATION-ANGLE | Numeric (Sensor) | measure wafer rotation angle |
S20 | FIXTURESHUTTER-POSITION | Numeric | open/close shutter setting for wafer shielding |
S21 | ETCHSOURCEUSAGE | Numeric | counter of use for the grid assembly consumable |
S22 | ETCHAUXSOURCE-TIMER | Numeric | counter of the use for the chamber shields consumable |
S23 | ETCHAUX2SOURCE-TIMER | Numeric | counter of the use for the chamber shields consumable |
S24 | ACTUALSTEPDURATION | Numeric (Sensor) | measured time duration for a particular step |
Number of Heads of Multi-Head Attention Mechanism | Mean Absolute Error (Unit: Second) |
---|---|
1 | 2840.07 |
2 | 2561.87 |
4 | 3598.99 |
5 | 2807.26 |
10 | 3042.27 |
20 | 2971.62 |
Feedforward Neural Network Dimensions | Mean Absolute Error (Unit: Second) |
---|---|
8 | 5716.82 |
16 | 4076.40 |
32 | 3736.63 |
64 | 3892.85 |
128 | 3786.88 |
256 | 2844.60 |
512 | 2248.19 |
1024 | 2968.11 |
2048 | 3006.22 |
Number of Superimposed Layers of Autoencoder | Mean Absolute Error (Unit: Second) |
---|---|
1 | 4832.86 |
2 | 2615.82 |
3 | 2235.90 |
4 | 2138.53 |
5 | 2452.54 |
Ground Truth RUL (GT) | Submission RUL (SUB) | Score |
---|---|---|
Number | Number | |GT − SUB| × exp(−0.001GT) |
NaN | Number | |SUB| × exp(−0.001SUB) |
Number | NaN | |GT| × exp(−0.001GT) |
NaN | NaN | 0 |
Ground Truth RUL (GT) | Submission RUL (SUB) | Score |
---|---|---|
Number | Number | 0.1 × (GT − SUB)2 |
NaN | Number | 5/(|SUB| + 3) |
Number | NaN | 20 × exp[−1|/(GT| + 0.1)] |
NaN | NaN | 0 |
Method | Total Score | Mean Absolute Error (Unit: Second) |
---|---|---|
Single-layer RNN | 5.90 × 1015 | 6843 |
Double-layer RNN | 6.22 × 1015 | 7632 |
Single-layer LSTM | 5.96 × 1015 | 6500 |
Double-layer LSTM | 5.67 × 1015 | 6753 |
Proposed Method | 1.77 × 1015 | 2240 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Zhu, Y.; Zhao, T. Deep Learning-Based Remaining Useful Life Prediction Method with Transformer Module and Random Forest. Mathematics 2022, 10, 2921. https://doi.org/10.3390/math10162921
Zhao L, Zhu Y, Zhao T. Deep Learning-Based Remaining Useful Life Prediction Method with Transformer Module and Random Forest. Mathematics. 2022; 10(16):2921. https://doi.org/10.3390/math10162921
Chicago/Turabian StyleZhao, Lefa, Yafei Zhu, and Tianyu Zhao. 2022. "Deep Learning-Based Remaining Useful Life Prediction Method with Transformer Module and Random Forest" Mathematics 10, no. 16: 2921. https://doi.org/10.3390/math10162921
APA StyleZhao, L., Zhu, Y., & Zhao, T. (2022). Deep Learning-Based Remaining Useful Life Prediction Method with Transformer Module and Random Forest. Mathematics, 10(16), 2921. https://doi.org/10.3390/math10162921