Next Article in Journal
Developing a Variable Speed Limit Control Strategy for Mixed Traffic Flow Based on Car-Following Collision Avoidance Theory
Next Article in Special Issue
Representation of Lipschitz Maps and Metric Coordinate Systems
Previous Article in Journal
Scheduling with Resource Allocation, Deteriorating Effect and Group Technology to Minimize Total Completion Time
Previous Article in Special Issue
On Principal Fuzzy Metric Spaces
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Interpolative Meir–Keeler Mappings in Modular Metric Spaces

by
Erdal Karapınar
1,2,3,*,
Andreea Fulga
4 and
Seher Sultan Yeşilkaya
1
1
Division of Applied Mathematics, Thu Dau Mot University, Thu Dau Mot 75000, Vietnam
2
Department of Mathematics, Çankaya University, Etimesgut, Ankara 06790, Turkey
3
Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
4
Department of Mathematics and Computer Science, Transilvania University of Brasov, 500123 Brasov, Romania
*
Author to whom correspondence should be addressed.
Mathematics 2022, 10(16), 2986; https://doi.org/10.3390/math10162986
Submission received: 28 July 2022 / Revised: 13 August 2022 / Accepted: 16 August 2022 / Published: 18 August 2022
(This article belongs to the Special Issue New Progress in General Topology and Its Applications)

Abstract

:
Modular metric space is one of the most interesting spaces in the framework of the metric fixed point theory. The main goal of the paper is to provide some certain fixed point results in the context of modular metric spaces and non-Archimedean modular metric spaces. In particular, we examine the existence of interpolative Meir–Keeler contraction types via admissible mappings for fixed point theory. Our results bring together several results available in the current corresponding literature.

1. Introduction

The idea of the theory of modular spaces was first put forward by Nakano [1] and was later reconsidered in detail by Musielak and Orlicz [2]. In 2010, Chistyakov [3,4] generalized modular spaces and complete metric spaces by introducing modular metric spaces. In the last two decades, the modular metric space has been an interesting abstract space for nonlinear functional analysis, and hence, it has been investigated densely by many researchers. For more features of the concepts of modular metric space, see e.g., [5,6,7].
The metric fixed point theory is a very rich area for research that was initiated by Banach. One of the most interesting and early characterizations of the Banach theorem was given by Kannan [8]. It was later understood that Kannan contraction is independent from the Banach contractions [9]. Another crucial contraction, weakly uniformly strict contraction, was observed by Meir–Keeler [10]. It was later called the Meir–Keeler contraction. As it is expected, it is a proper generalization of Banach’s principle, see e.g., [11,12]. In addition to all such linear extensions of the contraction mapping, we underline the notion of admissible auxiliary function that plays one of the key roles in initiating many interesting contractions. In particular, Samet et al. [13] used admissible functions to extend the renowned Banach fixed point theorem. Following this paper, a huge number of papers appeared in which the admissible functions are used to improve well-known existing results in the metric fixed point theory.
In addition to all these advances on the metric fixed point theory, we need to mention the interpolative contractions. Very recently, the concept of interpolative contraction was suggested by the first author [14] by revising the Kannan contraction [8]. Following this paper [14], many research papers have been published on interpolative contractions in the setting of distinct abstract spaces [15,16,17,18,19,20,21,22,23,24,25] and for differently combined well-known contractions [26,27,28,29,30,31,32].
The aim of the paper is to examine the existence and uniqueness of interpolative Meir–Keeler contraction types via admissible mappings for fixed point theory in the context of the modular metric spaces. For this purpose, we reserve the first section for the introduction. The aim of the second section is to collect and clarify the mentioned notions above as well as to give the fundamentals of the metric fixed point theory. In the third section, we shall highlight the main results for interpolative Meir–Keeler contraction types in modular metric spaces and non-Archimedean modular metric spaces.

2. Preliminaries

We start this section by presenting well-known notations, collecting the basic definitions and fundamental results.

2.1. Concepts Related to Modular Metric Spaces

In this subsection, we shall present some basic concepts and properties in modular metric spaces. First of all, we recall the definition of the modular space:
Definition 1
([2]).Let M be a vector space over R (or C ). A functional ρ : M [ 0 , ] is called a modular if for any y and z in M , it satisfies the following conditions:
 (n1) 
ρ ( y ) = 0 iff y = 0 ;
 (n2) 
ρ ( α y ) = ρ ( y ) for every scalar α with | α | = 1 ;
 (n3) 
ρ ( α y + β z ) ρ ( y ) + ρ ( z ) , for α , β 0 and α + β = 1 .
Let M be a nonempty set, λ ( 0 , ) and because of the disparity of the arguments, function w : ( 0 , ) × M × M [ 0 , ] will be written by w λ ( y , z ) = w ( λ , y , z ) for every λ > 0 and y , z M .
In what follows, we state the definition of modular metric spaces (hereinafter referred to as “MMS”).
Definition 2
([3,4]).Let M w be a set. A function w : ( 0 , ) × M w × M w [ 0 , ] is said to be a metric modular on M w if it satisfies the following, for all y , z , t M w ,
( w 1 )
w λ ( y , z ) = 0 for all λ > 0 y = z ;
( w 2 )
w λ ( y , z ) = w λ ( z , y ) for every λ > 0 ;
( w 3 )
w λ + μ ( y , z ) w λ ( y , t ) + w μ ( t , z ) for every λ , μ > 0 .
If instead of ( w 1 ), we have only the condition
( w 1 )
w λ ( y , y ) = 0 , for each λ > 0 , then w is said to be a (metric) pseudomodular on M w .
If we replace ( w 3 ) by
( w 4 ) w max { λ , μ } ( y , z ) w λ ( y , t ) + w μ ( t , z ) ,
for all λ , μ > 0 and all y , z , t M w , then M w is called a non-Archimedean modular metric space (hereinafter referred to “non-AMMS”) [33]. Since ( w 4 ) implies ( w 3 ), each non-AMMS is an MMS.
Remark 1.
If w is a pseudomodular metric on a set M w , then the function λ w λ ( y , z ) is nonincreasing on ( 0 , + ) for all y , z M . Indeed, if 0 < μ < λ, then
w λ ( y , z ) w λ μ ( y , y ) + w μ ( y , z ) = w μ ( y , z ) .
Definition 3
([34]).A pseudomodular w on M is said to satisfy the Δ 2 -condition (on M w ) if the following condition holds:
( Δ 2 )
Given a sequence y k M w and y M w , if there exists a number λ > 0 , possibly depending on y k and y, such that if lim k w λ y k , y = 0 , then lim k w λ 2 y k , y = 0 .
Next, we recollect the basic topological notions in the context of modular spaces.
Definition 4
([3,35]).Let X w be an MMS.
 (i) 
The sequence y n n N in M w is notified to be convergent to y M w if w λ y n , y 0 , as n for every λ > 0 .
 (ii) 
The sequence y n n N in M w is notified to be Cauchy if w λ y m , y n 0 , as m , n for all λ > 0 .
 (iii) 
A subset K of M w is notified to be closed if each limit of a convergent sequence of K is contained in K .
 (iv) 
A subset K of M w is notified to be complete if any Cauchy sequence in K is a convergent sequence and its limit is in K .
 (v) 
A subset K of M w is notified to be bounded if for every λ > 0 ,
δ w ( K ) = sup w λ ( y , z ) : y , z K } < .

2.2. Basic Definitions and Theorems

We shall start this section by stating the renowned Meir–Keeler fixed point theorem.
Theorem 1
([10]).Let ( M , d ) be a complete metric space. If P forms a Meir–Keeler contraction on M, that is,
"for any given ε > 0 , there is a δ > 0 such that
ε d ( y , z ) < ε + δ i m p l i e s d ( P y , P z ) < ε ,
for every y , z M ",
then P possesses a unique fixed point.
Let us recall the α -admissible functions:
Definition 5
([13]).Let M be a nonempty set, P : M M and α : M × M [ 0 , + ) . We notify that P is α-admissible if y , z M ,
α ( y , z ) 1 α ( P y , P z ) 1 .
Karapınar et al. [36] defined the concept of triangular α -admissible mapping as follows.
Definition 6
([36]).Let M be a nonempty set, P be a self mapping defined on M and α : M × M [ 0 , + ) be a function. P is said to be a triangular α-admissible mapping if the following conditions:
 (1) 
α ( y , z ) 1 implies α ( P y , P z ) ) 1 , y , z M ;
 (2) 
α ( y , t ) 1 , α ( t , z ) 1 , implies α ( y , z ) 1 ;
hold for all y , z , t M .
Lemma 1
([13]).Let M be a nonempty set and P : M M be a triangular α-admissible mapping. Suppose that there exists y 0 M such that α ( y 0 , P y 0 ) 1 . If y k = P k y 0 , then
α ( y k , y t ) 1 ,
for all k , t N with k < t .
By Ψ , we denote the family of altering distance functions [37], that is, function ψ : [ 0 , + ) [ 0 , + ) , such that the following conditions fulfill:
(1)
ψ is continuous and nondecreasing;
(2)
ψ ( h ) = 0 if and only if h = 0 .
Lemma 2
([37,38,39]).Let ψ : [ 0 , + ) [ 0 , + ) be a nondecreasing and continuous function. Then, the following two conditions are equivalent:
 (1) 
ψ n ( h ) 0 , n for all h 0 ;
 (2) 
ψ ( h ) < h for all h > 0 .
Next, we state the definition of the interpolative contraction:
Definition 7
([14]).Let ( M , d ) be a metric space. A mapping P : M M is said to be an interpolative Kannan-type contraction if we have two constants λ [ 0 , 1 ] and α [ 0 , 1 ] such that
d ( P y , P z ) λ ( d ( y , P y ) ) α ( d ( z , P z ) ) 1 α ,
for every y , z M with y P y and z P z .
Theorem 2
([14]).Let ( M , d ) be a complete metric space and P : M M be an interpolative Kannan-type contraction mapping. Then, P possesses a fixed point.
Inspired by interpolative and the Meir–Keeler, the notion of the interpolative Kannan–Meir–Keeler [30] was defined in 2021:
Definition 8
([30]).Let ( M , d ) be a complete metric space. A mapping P : M M is said to be an interpolative Kannan–Meir–Keeler contraction on M if there exists γ ( 0 , 1 ) such that given ε > 0 , there exists δ > 0 such that for every y , z M Fix ( P ) ,
ε < [ d ( y , P y ) ] γ [ d ( z , P z ) ] 1 γ < ε + δ d ( P y , P z ) ε ,
d ( P y , P z ) < d ( y , P y ) ] γ [ d ( z , P z ) ] 1 γ ,
where F i x M ( P ) = y M : P y = y .
Let F i x M w ( P ) = y M w : P y = y .
The aim of this paper is to introduce a new contraction, namely, interpolative Meir–Keeler contraction, in the context of modular metric space. Consequently, we shall examine the existence and uniqueness of the fixed point for such mapping in the mentioned setting. In order to indicate the validity, an illustrative example is considered.

3. Main Results

We start this section by stating the definition of the interpolative Meir–Keeler contraction in MMS via admissible mappings:
Definition 9.
Let ( M w , w ) be an MMS. A self-mapping P : M w M w is defined as an ( α , ψ ) interpolative Meir–Keeler contraction of type I if there exist the functions α : M w × M w [ 0 , ) , ψ Ψ and constants ϑ [ 0 , 1 ) , λ 0 whenever for every ε > 0 there exists δ > 0 such that
ε ψ ( w 2 λ ( y , P y ) ) ϑ ( w 2 λ ( z , P z ) ) 1 ϑ < ε + δ α ( y , z ) w λ ( P y , P z ) < ε ,
for every y , z M w F i x M w ( P ) and 0 < λ < λ 0 .
The following lemma is an immediate consequence of Definition 9.
Lemma 3.
If P : M w M w is an ( α , ψ ) interpolative Meir–Keeler contraction of type I mapping, then for every y , z M w .
α ( y , z ) w λ ( P y , P z ) < ψ ( w 2 λ ( y , P y ) ) ϑ ( w 2 λ ( z , P z ) ) 1 ϑ .
Theorem 3.
Let ( M w , w ) be a complete MMS, where the modular w satisfies the ( Δ 2 ) condition. Let P : M w M w be an ( α , ψ ) interpolative Meir–Keeler contraction of type I mapping and assume that
( m 1 )
P is a triangular α-admissible mapping;
( m 2 )
there exists y 0 M w such that α ( y 0 , P y 0 ) 1 ;
( m 3 )
either P is continuous; or,
( R )
if y k is a sequence in M w such that α y k , y k + 1 1 for each k and y k y * M w as k , then α y k , y * 1 for all k .
Then, there exists y * M w such that y * = P y * .
Proof. 
Let { y 0 } in M w be such that α ( y 0 , P y 0 ) 1 . Define the Picard sequence { y k } , starting at { y 0 } , that is, y k = P k ( y 0 ) = P y k 1 for k = 1 , 2 , . . . . Using the conditions ( m 1 ) and ( m 2 ) , we obtain α ( y 0 , y 1 ) = α ( y 0 , P y 0 ) 1 , which implies α ( P y 0 , P y 1 ) = α ( y 1 , y 2 ) 1 , and also, using Lemma 1 α ( y m , y n ) 1 for every m , n N , ( m < n ) .
Furthermore, clearly if y k 0 + 1 = y k 0 for some k 0 N , then evidently, P has a fixed point. Thus, we assume that y k + 1 y k ( k 0 ) . Hence, we have
α ( y k , y k + 1 ) 1 .
Using Lemma 3, it follows that for every k N , we have
w λ ( y k , y k + 1 ) = w λ ( P y k 1 , P y k ) α ( y k 1 , y k ) w λ ( P y k 1 , P y k ) < ψ ( w 2 λ ( y k 1 , P y k 1 ) ) ϑ ( w 2 λ ( y k , P y k ) ) 1 ϑ = ψ ( w 2 λ ( y k 1 , y k ) ) ϑ ( w 2 λ ( y k , y k + 1 ) ) 1 ϑ ,
and using the property of function ψ ,
w λ ( y k , y k + 1 ) < ( w 2 λ ( y k 1 , y k ) ) ϑ ( w 2 λ ( y k , y k + 1 ) ) 1 ϑ ( w λ ( y k 1 , y k ) ) ϑ ( w λ ( y k , y k + 1 ) ) 1 ϑ .
Thus, we obtain
w λ ( y k , y k + 1 ) ϑ < w λ ( y k 1 , y k ) ϑ .
Consequently, we obtain that the sequence w λ ( y k , y k + 1 ) is strictly decreasing. In addition, from w λ ( y k , y k + 1 ) > 0 , for all k N 0 , we obtain that the sequence w λ ( y k , y k + 1 ) is convergent and so there exists a point 0 such that lim k w λ ( y k , y k + 1 ) = . We claim that = 0 . On the contrary, if > 0 , then taking ε = , by (2), we deduce that there exists δ ( ) > 0 such that
< ψ ( ( w 2 λ ( y k 1 , y k ) ) ϑ ( w 2 λ ( y k , y k + 1 ) ) 1 ϑ ) + δ ( ) i m p l i e s , w λ ( P y k 1 , P y k ) < .
Moreover, using lim k w λ ( y k , y k + 1 ) = (for δ ( ) > 0 ), we write N N such that for each k N , we have
< w λ ( y k , y k + 1 ) < ψ ( w 2 λ ( y k 1 , y k ) ) ϑ ( w 2 λ ( y k , y k + 1 ) ) 1 ϑ ,
or, using the properties of the function ψ ,
< w λ ( y k , y k + 1 ) < ( w 2 λ ( y k 1 , y k ) ) ϑ ( w 2 λ ( y k , y k + 1 ) ) 1 ϑ ( w λ ( y k 1 , y k ) ) ϑ ( w λ ( y k , y k + 1 ) ) 1 ϑ w λ ( y k 1 , y k ) < + δ ( )
for any k N . Therefore, by (5), we obtain that
w λ ( y k , y k + 1 ) < , for   any k N ,
which is a contradiction. Accordingly, we prove that
lim k w λ ( y k , y k + 1 ) = 0 .
Now, we will indicate that y k is a Cauchy sequence. Let ε > 0 and we consider that δ ( ε ) > 0 , with δ ( ε ) < ε . As we have lim k w λ ( y k , y k + 1 ) = 0 , and from ( Δ 2 ) lim k w λ 2 ( y k , y k + 1 ) = 0 , we choose r N such that w λ ( y k , y k + 1 ) < ε 2 and w λ 2 ( y k , y k + 1 ) < ε 2 for k r , and we assert that
w λ ( y k , y k + t ) < ε ,
for any t N . Indeed for t = 1 ,
w λ ( y k , y k + 1 ) < ε 2 < ε ,
and (6) holds. Assume that the above inequality holds for t . Then, we show that the above inequality holds for t + 1 . Indeed, by property ( w 3 ) , Lemmas 3 and 1, we obtain
w λ ( y k , y k + t + 1 ) w λ 2 ( y k , y k + 1 ) + w λ 2 ( y k + 1 , y k + t + 1 ) w λ 2 ( y k , y k + 1 ) + α ( y k , y k + t ) w λ 2 ( P y k , P y k + t ) w λ 2 ( y k , y k + 1 ) + ψ ( w λ ( y k , y k + 1 ) ) ϑ ( w λ ( y k + t , y k + t + 1 ) ) 1 ϑ < ε 2 + ψ ( ε 2 ) ϑ ( ε 2 ) 1 ϑ = ε 2 + ψ ε 2 < ε 2 + ε 2 = ε ( using property of function ψ ) .
Consequently, the sequence y k is Cauchy. As the completeness of the space M w , there exists y * M w such that lim k y k = y * . Since P is continuous,
y * = lim k y k + 1 = P lim k y k = P y * ,
so y * = P ( y * ) ; that is, y * M w is a fixed point of P .
We can obtain that there is a fixed point of P without any continuity assumption for the mapping P by property ( R ) . Using the condition ( R ) and (4), we have α ( y k , y * ) 1 for every k N . We claim that y * = P y * . On the contrary, if y * P y * , by Picard sequence, we have lim k y k + 1 = lim k P y k = y * , and then
w λ ( y * , P y * ) w λ 2 ( y * , P y k ) + w λ 2 ( P y k , P y * ) < w λ 2 ( y * , y k + 1 ) + α ( y k , y * ) w λ 2 ( P y k , P y * ) < w λ 2 ( y * , y k + 1 ) + ψ ( w λ ( y k , y k + 1 ) ) ϑ ( w λ ( y * , P y * ) ) 1 ϑ .
Letting k in the above inequality and by the right continuity of ψ at 0, we obtain that w λ ( y * , P y * ) = 0 , so y * = P y * . Consequently, y * M w is a fixed point of P . □
If in Theorem 3, we take ψ ( y ) = κ y where κ ( 0 , 1 ) , we have the following corollary:
Corollary 1.
Let P : M w M w be a continuous self mapping on a complete MMS ( M w , w ) . Suppose that there exist a function α : M w × M w [ 0 , ) and constants κ ( 0 , 1 ) , ϑ [ 0 , 1 ) , λ 0 > 0 such that for every ε > 0 , there exists δ > 0 such that
ε κ · ( w 2 λ ( y , P y ) ) ϑ ( w 2 λ ( z , P z ) ) 1 ϑ < ε + δ α ( y , z ) w λ ( P y , P z ) < ε ,
for every y , z M w F i x M w ( P ) and 0 < λ < λ 0 .
Moreover,
( m 1 )
P is a triangular α-admissible mapping,
( m 2 )
there exists y 0 M w such that α ( y 0 , P y 0 ) 1 ;
then there exist y * M w such that y * = P y * , that is, P possesses a fixed point.
If in Theorem 3, we obtain α ( y , z ) = 1 for every y , z M w F i x ( P ) , we obtain the following corollary:
Corollary 2.
Let P : M w M w be a continuous self mapping on a complete MMS ( M w , w ) . If there exist a function ψ Ψ , λ 0 > 0 and a constant ϑ [ 0 , 1 ) , such that for all ε > 0 , there exists δ > 0 such that
ε ψ ( ( w 2 λ ( y , P y ) ) ϑ ( w 2 λ ( z , P z ) ) 1 ϑ ) < ε + δ w λ ( P y , P z ) < ε ,
for every y , z M w F i x M w ( P ) and 0 < λ < λ 0 . Then, P has a fixed point.
If in Corollary 2, we consider ψ ( y ) = κ y where κ ( 0 , 1 ) , we have the following corollary:
Corollary 3.
Let P : M w M w be a continuous self mapping on a complete MMS ( M w , w ) . If there exist κ ( 0 , 1 ) and ϑ [ 0 , 1 ) , such that for all ε > 0 , there exists δ > 0 such that
ε κ · ( w 2 λ ( y , P y ) ) ϑ ( w 2 λ ( z , P z ) ) 1 ϑ < ε + δ w λ ( P y , P z ) < ε ,
for every y , z M w F i x M w ( P ) , and 0 < λ < λ 0 . Then, P has a fixed point.
Example 1.
Let M = M 1 M 2 , where M 1 = a 0 0 a : a R , M 2 = 0 a a 0 : a R , and w λ : ( 0 , ) × M × M [ 0 , ) , be a metric modular on M, with w λ ( Y , Z ) = 1 λ max 1 i 2 y i z i , where Y = y 1 y 2 y 2 y 1 , Z = z 1 z 2 z 2 z 1 , and y 1 , y 2 , z 1 , z 2 R . Let P : M M , be defined by
P Y = 1 0 0 1 , f o r Y 1 0 0 1 , 0 1 1 0 A · Y , otherwise ,
where A = 0 1 / 4 1 / 4 0 . Let also ψ Ψ , ψ ( h ) = 3 h 4 , ϑ = 1 2 and α : M × M [ 0 , ) ,
α ( Y , Z ) = d e t ( Y · Z ) + 1 , i f Y = Z 1 , i f Y = 4 0 0 4 , Z = 0 4 4 0 2 , i f Y = 0 1 1 0 , Z = 1 0 0 1 0 , otherwise .
Since it is easy to check that ( m 1 ) ( m 3 ) hold, we will verify that the mapping P is an ( α , ψ ) interpolative Meir–Keeler contraction of type I, by choosing δ ( ε ) = ε 2 for any ε > 0 .
For Y , Z M , Y = Z , we have w λ ( Y , Z ) = 0 , and then (2) holds for every ε > 0 .
For Y = 4 0 0 4 M 1 and Z = 0 4 4 0 M 2 , we have P Y = 0 1 1 0 , respectively P Z = 1 0 0 1 . We obtain
w λ ( P Y , P Z ) = 1 λ , w 2 λ ( Y , P Y ) = 4 2 λ = 2 λ , w 2 λ ( Z , P Z ) = 4 2 λ = 2 λ
and
ψ ( w 2 λ ( Y , P Y ) ) ϑ ( w 2 λ ( Z , P Z ) ) 1 ϑ = 3 2 λ α ( Y , Z ) w λ ( P Y , P Z ) = 1 λ .
Thus,
ε 3 2 λ < ε + ε 2 2 3 ε 1 λ < ε α ( Y , Z ) w λ ( P Y , P Z ) < ε .
Thereupon, (2) holds for every Y , Z M w F i x M w ( P ) . (The other cases are not interesting, taking in account the definition of the function α.)
Consequently, all the assumptions of Theorem 3 being satisfied, it follows that the mapping P has fixed points; there are Z * = 1 0 0 1 , respectively Y * = 0 0 0 0 .
Now, we investigate fixed point results for interpolative Meir–Keeler contraction in non-AMMS via admissible mappings.
Definition 10.
Let ( M w , w ) be a non-AMMS. A mapping P : M w M w is called an ( α , ψ ) interpolative Meir–Keeler contraction of type II if there exist two functions α : M w × M w [ 0 , ) , ψ Ψ and constants λ 0 > 0 , ϑ 1 , ϑ 2 [ 0 , 1 ) with ϑ 1 + ϑ 2 < 1 , such that for all ε > 0 , there exists δ > 0 such that
ε ψ ( w λ ( y , z ) ) ϑ 1 ( w λ ( y , P y ) ) ϑ 2 ( w λ ( z , P z ) ) 1 ϑ 1 ϑ 2 < ε + δ α ( y , z ) w λ ( P y , P z ) < ε ,
for every y , z M w F i x M w ( P ) and 0 < λ < λ 0 .
Lemma 4.
If P : M w M w is an ( α , ψ ) interpolative Meir–Keeler contraction type II mapping, then for every y , z M w .
α ( y , z ) w λ ( P y , P z ) < ψ ( ( w λ ( y , z ) ) ϑ 1 ( w λ ( y , P y ) ) ϑ 2 ( w λ ( z , P z ) ) 1 ϑ 1 ϑ 2 ) .
Theorem 4.
Let ( M w , w ) be a complete non-AMMS and P : M w M w be an ( α , ψ ) interpolative Meir–Keeler contraction of type II. Suppose that
( m 1 )
P is a triangular α-admissible mapping;
( m 2 )
there exists y 0 M w such that α ( y 0 ; P y 0 ) 1 ,
( m 3 )
if y k is a sequence in M w such that α y k , y k + 1 1 for each k and y k y * M w as k , then α y k , y * 1 for all k .
Then there exists y * M w such that y * = P y * .
Proof. 
Let y 0 M w be such that α ( y 0 , P y 0 ) 1 . Let { y k } be a Picard sequence starting at { y 0 } , that is, y k = P k ( y 0 ) = P y k 1 for k = 1 , 2 , . . . . By ( m 1 ) and ( m 2 ) , we obtain α ( y 0 , y 1 ) = α ( y 0 , P y 0 ) 1 implies α ( P y 0 , P y 1 ) = α ( y 1 , y 2 ) 1 , and taking Lemma 1 into account, we obtain α ( y m , y n ) 1 for all m , n N with m < n .
In addition, understandably, if there exists k 0 N such that y k 0 + 1 = y k 0 , then P y k 0 = y k 0 and openly P has a fixed point. So, we assume that y k + 1 y k ( k 0 ) . So, we have
α ( y k , y k + 1 ) 1 .
Keeping Lemma 3 in mind, it follows that for every k N , we write
w λ ( y k , y k + 1 ) = w λ ( P y k 1 , P y k ) α ( y k 1 , y k ) w λ ( P y k 1 , P y k ) < ψ ( w λ ( y k 1 , y k ) ) ϑ 1 ( w λ ( y k 1 , P y k 1 ) ) ϑ 2 ( w λ ( y k , P y k ) ) 1 ϑ 1 ϑ 2 = ψ ( w λ ( y k 1 , y k ) ) ϑ 1 ( w λ ( y k 1 , y k ) ) ϑ 2 ( w λ ( y k , y k + 1 ) ) 1 ϑ 1 ϑ 2 ( using property of ψ ) < ( w λ ( y k 1 , y k ) ) ϑ 1 ( w λ ( y k 1 , y k ) ) ϑ 2 ( w λ ( y k , y k + 1 ) ) 1 ϑ 1 ϑ 2
and thus, we obtain
w λ ( y k , y k + 1 ) ϑ 1 + ϑ 2 < w λ ( y k 1 , y k ) ϑ 1 + ϑ 2 .
Accordingly, we show that sequence w λ ( y k , y k + 1 ) is strictly decreasing. From w λ ( y k , y k + 1 ) > 0 , for every k N 0 , we provide that the sequence w λ ( y k , y k + 1 ) is convergent; at the time, we have a point 0 such that lim k w λ ( y k , y k + 1 ) = . We pretense that = 0 . If not > 0 , then letting ε = , from (10), we deduce that there exists δ ( ) > 0 such that
ψ ( ( w λ ( y k 1 , y k ) ) ϑ 1 ( w λ ( y k 1 , y k ) ) ϑ 2 ( w λ ( y k , y k + 1 ) ) 1 ϑ 1 ϑ 2 ) < + δ ( ) implies , α ( y k 1 , y k ) w λ ( P y k 1 , P y k ) < .
Again, since lim k w λ ( y k , y k + 1 ) = , (for δ ( ) > 0 ) we can find N N such that
< w λ ( y k , y k + 1 ) < ψ ( ( w λ ( y k 1 , y k ) ) ϑ 1 ( w λ ( y k 1 , y k ) ) ϑ 2 ( w λ ( y k , y k + 1 ) ) 1 ϑ 1 ϑ 2 ) ( using property of function ψ ) < ( w λ ( y k 1 , y k ) ) ϑ 1 ( w λ ( y k 1 , y k ) ) ϑ 2 ( w λ ( y k , y k + 1 ) ) 1 ϑ 1 ϑ 2 w λ ( y k 1 , y k ) < + δ ( ) ,
for any k N . By using (14), we obtain that
w λ ( y k , y k + 1 ) < , f o r a n y k N ,
which is a contradiction. Correspondingly, we show that
lim k w λ ( y k , y k + 1 ) = 0 .
Now, we indicate that y k is a Cauchy sequence. Let > 0 and choose ε > 0 with 4 < ε , there exists δ ( ) > 0 so that
ψ ( w λ ( y , z ) ) ϑ 1 ( w λ ( y , P y ) ) ϑ 2 ( w λ ( z , P z ) ) 1 ϑ 1 ϑ 2 < + δ ( ) α ( y , z ) w λ ( P y , P z ) < .
Consider
δ 1 = min { 1 , , δ ( ) } .
Evidently, condition (16) is true with δ ( ) replaced by δ 1 . Moreover, by using (15), we have t N so that
w λ ( y k , y k + 1 ) < δ 1 ,
for all k t . Let
Π = { h N : h t , w λ ( y h , y t ) < + δ 1 } .
Apparently, Π , since t Π . We will prove that
h Π h + 1 Π .
If h = t , then h + 1 Π in (18). If h > t , then we obtain the following two cases:
Case 1: Presume that
w λ ( y h , y t ) < + δ 1 .
Then from (17)–(19), we obtain
ψ ( ( w λ ( y h , y t ) ) ϑ 1 ( w λ ( y h , P y h ) ) ϑ 2 ( w λ ( y t , P y t ) ) 1 ϑ 1 ϑ 2 ) ψ ( w λ ( y h , y t ) ) ϑ 1 ( w λ ( y h , y h + 1 ) ) ϑ 2 ( w λ ( y t , y t + 1 ) ) 1 ϑ 1 ϑ 2 ψ ( ( + δ 1 ) ϑ 1 ( δ 1 ) 1 ϑ 1 ) ψ ( ( + δ 1 ) ϑ 1 ( + δ 1 ) 1 ϑ 1 ) = ψ ( + δ 1 ) < + δ 1 .
Then, using Lemma 1 we obtain
w λ ( y h , y t ) α ( y h , y t ) w λ ( y h , y t ) < ψ ( ( w λ ( y h , y t ) ) ϑ 1 ( w λ ( y h , y h + 1 ) ) ϑ 2 ( w λ ( y t , y t + 1 ) ) 1 ϑ 1 ϑ 2 ) < + δ 1 α ( y h , y t ) w λ ( P y h , P y t ) < ,
so, w λ ( y h + 1 , y t + 1 ) < and then, we deduce that
w λ ( y h + 1 , y t ) = w max { λ , λ } ( y h + 1 , y t ) w λ ( y h + 1 , y t + 1 ) + w λ ( y t + 1 , y t ) < + δ 1 .
In this way, we obtain h + 1 Π .
Case 2: Consider
w λ ( y h , y t ) < .
Then, we write
w λ ( y h + 1 , y t ) = w max { λ , λ } ( y h + 1 , y t ) w λ ( y h + 1 , y h ) + w λ ( y h , y t ) < + δ 1 ,
which shows that h + 1 Π . Therefore, by Case 1 and Case 2, we show that
w λ ( y h , y t ) < + δ 1 ,
for all h t . Now, for h , k N , ( h k t ) by (20), we show that
w λ ( y h , y k ) = w max { λ , λ } ( y h , y k ) w λ ( y h , y t ) + w λ ( y t , y k ) < 2 + 2 δ 1 4 < ε ,
which indicates that y k is Cauchy. As the completeness of the space M w , there exists y * M w such that lim k y k = y * .
Using condition ( m 3 ) and (12), we have α ( y k , y * ) 1 for every k N . We show that y * = P y * . Inversely, let y * P y * , using the Picard sequence, we obtain lim k P y k = y * . Moreover,
0 < w λ ( y * , P y * ) = w max { λ , λ } ( y * , P y * ) w λ ( y * , P y k ) + w λ ( P y k , P y * ) w λ ( y k + 1 , y * ) + α ( y k , y * ) w λ ( P y k , P y * ) < w λ ( y k + 1 , y * ) + ψ ( w λ ( y k , y * ) ) ϑ 1 ( w λ ( y k , y k + 1 ) ) ϑ 2 ( w λ ( y * , P y * ) ) 1 ϑ 1 ϑ 2 ( using property of ψ ) < w λ ( y k + 1 , y * ) + ( w λ ( y k , y * ) ) ϑ 1 ( w λ ( y k , y k + 1 ) ) ϑ 2 ( w λ ( y * , P y * ) ) 1 ϑ 1 ϑ 2 .
Taking k , we obtain the above inequality, w λ ( y * , P ( y * ) ) = 0 , so y * = P ( y * ) . Thus, y * M w is a fixed point of P . □
If in Theorem 4, we obtain ψ ( y ) = κ y where κ ( 0 , 1 ) , then we have the following corollary:
Corollary 4.
Let P : M w M w be a continuous self-mapping on a complete non-AMMS ( M w , w ) . Assume that there exists a function α : M w × M w [ 0 , ) , κ ( 0 , 1 ) and constants ϑ 1 , ϑ 2 [ 0 , 1 ) with ϑ 1 + ϑ 2 < 1 , such that for all ε > 0 , there exists δ > 0 such that
ε κ · ( w λ ( y , z ) ) ϑ 1 ( w λ ( y , P y ) ) ϑ 2 ( w λ ( z , P z ) ) 1 ϑ 1 ϑ 2 < ε + δ α ( y , z ) w λ ( P y , P z ) < ε ,
for every y , z M w F i x M w ( P ) . Furthermore, assume that
( m 1 )
P is a triangular α-admissible mapping;
( m 2 )
there exists y 0 M w such that α ( y 0 ; P y 0 ) 1 ,
Then, there exists y * M w such that y * = P y * , that is, P possesses a fixed point.
If in Theorem 4, we obtain α ( y , z ) = 1 for every y , z M w F i x M w ( P ) , then we have the following corollary:
Corollary 5.
Let P : M w M w be a continuous self mapping on a complete non-AMMS ( M w , w ) . Suppose that there exist a function ψ Ψ and constants ϑ 1 , ϑ 2 [ 0 , 1 ) with ϑ 1 + ϑ 2 < 1 , such that for all ε > 0 , there exists δ > 0 such that
ε ψ ( ( w λ ( y , z ) ) ϑ 1 ( w λ ( y , P y ) ) ϑ 2 ( w λ ( z , P z ) ) 1 ϑ 1 ϑ 2 ) < ε + δ w λ ( P y , P z ) < ε ,
for every y , z M w F i x M w ( P ) . Then, there exists y * M w such that y * = P y * ; that is, P possesses a fixed point.
If in Corollary 5, we obtain ψ ( y ) = κ y where κ ( 0 , 1 ) , then we have the following corollary:
Corollary 6.
Let P : M w M w be a continuous self-mapping on a complete non-AMMS ( M w , w ) . Suppose that there exist κ ( 0 , 1 ) and constants ϑ 1 , ϑ 2 [ 0 , 1 ) with ϑ 1 + ϑ 2 < 1 , such that for all ε > 0 , there exists δ > 0 such that
ε κ · ( w λ ( y , z ) ) ϑ 1 ( w λ ( y , P y ) ) ϑ 2 ( w λ ( z , P z ) ) 1 ϑ 1 ϑ 2 < ε + δ w λ ( P y , P z ) < ε ,
for every y , z M w F i x M w ( P ) . Then, the mapping P possesses a fixed point.

4. Conclusions

In this paper, we aim to characterize the interpolative Meir–Keeler contraction in modular metric spaces and non-Archimedean modular metric spaces by involving the interesting auxiliary functions, that is, α -admissible mappings. Utilizing the definition of interpolative Meir–Keeler contraction, we proved the existence of fixed point in our theorems. We also present an interesting example along with our fixed point results. At the same time, we aim to underline the importance of the concept of interpolative contractions and to indicate that there is much more to be done in this regard.

Author Contributions

All authors contributed equally and significantly in writing this paper. All authors have read and agreed to publish the present version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors wish to thank the referees for their careful reading of the manuscript and valuable suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Nakano, H. Modular Semi-Ordered Spaces; Maruzen Company: Tokyo, Japan, 1950. [Google Scholar]
  2. Musielak, J.; Orlicz, W. On modular spaces. Stud. Math. 1959, 18, 591–597. [Google Scholar] [CrossRef]
  3. Chistyakov, V.V. Modular metric spaces, I: Basic concepts. Nonlinear Anal. Theory Methods Appl. 2010, 72, 1–14. [Google Scholar] [CrossRef]
  4. Chistyakov, V.V. Modular metric spaces, II: Application to superposition operators. Nonlinear Anal. Theory Methods Appl. 2010, 72, 15–30. [Google Scholar] [CrossRef]
  5. Chistyakov, V. Metric Modular Spaces: Theory and Applications; Springer: Cham, Switzerland, 2015. [Google Scholar]
  6. Aksoy, U.; Karapınar, E.; Erhan, I.M. Fixed point theorems in complete modular metric spaces and an application to anti-periodic boundary value problems. Filomat 2017, 31, 5475–5488. [Google Scholar] [CrossRef]
  7. Hosseinzadeh, H.; Parvaneh, V. Meir–Keeler type contractive mappings in modular and partial modular metric spaces. Asian-Eur. J. Math. 2020, 13, 2050087. [Google Scholar] [CrossRef]
  8. Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60, 71–76. [Google Scholar]
  9. Rhoades, B.E. A comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 1977, 226, 257–290. [Google Scholar] [CrossRef]
  10. Meir, A.; Keeler, E. A theorem on contraction mappings. J. Math. Anal. Appl. 1969, 28, 326–329. [Google Scholar] [CrossRef]
  11. Aksoy, U.; Karapınar, E.; Erhan, I.M.; Rakoćević, V. Meir-Keeler type contractions on modular metric spaces. Filomat 2018, 32, 3697–3707. [Google Scholar] [CrossRef]
  12. Redjel, N.; Dehici, A.; Karapınar, E.; Erhan, I. Fixed point theorems for (α,ψ)-Meir-Keeler-Khan. J. Nonlinear Sci. Appl. 2015, 8, 955–964. [Google Scholar] [CrossRef]
  13. Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal. Theory Methods Appl. 2012, 75, 2154–2165. [Google Scholar] [CrossRef]
  14. Karapınar, E. Revisiting the Kannan type contractions via interpolative. Adv. Theory Nonlinear Anal. Its App. 2018, 2, 85–87. [Google Scholar]
  15. Aydi, H.; Karapınar, E.; Roldán López de Hierro, A.F. ω-interpolative Ćirić-Reich-Rus-type contractions. Mathematics 2019, 7, 57. [Google Scholar] [CrossRef]
  16. Gaba, Y.U.; Karapınar, E. A new approach to the interpolative contractions. Axioms 2019, 8, 110. [Google Scholar] [CrossRef]
  17. Karapınar, E.; Agarwal, R.P. Interpolative Rus-Reich-Ćirić- type contractions via simulation functions. Analele Univ. Ovidius-Constanta-Ser. Mat. 2019, 27, 137–152. [Google Scholar] [CrossRef]
  18. Karapınar, E. Revisiting simulation functions via interpolative contractions. Appl. Anal. Discret. Math. 2019, 13, 859–870. [Google Scholar] [CrossRef]
  19. Karapınar, E.; Fulga, A.; Roldán López de Hierro, A.F. Fixed point theory in the setting of (α,β,ψ,ϕ)-interpolative contractions. Adv. Differ. Equations 2021, 2021, 339. [Google Scholar] [CrossRef]
  20. Karapınar, E.; Fulga, A.; Yeşilkaya, S.S. New results on Perov-Interpolative contractions of Suzuki type mappings. J. Funct. Spaces 2021, 2021, 9587604. [Google Scholar] [CrossRef]
  21. Khan, M.S.; Singh, Y.M.; Karapınar, E. On the interpolative (ϕ,ψ)-type Z-contraction. U.P.B. Sci. Bull. Series A 2021, 83, 25–38. [Google Scholar]
  22. Karapınar, E.; Agarwal, R.; Aydi, H. Interpolative Reich–Rus–Ćirić type contractions on partial metric spaces. Mathematics 2018, 6, 256. [Google Scholar] [CrossRef]
  23. Karapınar, E.; Alqahtani, O.; Aydi, H. On interpolative Hardy-Rogers type contractions. Symmetry 2019, 11, 8. [Google Scholar] [CrossRef]
  24. Aydi, H.; Chen, C.M.; Karapınar, E. Interpolative Ćirić-Reich-Rus type contractions via the Branciari distance. Mathematics 2019, 7, 84. [Google Scholar] [CrossRef]
  25. Öztürk, M. On interpolative contractions in modular spaces. J. Nonlinear Convex Anal. 2022, 23, 1495–1507. [Google Scholar]
  26. Yeşilkaya, S.S. On interpolative Hardy-Rogers contractive of Suzuki type mappings. Topol. Algebra Its Appl. 2021, 9, 13–19. [Google Scholar] [CrossRef]
  27. Fulga, A.; Yeşilkaya, S.S. On some interpolative contractions of Suzuki type mappings. J. Funct. Spaces 2021, 2021, 659609. [Google Scholar] [CrossRef]
  28. Karapınar, E.; Aydi, H.; Mitrovic, Z.D. On interpolative Boyd–Wong and Matkowski type contractions. TWMS J. Pure Appl. Math 2020, 11, 204–212. [Google Scholar]
  29. Noorwali, M.; Yeşilkaya, S.S. New fixed point theorems for admissible hybrid maps. J. Funct. Spaces 2022, 2022, 5800790. [Google Scholar] [CrossRef]
  30. Karapınar, E. Interpolative Kannan-Meir-Keeler type contraction. Adv. Theory Nonlinear Anal. Its App. 2021, 5, 611–614. [Google Scholar] [CrossRef]
  31. Öztürk, A.; Yeşilkaya, S.S. On interpolative Q-Meir-Keeler contractions of rational forms. J. Nonlinear Convex Anal. 2022, 23, 1049–1106. [Google Scholar]
  32. Karapınar, E. A Survey on interpolative and hybrid contractions. In Mathematical Analysis in Interdisciplinary Research; Springer: Cham, Switzerland, 2021; pp. 431–475. [Google Scholar]
  33. Paknazar, M.; Kutbi, M.A.; Demma, M.; Salimi, P. On non-Archimedean modular metric spaces and some nonlinear contraction mappings. J. Nonlinear Sci. Appl. in press.
  34. Chistyakov, V.V. A fixed point theorem for contractions in modular metric spaces. arXiv 2011, arXiv:1112.5561. [Google Scholar]
  35. Mongkolkeha, C.; Sintunavarat, W.; Kumam, P. Fixed point theorems for contraction mappings in modular metric spaces. Fixed Point Theory Appl. 2011, 2011, 93. [Google Scholar] [CrossRef]
  36. Karapınar, E.; Kumam, P.; Salimi, P. On α-ψ-Meir-Keeler contractive mappings. Fixed Point Theory Appl. 2013, 2013, 1–12. [Google Scholar] [CrossRef]
  37. Khamsi, M.A.; Kozlowski, W.M.; Reich, S. Fixed point theory in modular function spaces. Nonlinear Anal. Theory, Methods Appl. 1990, 14, 935–953. [Google Scholar] [CrossRef]
  38. Deep, A.; Rezaei Roshan, J.; Nisar, K.S.; Abdeljawad, T. An extension of Darbo’s fixed point theorem for a class of system of nonlinear integral equations. Adv. Differ. Equations 2020, 2020, 1–17. [Google Scholar] [CrossRef]
  39. Roshan, J.R. Existence of solutions for a class of system of functional integral equation via measure of noncompactness. J. Comput. Appl. Math. 2017, 313, 129–141. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Karapınar, E.; Fulga, A.; Yeşilkaya, S.S. Interpolative Meir–Keeler Mappings in Modular Metric Spaces. Mathematics 2022, 10, 2986. https://doi.org/10.3390/math10162986

AMA Style

Karapınar E, Fulga A, Yeşilkaya SS. Interpolative Meir–Keeler Mappings in Modular Metric Spaces. Mathematics. 2022; 10(16):2986. https://doi.org/10.3390/math10162986

Chicago/Turabian Style

Karapınar, Erdal, Andreea Fulga, and Seher Sultan Yeşilkaya. 2022. "Interpolative Meir–Keeler Mappings in Modular Metric Spaces" Mathematics 10, no. 16: 2986. https://doi.org/10.3390/math10162986

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop