Next Article in Journal
An Interval-Simplex Approach to Determine Technological Parameters from Experimental Data
Previous Article in Journal
Nonlinear Large-Scale Perturbations of Steady Thermal Convective Dynamo Regimes in a Plane Layer of Electrically Conducting Fluid Rotating about the Vertical Axis
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Hausdorff–Pompeiu Distance in Gn-Menger Fractal Spaces

1
School of Mathematical and Statistical Science, National University of Ireland, University Road, H91 TK33 Galway, Ireland
2
School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 13114-16846, Iran
3
Department of Mathematics and Computer Science, Brandon University, Brandon, MB R7A 6A9, Canada
4
Department of Mathematics, Cankaya University, Etimesgut, Ankara 06790, Turkey
5
Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Mathematics 2022, 10(16), 2958; https://doi.org/10.3390/math10162958
Submission received: 10 July 2022 / Revised: 6 August 2022 / Accepted: 15 August 2022 / Published: 16 August 2022
(This article belongs to the Section Difference and Differential Equations)

Abstract

:
This paper introduces a complete G n -Menger space and defines the Hausdorff–Pompeiu distance in the space. Furthermore, we show a novel fixed-point theorem for G n -Menger- θ -contractions in fractal spaces.

1. Introduction and Preliminaries

We begin with the concept of a G n -Menger space using distributional maps (DMs) and triangular norms. Throughout the entire paper, we let I = [ 0 , 1 ] , I = ( 0 , 1 ) , R = [ , + ] , J = [ 0 , + ) and J = ( 0 , + ) . Define the set of distributional maps + as the set of all functions ȷ : R I , denoting ȷ ı = ȷ ( ı ) , which are left continuous and nondecreasing on R with ȷ 0 = 0 and ȷ + = 1 . In addition, let + + consist of all (proper) mappings ȷ + for which ȷ + = 1 , where ȷ ı means the left limit at the point ı. Please refer to [1,2,3] for more details. Note all proper DMs are the DMs of real random variables (namely, we have P ( | g | = ) = 0 for any random variable g).
In + , we define “≤” as follows:
ȷ ȷ τ τ
for each τ in R (partially ordered). For example,
τ = 0 , if τ R J , 1 e τ , if τ J ,
for + . Note that the function τ u defined by
τ u = 0 , if τ u , 1 , if τ > u ,
is an element of + , and τ 0 is the maximal element in this space (for more information, see [1,2,3]).
Definition 1
([1,4]). A continuous triangular norm (CTN) is a continuous binary operation ∗ from I 2 to I , such that
(a)
ϑ ł = ł ϑ and ϑ ( ł ß ) = ( ϑ ł ) ß for all ϑ , ł , ı I ;
(b)
ϑ 1 = ϑ for all ϑ I ;
(c)
ϑ ł ϑ ł whenever ϑ ϑ and ł ł for all ϑ , ł , ϑ , ł I .
Some examples of t-norms are:
(1)
ϑ P ł = ϑ ł (the product CTN);
(2)
ϑ M ł = min { ϑ , ł } (the minimum CTN);
(3)
ϑ L ł = max { ϑ + ł 1 , 0 } (the Lukasiewicz CTN).
Assume that, for every ϑ I , there exists a ł I (which is independent of , but depends on ϑ ) such that the following inequality holds
( 1 ł ) ( 1 ł ) > 1 ϑ , for each { 2 , 3 , } .
In this case, we say the CTN ∗ has the (D) property (CTND for short).
Definition 2.
Let ∗ be a CTN, U and ζ be a mapping from U n to + . The ordered tuple ( U , ζ , ) is called a G n -Menger space if the following conditions are satisfied:
( ζ 1 )
ζ τ u 1 , , u n = τ 0 for τ J , if and only if u 1 = u 2 = = u n and τ J ;
( ζ 2 )
ζ τ u 1 , , u n is invariant under any permutation of u 1 , , u n U and τ J ;
( ζ 3 )
ζ τ u 1 , u 1 , u 1 , u 2 ζ τ u 1 , u 2 , , u n for every u 1 , , u n U and τ J ;
( ζ 4 )
ζ τ + ς u 1 , u 2 , , u n ζ ς u 1 , u n + 1 , , u n + 1 ζ τ u n + 1 , u 2 , , u n for every u 1 , , u n , u n + 1 U and τ , ς J .
Moreover, ζ is called a G n -Menger distance.
For more details about G n -Menger space and distance, see [5,6,7,8,9,10,11,12,13,14,15]. Our results improve and generalize recent results in [16,17,18].
Example 1.
Define ζ : R n + by
ζ τ u 1 , , u n = 0 , if τ R J , exp ( max i j , i , j { 1 , 2 , , n } { | u i u j | } / τ ) , if τ J .
Then, the ordered tuple ( R , ζ , P ) is a G n -Menger space.
Clearly, ( ζ 1 ) and ( ζ 2 ) are straightforward. For ( ζ 3 ), let τ J , and since
| u 1 u 2 | τ max i j , i , j { 1 , 2 , , n } { | u i u j | } τ ,
we get
ζ τ u 1 , u 1 , , u 1 , u 2 = exp | u 1 u 2 | τ exp max i j , i , j { 1 , 2 , , n } { | u i u j | } τ = ζ τ u 1 , , u n .
Regarding ( ζ 4 ), let τ , ς J , and note
ζ ς u 1 , u n + 1 , , u n + 1 P ζ τ u n + 1 , u 2 , , u n = exp | u 1 u n + 1 | ς . exp max i j , i , j { 2 , , n , n + 1 } { | u i u j | } τ exp | u 1 u n + 1 | ς + τ . exp max i j , i , j { 2 , , n , n + 1 } { | u i u j | } ς + τ = exp | u 1 u n + 1 | + max i j , i , j { 2 , , n , n + 1 } { | u i u j | } ς + τ exp max i j , i , j { 1 , 2 , , n , n + 1 } { | u i u j | } ς + τ exp max i j , i , j { 1 , 2 , , n } { | u i u j | } ς + τ = ζ τ + ς u 1 , u 2 , , u n .
We would like to point out that the above example also holds for CTN M . In the following, we show every G n -Menger space induces a Menger metric space in the sense of Schweizer and Sklar.
Example 2.
Let ( U , ζ , ) be a G n -Menger space. Define the distributional function η on U 2 as
η τ u , v = ζ τ u , v , , v ζ τ v , u , , u ,
for every u , v U and τ J . Then, ( U , η , ) is a Menger metric space. In fact, it is easy to check that η is a Menger metric (for more references, see [1,9,19]).
(I)
Let τ J and
τ 0 = η τ u , v = ζ τ u , v , , v ζ τ v , u , , u ,
so we have
τ 0 = ζ τ u , v , , v
and
τ 0 = ζ τ v , u , , u .
Using ( ζ 1 ), we get u = v . Obviously, the converse is also true.
(II)
From ( ζ 2 ), we have η τ u , v = η τ v , u for every u , v U and τ J .
(III)
Let u , v , w U and τ , ς J . From ( ζ 4 ), we have
η τ + ς u , v = ζ τ + ς u , v , , v ζ τ + ς v , u , , u [ ζ τ u , w , , w ζ ς w , v , , v ] [ ζ ς v , w , , w ζ τ w , u , , u ] = [ ζ τ u , w , , w ζ τ w , u , , u ] [ ζ ς w , v , , v ζ ς v , w , , w ] = η τ u , w η ς w , v .
It now follows that ( U , η , ) is a Menger metric space from (I), (II) and (III).
Definition 3.
Let ( U , ζ , ) be a G n -Menger space. Assume ρ I , τ J and u 0 U . We define the open ball with center u 0 and radius ρ as
O ρ , τ u 0 = { u U : ζ τ u 0 , u , , u > 1 ρ and ζ τ u , u 0 , , u 0 > 1 ρ } .
Definition 4.
Let ( U , ζ , ) be a G n -Menger space.
(1) A sequence { u k } in U is said to be convergent to u in U if, for every λ I , there exists a positive integer N such that ζ τ u , u k , , u k > 1 λ for every τ J whenever k N .
(2) A sequence { u k } in U is called a Cauchy sequence if, for every λ I , there exists a positive integer N such that ζ τ u k 1 , u k 2 , , u k n > 1 λ for every τ J whenever k 1 , , k n N .
(3) A G n -Menger space ( U , ζ , ) is said to be complete, if and only if every Cauchy sequence in U is convergent to a point in U.
Lemma 1.
Let ( U , ζ , ) be a G n -Menger space. Then, ζ is continuous on U n .
Proof. 
For a fixed n, we let ( u 1 , , u n ) U n and τ J . Let { ( u 1 , k , , u n , k ) } be a sequence in U n converging to ( u 1 , , u n ) . Consider a fixed number α J such that α < τ n + 1 . Using ( ζ 4 ) we derive
ζ τ u 1 , k , , u n , k ζ α u 1 , k , u 1 , , u 1 ζ τ α u 1 , u 2 , k , , u n , k = ζ α u 1 , k , u 1 , , u 1 ζ α 2 + τ 3 2 α u 1 , u 2 , k , , u n , k ζ α u 1 , k , u 1 , , u 1 ζ α 2 u 2 , k , u 2 , , u 2 ζ τ 3 2 α u 1 , u 2 , u 3 , k , , u n , k = ζ α u 1 , k , u 1 , , u 1 ζ α 2 u 2 , k , u 2 , , u 2 ζ α 2 + τ 4 2 α u 1 , u 2 , u 3 , k , , u n , k ζ α u 1 , k , u 1 , , u 1 ζ α 2 u 2 , k , u 2 , , u 2 ζ α 2 u 3 , k , u 3 , , u 3 ζ τ 4 2 α u 1 , u 2 , u 3 , u 4 , k , , u n , k . . . ζ α u 1 , k , u 1 , , u 1 ζ α 2 u 2 , k , u 2 , , u 2 ζ α 2 u 3 , k , u 3 , , u 3 ζ α 2 u n , k , u n , , u n ζ τ n + 1 2 α u 1 , u 2 , u 3 , u 4 , , u n ,
and
ζ τ u 1 , , u n ζ α u 1 , u 1 , k , , u 1 , k ζ τ α u 1 , k , u 2 , , u n = ζ α u 1 , u 1 , k , , u 1 , k ζ α 2 + τ 3 2 α u 1 , k , u 2 , , u n ζ α u 1 , u 1 , k , , u 1 , k ζ α 2 u 2 , u 2 , k , , u 2 , k ζ τ 3 2 α u 1 , k , u 2 , k , u 3 , , u n = ζ α u 1 , u 1 , k , , u 1 , k ζ α 2 u 2 , u 2 , k , , u 2 , k ζ α 2 + τ 4 2 α u 1 , k , u 2 , k , u 3 , , u n ζ α u 1 , u 1 , k , , u 1 , k ζ α 2 u 2 , u 2 , k , , u 2 , k ζ α 2 u 3 , u 3 , k , , u 3 , k ζ τ 4 2 α u 1 , k , u 2 , k , u 3 , k , u 4 , , u n . . . ζ α u 1 , u 1 , k , , u 1 , k ζ α 2 u 2 , u 2 , k , , u 2 , k ζ α 2 u 3 , u 3 , k , , u 3 , k ζ α 2 u n , u n , k , , u n , k ζ τ n + 1 2 α u 1 , k , u 2 , k , u 3 , k , u 4 , k , , u n , k .
We can do this for any n. Letting k in the above, we imply by the continuity property of a CTN that
lim k ζ τ u 1 , k , , u n , k ζ τ n + 1 2 α u 1 , u 2 , u 3 , u 4 , , u n ,
and
ζ τ u 1 , , u n lim k ζ τ n + 1 2 α u 1 , k , u 2 , k , u 3 , k , u 4 , k , , u n , k .
From (2) and (3), we get by letting α tend to zero that
lim k ζ τ u 1 , k , , u n , k = ζ τ u 1 , , u n ,
for every τ > 0 , which shows the continuity of ζ . □

