New Masjed Jamei–Type Inequalities for Inverse Trigonometric and Inverse Hyperbolic Functions
Abstract
:1. Introduction
2. Main Results
2.1. Lemms
2.2. Main Results and Their Proofs
3. Some Improvements of Mitrinovic–Adamović and Lazarević Inequalities and Remarks
4. Some Applications of Theorem 1 and Theorem 2 in the Mean Value Theory
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Masjed-Jamei, M. A main inequality for several special functions. Comput. Math. Appl. 2010, 60, 1280–1289. [Google Scholar] [CrossRef]
- Zhu, L.; Malešević, B. Inequalities between the inverse hyperbolic tangent and the inverse sine and the analogue for corresponding functions. J. Inequalities Appl. 2019, 2019, 93. [Google Scholar] [CrossRef]
- Malešević, B.; Lutovac, T.; Rašajski, M.; Mortici, C. Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities. Adv. Differ. Equa. 2018, 2018, 90. [Google Scholar] [CrossRef] [PubMed]
- Lutovac, T.; Malešević, B.; Mortici, C. The natural algorithmic approach of mixed trigonometric-polynomial problems. J. Inequalities Appl. 2017, 2017, 116. [Google Scholar] [CrossRef] [PubMed]
- Lutovac, T.; Malešević, B.; Rašajski, M. A new method for proving some inequalities related to several special functions. Res. Math. 2018, 73, 100. [Google Scholar] [CrossRef]
- Malešević, B.; Rašajski, M.; Lutovac, T. Refinements and generalizations of some inequalities of Shafer-Fink’s type for the inverse sine function. J. Inequalities Appl. 2017, 2017, 275. [Google Scholar] [CrossRef]
- Rašajski, M.; Lutovac, T.; Maleševic, B. About some exponential inequalities related to the sinc function. J. Inequalities Appl. 2018, 2018, 150. [Google Scholar] [CrossRef]
- Banjac, B.; Makragić, M.; Maleševic, B. Some notes on a method for proving inequalities by computer. Res. Math. 2016, 69, 161–176. [Google Scholar] [CrossRef]
- Nenezić, M.; Zhu, L. Some improvements of Jordan-Steckin and Becker-Stark inequalities. Appl. Anal. Discrete Math. 2018, 12, 244–256. [Google Scholar] [CrossRef]
- Zhu, L.; Malešević, B. Natural approximation of Masjed-Jamei’s inequality. RACSAM 2020, 114, 25. [Google Scholar] [CrossRef]
- Chesneau, C.; Bagul, Y.J. On a reverse trigonometric Masjed-Jamei inequality. Asia Pac. J. Math. 2021, 8, 13. [Google Scholar]
- Chen, C.P.; Malešević, B. Inequalities related to certain inverse trigonometric and inverse hyperbolic functions. RACSAM 2020, 114, 105. [Google Scholar] [CrossRef]
- Chen, X.-D.; Nie, L.; Huang, W.K. New inequalities between the inverse hyperbolic tangent and the analogue for corresponding functions. J. Inequalities Appl. 2020, 2020, 131. [Google Scholar] [CrossRef]
- Mitrinović, D.S.; Adamović, D.D. Sur Une Inegalite Elementaire Ou Interviennent Des Fonctions Trigonometriques; Publikacije Elektrotehnickog Fakulteta. Serija Matematika i Fizika; Univerzitet u Beogradu: Belgrade, Serbia, 1965; Volume 149, pp. 23–34. [Google Scholar]
- Mitrinović, D.S.; Adamović, D.D. Complement a L’article “Sur Une Inegalite Elementaire Ou Interviennent Des Fonctions Trigonometriques”; Publikacije Elektrotehnickog Fakulteta. Serija Matematika i Fizika; Univerzitet u Beogradu: Belgrade, Serbia, 1966; Volume 166, pp. 31–32. [Google Scholar]
- Lazarević, I. Neke Nejednakosti Sa Hiperbolickim Funkcijama; Publikacije Elektrotehnickog Fakulteta. Serija Matematika i Fizika; Univerzitet u Beogradu: Belgrade, Serbia, 1966; Volume 170, pp. 41–48. [Google Scholar]
- Yang, Z.-H.; Qian, W.-M.; Chu, Y.-M.; Zhang, W. On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 2018, 462, 1714–1726. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; U.S. National Bureau of Standards: Washington, DC, USA, 1964. [Google Scholar]
- Jeffrey, A. Handbook of Mathematical Formulas and Integrals, 3rd ed.; Elsevier Academic Press: San Diego, CA, USA, 2004. [Google Scholar]
- D’Aniello, C. On some inequalities for the Bernoulli numbers. Rend. Del Circ. Mat. Palermo. Ser. II 1994, 43, 329–332. [Google Scholar] [CrossRef]
- Alzer, H. Sharp bounds for the Bernoulli numbers. Arch. Der Math. 2000, 74, 207–211. [Google Scholar] [CrossRef]
- Mitrinović, D.S. Analytic Inequalities; Springer: New York, NY, USA, 1970. [Google Scholar]
- Bullen, P.S. Handbook of Means and Their Inequalities; Kluwer Academic Publishers: Dordrecht, The Nethrelands, 2003. [Google Scholar]
- Ostle, B.; Terwilliger, H.L. A comparison of two means. Proc. Montana Acad. Sci. 1957, 17, 69–70. [Google Scholar]
- Leach, E.B.; Sholander, M.C. Extended mean values. J. Math. Anal. Appl. 1983, 92, 207–223. [Google Scholar] [CrossRef]
- Stolarsky, K.B. The power mean and generalized logarithmic means. Amer. Math. Monthly 1980, 87, 545–548. [Google Scholar] [CrossRef]
- Carlson, B.C. The logarithmic mean. Amer. Math. Monthly 1972, 79, 615–618. [Google Scholar] [CrossRef]
- Alzer, H.; Qiu, S.-L. Inequalities for means in two variables. Arch. Math. 2003, 80, 201–215. [Google Scholar] [CrossRef]
- Zhu, L. From chains for mean value Inequalities to Mitrinovic’s problem II. Int. J. Educ. Sci. Technol. 2005, 36, 118–125. [Google Scholar] [CrossRef]
- Kahlig, P.; Matkowski, J. Decomposition of homogeneous means and construction of some metric spaces. Math. Inequal. Appl. 1998, 1, 463–480. [Google Scholar] [CrossRef]
- Witkowski, A. On Seiffert–like means. J. Math. Inequal. 2015, 9, 1071–1092. [Google Scholar] [CrossRef]
- Nowicka, M.; Witkowski, A. Optimal bounds for the tangent and hyperbolic sine means II. J. Math. Inequal. 2020, 14, 23–33. [Google Scholar] [CrossRef]
- Nowicka, M.; Witkowski, A. Optimal bounds for the tangent and hyperbolic sine means. Aequat. Math. 2020, 94, 817–827. [Google Scholar] [CrossRef]
- Seiffert, H.-J. Problem 887. Nieuw Arch. Wiskd. 1993, 11, 176. [Google Scholar]
- Seiffert, H.-J. Aufgabe β 16. Wurzel 1995, 29, 221–222. [Google Scholar]
- Neuman, E.; Sándor, J. On the Schwab-Borchardt mean. Math. Pannon. 2003, 14, 253–266. [Google Scholar]
- Neuman, E.; Sándor, J. On the Schwab–Borchardt mean II. Math. Pannon. 2006, 17, 49–59. [Google Scholar]
- Hästö, P.A. Optimal inequalities between Seiffert mean and power means. Math. Inequal. Appl. 2004, 7, 47–53. [Google Scholar]
- Kukushkin, M.V. Spectral properties of fractional differentiation op erators. Elec. J. Diff. Equa. 2018, 29, 1–24. [Google Scholar]
- Kukushkin, M.V. Asymptotics of eigenvalues for differential operators of fractional order. Fract. Calc. Appl. Anal. 2019, 22, 658–680. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L. New Masjed Jamei–Type Inequalities for Inverse Trigonometric and Inverse Hyperbolic Functions. Mathematics 2022, 10, 2972. https://doi.org/10.3390/math10162972
Zhu L. New Masjed Jamei–Type Inequalities for Inverse Trigonometric and Inverse Hyperbolic Functions. Mathematics. 2022; 10(16):2972. https://doi.org/10.3390/math10162972
Chicago/Turabian StyleZhu, Ling. 2022. "New Masjed Jamei–Type Inequalities for Inverse Trigonometric and Inverse Hyperbolic Functions" Mathematics 10, no. 16: 2972. https://doi.org/10.3390/math10162972
APA StyleZhu, L. (2022). New Masjed Jamei–Type Inequalities for Inverse Trigonometric and Inverse Hyperbolic Functions. Mathematics, 10(16), 2972. https://doi.org/10.3390/math10162972