Convergence of Special Sequences of Semi-Exponential Operators
Abstract
:1. Introduction
- (A)
- Operators representable as limits of sequences of other operators. Making intensive use of probabilistic methods, it is possible to show that certain positive linear operators can be represented as limits of suitably modified classical operators (see, e.g., [1] and several subsequent papers by J. de la Cal and co-authors [2,3,4,5,6] and the references therein).
- (B)
2. Definitions and Examples
3. Semi-Exponential Bernstein Operators
4. Semi-Exponential Post–Widder Operators
5. Composition of Operators
5.1. as a Limit of Baskakov Type Operators
5.2. Jakimovski-Leviatan Type Operators
5.3. Compositions of Post-Widder Operators and Semi-Exponential Szász-Mirakjan Operators
5.4. Composition of Post-Widder Operators and Szász–Durrmeyer Operators
5.5. Balázs-Szabados Operators
6. The Semi-Exponential Gauss–Weierstrass Operators
7. Conclusions and Further Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cal, J.D.; Luquin, F. A note on limiting properties of some Bernstein-type operators. J. Approx. Theory 1992, 68, 322–329. [Google Scholar] [CrossRef]
- Adell, J.A.; Badia, F.G.; Cal, J.D. On the Iterates of Some Bernstein-Type Operators. J. Math. Anal. Appl. 1997, 209, 529–541. [Google Scholar] [CrossRef]
- Adell, J.A.; Cal, J.D. Limiting properties of Inverse Beta and generalized Bleimann-Butzer-Hahn operators. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1993; Volume 114, pp. 489–498. [Google Scholar]
- Adell, J.A.; Cal, J.D.; Rasa, I. Lototsky-Schnabl operators on the unit interval. Rend. Circ. Mat. Palermo 1999, 48, 517–536. [Google Scholar] [CrossRef]
- Cal, J.D. On Stancu-Mühlbach operators and some connected problems concerning probability distribution. J. Aprox. Theory 1993, 74, 59–68. [Google Scholar]
- Cal, J.D.; Luquin, F. Approximation Szász and Gamma operators by Baskakov operators. J. Math. Anal. Appl. 1994, 184, 585–593. [Google Scholar]
- Altomare, F.; Rasa, I. On a class of exponential-type operators and their limit semigroups. J. Approx. Theory 2005, 135, 258–275. [Google Scholar] [CrossRef]
- Ismail, M.; May, C.P. On a family of approximation operators. J. Math. Anal. Appl. 1978, 63, 446–462. [Google Scholar] [CrossRef]
- Ismail, M. Polynomials of binomial type and approximation theory. J. Approx. Theory 1978, 23, 177–186. [Google Scholar] [CrossRef]
- Sato, K. Global approximation theorems for some exponential-type operators. J. Approx. Theory 1981, 32, 32–46. [Google Scholar] [CrossRef]
- Totik, V. Uniform approximation by exponential-type operators. J. Math. Anal. Appl. 1988, 132, 238–246. [Google Scholar] [CrossRef]
- Moreno, A.J.L. Preservation of Lipschitz constants by Bernstein type operators. Acta Math. Hungar. 2005, 106, 343–354. [Google Scholar] [CrossRef]
- Gupta, V. Convergence estimates of certain exponential type operators. In Mathematical Analysis: Approximation Theory; Springer Proceedings in Mathematics & Statistics 306; Deo, N., Gupta, V., Acu, A.M., Agrawal, P.N., Eds.; Springer: Singapore, 2020; pp. 47–55. [Google Scholar]
- Gupta, V.; Rassias, M.T. Moments of Linear Positive Operators and Approximation; Springer Briefs in Mathematics; Springer: Basel, Switzerland, 2019. [Google Scholar]
- Acu, A.M.; Heilmann, M.; Rasa, I.; Seserman, A. Poisson approximation to the binomial distribution: Extensions to the convergence of positive operators. arXiv:2208.08326.
- Herzog, M. Semi-Exponential Operators. Symmetry 2021, 13, 637. [Google Scholar] [CrossRef]
- Tyliba, A.; Wachnicki, E. On some class of exponential type operators. Ann. Soc. Math. Pol. Ser. I Comment. Math. 2005, 45, 59–73. [Google Scholar]
- Abel, U.; Gupta, V.; Sisodia, M. Some new semi-exponential operators. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2022, 116, 87. [Google Scholar] [CrossRef]
- Ditzian, Z.; Totik, V. Moduli of Smoothness; Springer: New York, NY, USA, 1987. [Google Scholar]
- Abell, U.; Gupta, V. Rate of convergence of exponential type operators related to p(x) = 2x3/2 for functions of bounded variation. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2020, 114, 188. [Google Scholar] [CrossRef]
- Altomare, F.; Campiti, M. Korovkin-Type Approximation Theory and Its Applications; Series: De Gruyter Studies in Mathematics; de Gruyter: Berlin, Germany, 1994; Volume 17. [Google Scholar]
- Gavrea, B. On a convexity problem with applications to Mastroianni type operators. Math. Ineq. Appl. 2020, 23, 765–773. [Google Scholar] [CrossRef]
- Kazmin, Y.A. On Appell polynomials. Mat. Zametki 1969, 6, 161–172, English translation in Math. Notes 1969, 5, 556–562. [Google Scholar] [CrossRef]
- Varma, S.; Sucu, S. A generalization of Szász operators by using the Appell polynomials of class A(2). Symmetry 2022, 14, 1410. [Google Scholar] [CrossRef]
- Balázs, K.; Szabados, J. Approximation by Bernstein-type rational functions II. Acta Math. Acad. Sci. Hungar. 1982, 40, 331–337. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acu, A.M.; Gupta, V.; Raşa, I.; Sofonea, F. Convergence of Special Sequences of Semi-Exponential Operators. Mathematics 2022, 10, 2978. https://doi.org/10.3390/math10162978
Acu AM, Gupta V, Raşa I, Sofonea F. Convergence of Special Sequences of Semi-Exponential Operators. Mathematics. 2022; 10(16):2978. https://doi.org/10.3390/math10162978
Chicago/Turabian StyleAcu, Ana Maria, Vijay Gupta, Ioan Raşa, and Florin Sofonea. 2022. "Convergence of Special Sequences of Semi-Exponential Operators" Mathematics 10, no. 16: 2978. https://doi.org/10.3390/math10162978
APA StyleAcu, A. M., Gupta, V., Raşa, I., & Sofonea, F. (2022). Convergence of Special Sequences of Semi-Exponential Operators. Mathematics, 10(16), 2978. https://doi.org/10.3390/math10162978