2. Fixed-Point Theorem

Lemma 2.
Consider the G n -Menger space ( U , ζ , ) in which ∗ is a CTND. Define Ξ ϑ , ζ : U n J by
Ξ ϑ , ζ ( u 1 , , u n ) = inf { τ J : ζ τ u 1 , , u n > 1 ϑ } ,
for each ϑ I and u 1 , , u n U . Then, we have the following:
(I) 
Let u 1 , , u n , w 1 , , w n U . For every ł J , there exists ϑ J such that
Ξ ł , ζ ( u 1 , , u n ) j = 1 n Ξ ϑ , ζ ( u j , w j , w j , , w j ) + Ξ ϑ , ζ ( w 1 , , w n ) ;
(II) 
The sequence { u k } is convergent with respect to the G n -Menger metric ζ, if and only if Ξ ϑ , ζ ( u , u k , , u k ) 0 . Moreover, the sequence { u k } is a Cauchy sequence with respect to the G n -Menger metric ζ, if and only if it is a Cauchy sequence in Ξ ϑ , ζ ;
(III) 
Let u k 1 , u k 2 , , u k n U , where k 1 , , k n N . For every ł J there exists ϑ J such that for n 3 ,
Ξ ł , ζ ( u k 1 , u k 2 , , u k n ) j = 1 n 2 j Ξ ϑ , ζ ( u k j , u k j + 1 , , u k j + 1 ) + Ξ ϑ , ζ ( u k n 1 , u k n , , u k n ) ;
(IV) 
A sequence { u k } in the G n -Menger space U is Cauchy, if and only if, for every ϵ J , there exists a positive integer N such that for every ϵ > 0 ,
Ξ ł , ζ ( u k 1 , u k 2 , , u k 2 ) ϵ ,
for all k 1 , k 2 N .
Proof. 
(I). For every ł I , we can find a ϑ I such that
( 1 ϑ ) ( 1 ϑ ) n + 1 > 1 ł ,
due to the (D) property. Using ( ζ 4 ), we infer
ζ j = 1 n Ξ ϑ , ζ ( u j , w j , w j , , w j ) + Ξ ϑ , ζ ( w 1 , , w n ) + ( n + 1 ) ω u 1 , , u n ζ Ξ ϑ , ζ ( u 1 , w 1 , , w 1 ) + ω u 1 , w 1 , , w 1 ζ Ξ ϑ , ζ ( u 2 , w 2 , , w 2 ) + ω u 2 , w 2 , , w 2 ζ Ξ ϑ , ζ ( u n , w n , , w n ) + ω u n , w n , , w n ζ Ξ ϑ , ζ ( w 1 , w 2 , , w n ) + ω w 1 , w 2 , , w n ( 1 ϑ ) ( 1 ϑ ) n + 1 > 1 ł .
for each ω J . Hence,
Ξ ł , ζ ( u 1 , , u n ) j = 1 n Ξ ϑ , ζ ( u j , w j , w j , , w j ) + Ξ ϑ , ζ ( w 1 , , w n ) + ( n + 1 ) ω .
Letting ω tend to 0, we get
Ξ ł , ζ ( u 1 , , u n ) j = 1 n Ξ ϑ , ζ ( u j , w j , w j , , w j ) + Ξ ϑ , ζ ( w 1 , , w n ) .
(II). We have ζ τ u 1 , , u n > 1 ł Ξ ϑ , ζ ( u 1 , , u n ) < ł for every ł J .
(III). For every ł I , we can find a ϑ I such that for n 3 ,
( 1 ϑ ) ( 1 ϑ ) n ( n 1 ) 2 > 1 ł .
Then, we use a similar method in (I) to complete the proof.
(IV). It follows immediately from (II) and (III). □
We let Θ be the family of all onto and strictly increasing mappings θ : J J such that θ ( ρ ) < ρ for all ρ J , and let all distributional maps be in + + . Since ζ + and ( ζ 1 ), we get in a G n -Menger space ( U , ζ , ) that
ζ τ u 1 , , u n = C , for all τ J implies C = τ 0 .
Lemma 3.
Consider the G n -Menger space ( U , ζ , ) in which ∗ is a CTND. Assume that θ Θ . Then, for τ J
inf { θ k ( τ ) J : ζ τ u 1 , , u n > 1 ϑ } θ k ( inf { τ J : ζ τ u 1 , , u n > 1 ϑ } ) ,
for each u 1 , , u n U , ϑ I and k N .
Proof. 
Let τ J be arbitrary and fixed with ζ τ u 1 , , u n > 1 ϑ . Then, θ k ( τ ) J , and
θ k ( τ ) inf { θ k ( ł ) J : ζ ł u 1 , , u n > 1 ϑ } .
This implies that
τ ( θ k ) 1 ( inf { θ k ( ł ) J : ζ ł u 1 , , u n > 1 ϑ } ) ,
as θ k is onto and strictly increasing. Thus,
inf { τ J : ζ ł u 1 , , u n > 1 ϑ } ( θ k ) 1 ( inf { θ k ( ł ) J : ζ ł u 1 , , u n > 1 ϑ } ) ,
which shows that
inf { θ k ( τ ) J : ζ τ u 1 , , u n > 1 ϑ } θ k ( inf { τ J : ζ τ u 1 , , u n > 1 ϑ } ) .
Lemma 4.
Consider the G n -Menger space ( U , ζ , ) in which ∗ is a CTND. Assume that θ Θ and { u k } U such that
ζ θ k ( τ ) u k , u k + 1 , , u k + 1 ζ τ u 1 , u 2 , , u 2 ,
for all τ J . Then, { u k } is a Cauchy sequence.
Proof. 
From Lemma 3 and our assumption, we arrive at
Ξ ł , ζ ( u k , u k + 1 , , u k + 1 ) = inf { θ k ( τ ) J : ζ θ k ( τ ) u k , u k + 1 , , u k + 1 > 1 ł } inf { θ k ( τ ) J : ζ τ u 1 , u 2 , , u 2 > 1 ł } θ k ( inf { τ J : ζ τ u 1 , u 2 , , u 2 > 1 ł } ) = θ k ( Ξ ł , ζ ( u 1 , u 2 , , u 2 ) ) 0 ,
for every ł I . Applying Lemma 2 (II), (III) and (IV), we conclude that { u k } is a Cauchy sequence. □
We are now ready to present a fixed-point (FP) theorem, with a controller θ Θ , in a complete G n -Menger space ( U , ζ , ) in which ∗ is a CTND. We say a mapping Ω : U U is a G n -Menger- θ -contraction if
ζ ρ Ω ( α 1 ) , , Ω ( α n ) ζ θ ( ρ ) α 1 , , α n ,
for every ρ J .
Theorem 1.
Consider the complete G n -Menger space ( U , ζ , ) in which ∗ is a CTND. Let the G n -Menger-θ-contraction Ω satisfy (6) in which θ Θ . Then, Ω has a unique fixed point in U.
Proof. 
From Lemma 4 and inequality (6), we have that, for each α U , the sequence Ω n α n = 1 + is Cauchy and lim k + Ω k ( α ) = δ U since U is complete. Applying the following inequality
ζ ρ Ω ( α 1 ) , , Ω ( α n ) ζ θ ( ρ ) α 1 , , α n ζ ρ α 1 , , α n
for all α 1 , , α n U and ρ J , we conclude the continuity of Ω and so we get
δ = lim n + Ω n + 1 α = lim n + Ω ( Ω n α ) = Ω ( lim n + Ω n α ) = Ω δ .
In addition, inequality (6) also infers the uniqueness. □

3. Application to the Gn -Menger-Fractal Space

In [20], Hutchinson considered fractal theory, which was further investigated and generalized by Barnsley [21], Bisht [22], Imdad [23], and Ri [24]. The basic concept of fractal theory is that the iterated function system (IFS) serves as the main generator of fractals. This consists of a finite set of G n -Menger- θ -contractions Ω 1 , Ω 2 , , Ω m with ( m 2 ) , defined in a complete G n -Menger space ( U , ζ , ) , satisfying inequality (6). For such an IFS, there is always a unique nonempty compact subset Γ of the complete G n -Menger space ( U , ζ , ) , such that Γ = i = 1 m Ω i ( Γ ) , wherein Γ is a fractal set called the attractor of the respective IFS.
Now, we denote H ( U ) as the set of all nonempty compact subsets of the G n -Menger space ( U , ζ , ) .
Let V j ( j = 1 , , n 1 ) be subsets of the G n -Menger space ( U , ζ , ) , u U and τ J . We define the G n -Menger distance between u and { V 1 , , V n 1 } as
ζ τ u , V 1 , , V n 1 = sup v j V j , j = 1 , 2 , , n 1 ζ τ u , v 1 , , v n 1 .
Lemma 5.
Consider the G n -Menger space ( U , ζ , ) . Then, for every u U , V j H ( U ) ( j = 1 , , n 1 ) and τ J , we can find v j , 0 V j such that
ζ τ u , V 1 , , V n 1 = ζ τ u , v 1 , 0 , , v n 1 , 0 .
Proof. 
Suppose that u U , V j H ( U ) ( j = 1 , , n 1 ) and τ J . Since ζ is continuous from Lemma 1, the compactness of V j ( j = 1 , , n 1 ) implies that we can find v j , 0 V j such that
sup v j V j , j = 1 , 2 , , n 1 ζ τ u , v 1 , , v n 1 = ζ τ u , v 1 , 0 , , v n 1 , 0 ,
so
ζ τ u , V 1 , , V n 1 = ζ τ u , v 1 , 0 , , v n 1 , 0 .
Lemma 6.
Consider the G n -Menger space ( U , ζ , ) . Let u U , V j H ( U ) ( j = 1 , , n 1 ), W U and τ , ς J . Then,
ζ τ + ς u , V 1 , , V n 1 ζ τ u , W , W , , W ζ ς w u , V 1 , , V n 1 ,
where w u W satisfies ζ τ u , W , V 2 , , V n 1 = ζ τ u , w u , V 2 , , V n 1 .
Proof. 
From Lemma 5, we can find a w u W such that
ζ τ u , W , , W = ζ τ u , w u , , w u ,
for every τ J . From Lemma 5 again and ( ζ 4 ), we have
ζ τ + ς u , V 1 , , V n 1 = ζ τ + ς u , v 1 , v 2 , , v n 1 ζ τ u , w u , , w u ζ ς w u , v 1 , , v n 1 = ζ τ u , W , , W ζ ς w u , v 1 , , v n 1 .
Then, the result follows immediately from taking the supremum over v j V j , j = 1 , 2 , , n 1 and inequality (11). □
We now define the G n -Menger Hausdorff–Pompeiu distance among E j , j = 1 , , n , in H ( U ) as:
Υ ζ ρ E 1 , , E n = inf α 1 E 1 sup α j E j , j = 2 , 3 , , n ζ ρ α 1 , , α n M inf α 2 E 2 sup α j E j , j = 1 , 3 , 4 , , n ζ ρ α 1 , , α n M M inf α n E n sup α j E j , j = 1 , 2 , , n 1 ζ ρ α 1 , , α n ,
for every ρ J , which is equivalent to
Υ ζ ρ E 1 , , E n = inf α 1 E 1 ζ ρ α 1 , E 2 , E 3 , , E n M inf α 2 E 2 ζ ρ α 2 , E 1 , E 3 , , E n M M inf α n E n ζ ρ E 1 , E 2 , , E n 1 , α n ,
for every ρ J .
Example 3.
Consider Example 1 in which U = R . Let = M , E 1 = [ e 1 , f 1 ] , E 2 = [ e 2 , f 2 ] and E 3 = [ e 3 , f 3 ] . Define the G n -Menger Hausdorff distance as
Υ ζ ρ E 1 , E 2 , E 3 = exp max i , j { 1 , 2 , 3 } { | e i e j | , | f i f j | } ρ ,
for all ρ J . Then, ( H ( U ) , Υ ζ . . , ) is a G n -Menger space.
Clearly, the classical Hausdorff–Pompeiu distance for compact sets E 1 = [ e 1 , f 1 ] , E 2 = [ e 2 , f 2 ] and E 3 = [ e 3 , f 3 ] is
max i , j { 1 , 2 , 3 } { | e i e j | , | f i f j | } .
Now, using (12), (13), Example 1 and a similar method in ([25] Proposition 3), we have that the G n -Menger Hausdorff distance Υ ζ ρ E 1 , E 2 , E 3 is a G n -Menger distance.
Lemma 7.
Consider the G n -Menger space ( U , ζ , ) . Then, ( H ( U ) , Υ ζ . . , ) is a G n -Menger space.
Proof. 
Clearly, ( ζ 1 ) , ( ζ 2 ) and ( ζ 3 ) are straightforward. It only remains to prove ( ζ 4 ) .
Suppose that E j H ( U ) , j = 1 , , n , u E 1 , and ς , τ J . Let W U . From Lemma 6, we have
ζ τ + ς u , E 2 , , E n ζ ς u , W , W , , W ζ τ w u , E 2 , , E n ,
where w u W satisfies ζ τ u , W , E 2 , , E n = ζ τ u , w u , E 2 , , E n . Let α j E j , j = 1 , 2 , , n , and from ( ζ 4 ) we have
Υ ζ ς + τ E 1 , , E n = inf α 1 E 1 ζ ς + τ α 1 , E 2 , E 3 , , E n M inf α 2 E 2 ζ ς + τ α 2 , E 1 , E 3 , , E n M M inf α n E n ζ ς + τ E 1 , E 2 , , E n 1 , α n inf α 1 E 1 [ ζ ς α 1 , W , W , , W ζ τ w α 1 , E 2 , E 3 , , E n ] M inf α 2 E 2 [ ζ ς α 2 , W , W , , W ζ τ w α 2 , E 1 , E 3 , , E n ] M M inf α n E n [ ζ ς W , W , , W , α n ζ τ E 1 , E 2 , , E n 1 , w α n ] [ inf α 1 E 1 ζ ς α 1 , W , W , , W inf α 2 E 2 ζ ς α 2 , W , W , , W inf α n E n ζ ς W , W , , W , α n ] M [ ζ τ w α 1 , E 2 , E 3 , , E n ζ τ w α 2 , E 1 , E 3 , , E n ζ τ w α 2 , E 1 , E 3 , , E n ] ,
which gives
Υ ζ ς + τ E 1 , , E n [ Υ ζ ς E 1 , W , , W ] M [ ζ τ w α 1 , E 2 , E 3 , , E n ζ τ w α 2 , E 1 , E 3 , , E n ζ τ w α 2 , E 1 , E 3 , , E n ] .
Taking the supremum over (16) for all w W , we arrive at
Υ ζ ς + τ E 1 , , E n Υ ζ ς E 1 , W , , W M Υ W , E 2 , , E n ζ τ Υ ζ ς E 1 , W , , W Υ W , E 2 , , E n ζ τ .
Lemma 8.
Assume that ( U , ζ , ) is a complete G n -Menger space. Suppose that θ Θ and Ω is a G n -Menger-θ-contraction. Then,
Υ ζ ρ Γ Ω ( E 1 ) , , Γ Ω ( E n ) Υ ζ θ ( ρ ) E 1 , , E n ,
for every E 1 , , E n H ( U ) and ρ J , and Γ Ω : H ( U ) H ( U ) is also a G n -Menger-θ-contraction, where Γ Ω ( G ) : = Ω ( G ) for every G H ( U ) .
Proof. 
Consider E 1 , , E n in H ( U ) . Using inequality (6) and definition (12), we get
Υ ζ ρ Γ Ω ( E 1 ) , , Γ Ω ( E n ) = Υ ζ ρ Ω ( E 1 ) , Ω ( E n ) = inf Ω ( α 1 ) Ω ( E 1 ) sup Ω ( α j ) Ω ( E j ) , j = 2 , 3 , , n ζ ρ Ω ( E 1 ) , , Ω ( E n ) M inf Ω ( α 2 ) Ω ( E 2 ) sup Ω ( α j ) Ω ( E j ) , j = 1 , 3 , 4 , , n ζ ρ Ω ( E 1 ) , , Ω ( E n ) M M inf Ω ( α n ) Ω ( E n ) sup Ω ( α j ) Ω ( E j ) , j = 1 , 2 , , n 1 ζ ρ Ω ( E 1 ) , , Ω ( E n ) = inf α 1 E 1 sup α j E j , j = 2 , 3 , , n ζ ρ Ω ( E 1 ) , , Ω ( E n ) M inf α 2 E 2 sup Ω ( α j ) Ω ( E j ) , j = 1 , 3 , 4 , , n ζ ρ Ω ( E 1 ) , , Ω ( E n ) M M inf α n E n sup Ω ( α j ) Ω ( E j ) , j = 1 , 2 , , n 1 ζ ρ Ω ( E 1 ) , , Ω ( E n ) inf α 1 E 1 sup α j E j , j = 2 , 3 , , n ζ θ ( ρ ) α 1 , , α n M inf α 2 E 2 sup α j E j , j = 1 , 3 , 4 , , n ζ θ ( ρ ) α 1 , , α n M M inf α n E n sup α j E j , j = 1 , 2 , , n 1 ζ θ ( ρ ) α 1 , , α n = Υ E 1 , , E n ζ θ ( ρ ) ,
for every ρ J . □
Theorem 2.
Assume that ( U , ζ , ) is a complete G n -Menger space in which ∗ is a CTND. Suppose that θ Θ and Ω is G n -Menger-θ-contractive. Then, Γ Ω : H ( U ) H ( U ) has a unique fixed point.
Proof. 
From Lemma 8, Γ Ω is G n -Menger- θ -contractive on H ( U ) and so by Theorem 1, Γ Ω has a unique fixed point. □
Example 4.
Consider the complete G n -Menger space defined in Example 1. Suppose that θ ( τ ) = τ 1 + τ , Ω ( u ) = u 3 and Γ Ω [ u , u ] = [ u 3 , u 3 ] . It is easy to show that Ω is G n -Menger-θ-contractive. Furthermore, Γ Ω has a unique fixed point { 0 } .

4. Conclusions

We defined a new version of the probabilistic Hausdorff–Pompeiu distance using the concept of G n -Menger space and we presented a new fixed-point theorem for G n -Menger- θ -contractions in G n -Menger fractal spaces. In the future, we hope to consider our results to get more common fixed-point theorems to investigate the existence and uniqueness of solutions for differential and integral equations.

Author Contributions

D.O., project administration, writing and editing; R.S., writing—original draft preparation and supervision and project administration; C.L., methodology and editing; F.J., editing. All authors have read and agreed to the published version of the manuscript.

Funding

Chenkuan Li is supported by the Natural Sciences and Engineering Research Council of Canada (grant no. 2019-03907).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No data were required for this manuscript.

Acknowledgments

The authors are thankful to anonymous referees for giving valuable comments and suggestions.

Conflicts of Interest

The authors declare that they have no competing interest.

References

  1. Schweizer, B.; Sklar, A.; Schweizer, B.; Sklar, A. Probabilistic Metric Spaces; North-Holland Publishing Co.: New York, NY, USA, 1983. [Google Scholar]
  2. Šerstnev, A.N. Best-approximation problems in random normed spaces. Dokl. Akad. Nauk SSSR 1963, 149, 539–542. [Google Scholar]
  3. Saadati, R. Random Operator Theory; Elsevier/Academic Press: London, UK, 2016. [Google Scholar]
  4. Hadžić, O.; Pap, E. Mathematics and Its Applications, 536; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
  5. Soleimani Rad, G.; Shukla, S.; Rahimi, H. Some relations between n-tuple fixed point and fixed point results. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 2015, 109, 471–481. [Google Scholar] [CrossRef]
  6. Bakery, A.A.; Mohammed, M.M. On lacunary mean ideal convergence in generalized random n-normed spaces. Abstr. Appl. Anal. 2014, 2014, 101782. [Google Scholar] [CrossRef]
  7. De la Sen, M.; Karapinar, E. Some results on best proximity points of cyclic contractions in probabilistic metric spaces. J. Funct. Spaces 2015, 2015, 470574. [Google Scholar] [CrossRef]
  8. Jebril, I.H.; Hatamleh, R.E. Random n-normed linear space. Int. J. Open Probl. Comput. Sci. Math. 2009, 2, 489–495. [Google Scholar]
  9. Khan, K.A. Generalized n-metric spaces and fixed point theorems. J. Nonlinear Convex Anal. 2014, 15, 1221–1229. [Google Scholar]
  10. Lotfali Ghasab, E.; Majani, H.; De la Sen, M.; Soleimani Rad, G. e-Distance in Menger PGM Spaces with an Application. Axioms 2021, 10, 3. [Google Scholar] [CrossRef]
  11. Mustafa, Z.; Jaradat, M.M.M. Some remarks concerning D*–metric spaces. J. Math. Comput. Sci.-JMCS 2021, 22, 128–130. [Google Scholar] [CrossRef]
  12. Akram, M.; Mazhar, Y. Some fixed point theorems of self-generalized contractions in partially ordered G-metric spaces. J. Math. Comput. Sci.-JMCS 2017, 17, 317–324. [Google Scholar] [CrossRef]
  13. Hashemi, E.; Ghaemi, M.B. Ekeland’s variational principle in complete quasi-G-metric spaces. J. Nonlinear Sci. Appl. 2019, 12, 184–191. [Google Scholar] [CrossRef]
  14. Sadeghi, Z.; Vaezpour, S.M. Fixed point theorems for multivalued and single-valued contractive mappings on Menger PM spaces with applications. J. Fixed Point Theory Appl. 2018, 20, 114. [Google Scholar] [CrossRef]
  15. Gupta, V.; Saini, R.K.; Deep, R. Some fixed point results in G-metric space involving generalised altering distances. Int. J. Appl. Nonlinear Sci. 2018, 3, 66–76. [Google Scholar] [CrossRef]
  16. Alihajimohammad, A.; Saadati, R. Generalized modular fractal spaces and fixed point theorems. Adv. Differ. Equ. 2021, 383, 10. [Google Scholar] [CrossRef]
  17. Abdeljawad, T.; Kalla, K.S.; Panda, S.K.; Mukheimer, A. Solving the system of nonlinear integral equations via rational contractions. AIMS Math. 2021, 6, 3562–3582. [Google Scholar]
  18. Alihajimohammad, A.; Saadati, R. Generalized fuzzy GV-Hausdorff distance in GFGV-fractal spaces with application in integral equation. J. Inequal. Appl. 2021, 143, 15. [Google Scholar] [CrossRef]
  19. Tian, J.-F.; Ha, M.-H.; Tian, D.-Z. Tripled fuzzy metric spaces and fixed point theorem. Inform. Sci. 2020, 518, 113–126. [Google Scholar] [CrossRef]
  20. Hutchinson, J.E. Fractals and self-similarity. Indiana Univ. Math. J. 1981, 30, 713–747. [Google Scholar] [CrossRef]
  21. Barnsley, M. Fractals Everywhere; Academic Press, Inc.: Boston, MA, USA, 1988. [Google Scholar]
  22. Bisht, R.K. Comment on: A new fixed point theorem in the fractal space. Indag. Math. 2018, 29, 819–823. [Google Scholar] [CrossRef]
  23. Imdad, M.; Alfaqih, W.M.; Khan, I.A. Weak θ-contractions and some fixed point results with applications to fractal theory. Adv. Differ. Equ. 2018, 439, 18. [Google Scholar] [CrossRef]
  24. Ri, S.-i. A new fixed point theorem in the fractal space. Indag. Math. 2016, 27, 85–93. [Google Scholar] [CrossRef]
  25. Rodriguez-Lopez, J.; Romaguera, S. The Hausdorff fuzzy metric on compact sets. Fuzzy Sets Syst. 2004, 147, 273–283. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

O’Regan, D.; Saadati, R.; Li, C.; Jarad, F. The Hausdorff–Pompeiu Distance in Gn-Menger Fractal Spaces. Mathematics 2022, 10, 2958. https://doi.org/10.3390/math10162958

AMA Style

O’Regan D, Saadati R, Li C, Jarad F. The Hausdorff–Pompeiu Distance in Gn-Menger Fractal Spaces. Mathematics. 2022; 10(16):2958. https://doi.org/10.3390/math10162958

Chicago/Turabian Style

O’Regan, Donal, Reza Saadati, Chenkuan Li, and Fahd Jarad. 2022. "The Hausdorff–Pompeiu Distance in Gn-Menger Fractal Spaces" Mathematics 10, no. 16: 2958. https://doi.org/10.3390/math10162958

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop