Hermite–Hadamard and Jensen-Type Inequalities for Harmonical (h1, h2)-Godunova–Levin Interval-Valued Functions
Abstract
:1. Introduction
2. Mathematical Backgrounds and Preliminaries
3. Main Results
3.1. Hermite–Hadamard Inequalities
3.2. Jensen-Type Inequality
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Moore, R.E. Interval Analysis; Prentice-Hall: Hoboken, NJ, USA, 1966. [Google Scholar]
- Li, Y.; Wang, T. Interval analysis of the wing divergence. Aerosp. Sci. Technol. 2018, 74, 17–21. [Google Scholar] [CrossRef]
- Gasilov, N.A.; Emrah Amrahov, Ş. Solving a nonhomogeneous linear system of interval differential equations. Soft Comput. 2018, 22, 3817–3828. [Google Scholar] [CrossRef]
- Rothwell, E.J.; Cloud, M.J. Automatic error analysis using intervals. IEEE Trans. Educ. 2011, 55, 9–15. [Google Scholar] [CrossRef]
- De Weerdt, E.; Chu, Q.P.; Mulder, J.A. Neural network output optimization using interval analysis. IEEE Trans. Neural Netw. 2009, 20, 638–653. [Google Scholar] [CrossRef]
- Snyder, J.M. Interval analysis for computer graphics. In Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, Chicago, IL, USA, 27–31 July 1992; pp. 121–130. [Google Scholar]
- Chalco-Cano, Y.; Rufián-Lizana, A.; Román-Flores, H.; Jiménez-Gamero, M.D. Calculus for interval-valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets Syst. 2013, 219, 49–67. [Google Scholar] [CrossRef]
- Chalco-Cano, Y.; Silva, G.N.; Rufián-Lizana, A. On the Newton method for solving fuzzy optimization problems. Fuzzy Sets Syst. 2015, 272, 60–69. [Google Scholar] [CrossRef]
- Entani, T.; Inuiguchi, M. Pairwise comparison based interval analysis for group decision aiding with multiple criteria. Fuzzy Sets Syst. 2015, 274, 79–96. [Google Scholar] [CrossRef]
- Osuna-Gómez, R.; Chalco-Cano, Y.; Hernández-Jiménez, B.; Ruiz-Garzón, G. Optimality conditions for generalized differentiable interval-valued functions. Inf. Sci. 2015, 321, 136–146. [Google Scholar] [CrossRef]
- Moore, R.E.; Kearfott, R.B.; Cloud, M.J. Introduction to Interval Analysis; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2009. [Google Scholar]
- Chalco-Cano, Y.; Flores-Franulič, A.; Román-Flores, H. Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative. Comput. Appl. Math. 2012, 31, 457–472. [Google Scholar]
- Chalco-Cano, Y.; Lodwick, W.A.; Condori-Equice, W. Ostrowski type inequalities and applications in numerical integration for interval-valued functions. Soft Comput. 2015, 19, 3293–3300. [Google Scholar] [CrossRef]
- Costa, T. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
- Costa, T.M.; Román-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Pecaric, J.; Persson, L.E. Some inequalities of Hadamard type. Soochow J. Math. 1995, 21, 335–341. [Google Scholar]
- Dragomir, S.S. Inequalities of Hermite-Hadamard type for functions of selfadjoint operators and matrices. J. Math. Inequalities 2017, 11, 241–259. [Google Scholar] [CrossRef]
- Latif, M. On Some New Inequalities of Hermite-Hadamard Type for Functions Whose Derivatives are s-Convex in the Second Sense in the Absolute Value. Ukr. Math. J. 2016, 67, 1552–1571. [Google Scholar] [CrossRef]
- Noor, M.A.; Cristescu, G.; Awan, M.U. Generalized Fractional Hermite-Hadamard Inequalities for Twice Differentiable s-Convex Functions. Filomat 2015, 29, 807–815. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U.; Li, J. On Hermite-Hadamard Inequalities for h-Preinvex Functions. Filomat 2014, 28, 1463–1474. [Google Scholar] [CrossRef]
- İşcan, İ. Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U.; Costache, S. Some integral inequalities for harmonically h-convex functions. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2015, 77, 5–16. [Google Scholar]
- Zhao, D.; An, T.; Ye, G.; Liu, W. New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions. J. Inequalities Appl. 2018, 2018, 1–14. [Google Scholar] [CrossRef]
- Zhao, D.; An, T.; Ye, G.; Torres, D.F. On Hermite-Hadamard type inequalities for harmonical h-convex interval-valued functions. arXiv 2019, arXiv:1911.06900. [Google Scholar]
- An, Y.; Ye, G.; Zhao, D.; Liu, W. Hermite-Hadamard type inequalities for interval (h1, h2)-convex functions. Mathematics 2019, 7, 436. [Google Scholar] [CrossRef]
- Liu, R.; Xu, R. Hermite-Hadamard type inequalities for harmonical (h1, h2) convex interval-valued functions. Math. Found. Comput. 2021, 4, 89. [Google Scholar] [CrossRef]
- Almutairi, O.; Kılıçman, A. Some integral inequalities for h-Godunova-Levin preinvexity. Symmetry 2019, 11, 1500. [Google Scholar] [CrossRef]
- Bai, H.; Saleem, M.S.; Nazeer, W.; Zahoor, M.S.; Zhao, T. Hermite-Hadamard-and Jensen-type inequalities for interval nonconvex function. J. Math. 2020, 2020, 3945384. [Google Scholar] [CrossRef]
- Danet, N. Some Remarks On The Pompeiu-Hausdorff Distance Between Order Intervals. Acad. Caius Iacob 2012, 1912–1992, 51. [Google Scholar]
- Dinghas, A. Zum Minkowskischen Integralbegriff abgeschlossener Mengen. Math. Z. 1956, 66, 173–188. [Google Scholar] [CrossRef]
- Awan, M.U. Integral inequalities for harmonically s-Godunova-Levin functions. Facta Univ. Ser. Math. Inform. 2015, 29, 415–424. [Google Scholar]
- Godunova, E.K.; Levin, V.I. Neravenstva dlja funkcii sirokogo klassa, soderzascego vypuklye, monotonnye i nekotorye drugie vidy funkii. Vycislitel. Mat. i Fiz. Mezvuzov. Sb. Nauc. Trudov MGPI Moskva 1985, 9, 138–142. [Google Scholar]
- Baloch, I.A.; Mughal, A.A.; Chu, Y.M.; Haq, A.U.; Sen, M.D.L. A variant of Jensen-type inequality and related results for harmonic convex functions. Aims Math. 2020, 5, 6404–6418. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afzal, W.; Alb Lupaş, A.; Shabbir, K. Hermite–Hadamard and Jensen-Type Inequalities for Harmonical (h1, h2)-Godunova–Levin Interval-Valued Functions. Mathematics 2022, 10, 2970. https://doi.org/10.3390/math10162970
Afzal W, Alb Lupaş A, Shabbir K. Hermite–Hadamard and Jensen-Type Inequalities for Harmonical (h1, h2)-Godunova–Levin Interval-Valued Functions. Mathematics. 2022; 10(16):2970. https://doi.org/10.3390/math10162970
Chicago/Turabian StyleAfzal, Waqar, Alina Alb Lupaş, and Khurram Shabbir. 2022. "Hermite–Hadamard and Jensen-Type Inequalities for Harmonical (h1, h2)-Godunova–Levin Interval-Valued Functions" Mathematics 10, no. 16: 2970. https://doi.org/10.3390/math10162970
APA StyleAfzal, W., Alb Lupaş, A., & Shabbir, K. (2022). Hermite–Hadamard and Jensen-Type Inequalities for Harmonical (h1, h2)-Godunova–Levin Interval-Valued Functions. Mathematics, 10(16), 2970. https://doi.org/10.3390/math10162970